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Abstract
Empirical wavelet transform (EWT) is a signal decomposition method that distinguishes signals from the frequency domain. 
When processing non-stationary and strong noise signals, a large number of invalid components may be obtained, or modal 
aliasing may occur. The biggest contribution of sparsity-guided multi-scale empirical wavelet transform (SMSEWT) is that 
it can optimize the segmentation method and extract useful frequency band, reduce the number of invalid components, and 
suppress modal aliasing. In order to divide frequency bands containing similar information into final components, Fourier 
spectrum will be divided equally and used to calculate kurtosis. Frequency bands with similar kurtosis are considered to con-
tain the same kind of information, which will be combined to achieve adaptive segmentation of the spectrum. Subsequently, 
empirical wavelet filters will be constructed and the time-domain waveforms of each frequency band can be obtained. Using 
sparsity to select envelope components containing abundant periodic pulses can diagnose bearing faults.
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1  Introduction

Rotating machinery is an indispensable part of industrial 
society. Most major accidents in rotating machinery occur 
due to bearing failure. Bearings, considered as one of the 
most stressed components in rotating machinery, have a 
significant pulse on the performance and productivity of 
rotating machinery [1, 2]. Repeated collisions and periodic 
pulses occur when the bearing fails due to the position defor-
mation of the fault [3]. Early bearing defects first excite reso-
nance frequencies in high-frequency domain [4]. Traditional 
fault diagnosis techniques mainly include demodulation and 

envelope-based methods, because they can identify the fre-
quency caused by defects in bearings. However, the main 
challenge in applying this technology is to correctly select 
the center frequency and bandwidth to perform the envelope 
spectrum.

Spectral kurtosis (SK) is widely used as an important 
tool for effectively selecting the resonant frequency band 
in the fault diagnosis of bearing vibration signals. Antoni 
proposed Fast Kurtogram (FK) [5], using 1/3 and two binary 
forked tree structures, based on much systematic research 
on spectral kurtosis [6, 7]. Later, Randall and Sawalhi [8] 
combine the minimum convolution entropy with FK to 
amplify the pulse signal, making it easier to detect periodic 
components in the vibration signal. Combet and Gelman 
[9] improved FK through time-domain synchronous mean 
for early fault diagnosis of gears. Lei [10, 11] improved 
FK for early bearing fault diagnosis which has achieved 
good results. However, FK itself has certain limitations. 
For example, the segmentation of spectrum is not adap-
tive for finding the most suitable bandwidth and center 
frequency. It is worth mentioning that FK does not have 
an immune effect on accidental pulse. Hence, Protrugram 
was proposed by Barszcz [12] to find the optimal center 
frequency of resonance band. Wang [13] proposed adaptive 
SK and applied it to the mechanical fault diagnosis in [14, 
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15], which can adaptively estimate the bandwidth. Xu and 
Tian [16] proposed empirical scanning spectrum kurtosis for 
the selection of optimal frequency band. Sparsogram [17] 
is proposed which can avoid the effects of interference. In 
order to processing signal with low SNR, Autogram [18] 
based on kurtosis of square envelope unbiased autocorrela-
tion was proposed. Tse [19] improved the Sparsogram by 
combining genetic algorithms to adaptively determine the 
optimal center frequency and bandwidth. Unfortunately, it 
sacrifices the calculation time due to the genetic algorithm. 
Time–frequency analysis has a very important position in 
signal decomposition and feature extraction [20]. Simi-
larly, methods such as synchrosqueezed wavelet transform 
(SWT) and synchrosqueezed Fourier transform (SFT) are 
widely used for fault detection and classification in bearings 
[21, 22]. Empirical mode decomposition (EMD) proposed 
by Huang [23] can adaptively process the non-stationary 
signal. Inspired by EMD, Gilles developed a new method 
named empirical wavelet transform (EWT) [24]. The method 
divides the signal into a plurality of IMFs by a local maxi-
mum rule in the Fourier spectrum. The main idea of EWT 
is to divide the spectrum of the signal by designing multiple 
filters with indefinite bandwidth for mode decomposition. 
Kedadouche [25] compared the advantages and disadvan-
tages between EMD and EWT and provided a more reli-
able basis for the follow-up research of EWT. Then, EWT 
has been improved by experts and scholars in the direction 
of fault diagnosis and applied in rotor fault diagnosis [26, 
27]. The adaptive parameterless EWT method is proposed 
in [28] combining quadrature derivative-based normalized 
Hilbert transform for adaptive mode separation. Wang [29, 
30] mathematically formulate EWT as a constrained opti-
mization problem for bearing fault diagnosis. Chen [31] 
extracts modulated signals by EWT processing orthogonal 
basis decomposition components and uses wavelet spatial 
neighboring coefficient denoising with data-driven threshold 
to improve SNR. Jiang and Zhu [32] presented a decoupling 
diagnosis method for compound faults of rolling bearings 
based on empirical wavelet transform-duffing oscillator. 
The components with mixed modes obtained by EWT are 
directly observed as chaotic motions through the processing 
of duffing oscillator, so single fault components are identi-
fied from empirical modes one by one. Hu [33, 34] proposed 
an enhanced EWT (EEWT) to improve the spectrum seg-
mentation by order statistical filter (OSF), which is able to 
select the optimal resonance frequency band of modulated 
signal. OSF was also used by Zhang [35] and Xu [36] to con-
struct a new boundary distribution diagram similar to FK. 
Huang [37] proposed the frequency phase space empirical 
wavelet transform to divide the Fourier spectrum with the 
Teager energy distribution as a reference. Zhao [38] uses 
maximum–minimum length curve method to transform the 
original vibration signal spectrum to scale space in order 

to find meaningful clusters. The new method is named 
MSCEWT. Hsueh [39] et al. proposed a model based on 
deep CNN and EWT to detect and induce the motor operat-
ing state [40]. Ou [41] combines improved particle swarm 
algorithm, majorization-minimization-based total variation 
denoising algorithm and EWT to decompose bearing fault 
signals and extract fault features. Liu and Chen [42] pre-
sent a general overview of the recent advancements made 
in research on the EWT algorithm and its state-of-the-art 
applications in a wide range of areas and providing some 
comprehensive references for reader concerning with EWT.

In this paper, a novel method named sparsity-guided 
multi-scale empirical wavelet transform method (SMSEWT) 
is proposed which can optimize the segmentation method 
and extract useful frequency band, reduce the number of 
invalid components, and suppress modal aliasing. In order to 
divide frequency bands containing similar information into 
final components, Fourier spectrum will be divided equally 
and used to calculate kurtosis. Frequency bands with similar 
kurtosis are considered to contain the same kind of infor-
mation, which will be combined to achieve adaptive seg-
mentation of the spectrum. Subsequently, empirical wavelet 
filters will be constructed and the time-domain waveforms 
of each frequency band can be obtained. Using sparsity to 
select envelope components containing abundant periodic 
pulses can diagnose bearing faults. The rest of this paper is 
structured as follows. Section 2 simply introduced the basic 
theory of EWT. Section 3 proposed multi-scale EWT that 
optimizes the spectral segmentation for further construction 
of EWT filters. In Sect. 4, SMSEWT is proposed for extrac-
tion of useful envelope components. Experimental validation 
and comparisons are performed in Sect. 5.

2 � Empirical wavelet transform

2.1 � Basic theory of EWT

In empirical wavelet transform, the frequency domain [0, π] 
is adaptively divided into N continuous parts and expressed 
by Λn . According to the characteristics of Fourier spectrum, 
it can establish a filter bank to extract different components, 
as shown in Fig. 1. ωn is defined as the boundary of continu-
ous parts:

Fig. 1   Empirical wavelet transform filtering method
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EWT consists of an empirical scaling function ∅̂1(ω) 
and several empirical wavelet functions Ψ̂n(ω) . The empiri-
cal scaling function and empirical wavelets function are 
expressed by:

where the transition function β(x) , the coefficient γ , and 
the transition phase τn are:

Set the Fourier transform as F(∙) , the inverse Fourier 
transform is F−1(∙) . The detail coefficients Wε

f
 can be defined 

as:

Calculate the approximation coefficients Wε
f
(0, t):

The empirical modes could be given by:

2.2 � The shortcomings of EWT

Gilles proposed some rules to find ωn , dividing the whole 
Fourier spectrum into N parts. The most common rule is to 
use the local maxima of the spectrum to determine the seg-
ments. However, N is set by the first several local maxima, 
where ωn is taken as the median of two adjacent maxima. 
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This may separate the resonance sideband into different parts 
due to the relative concentration of several maxima, so the 
periodic pulses component is not the best performance. A 
periodic pulses signal with a center frequency of 1500 Hz 
and a width of the sideband of 100 Hz is simulated by Eq. 9 
and shown in Fig. 2.

where the amplitude A=5, the nature frequency fn=1600 Hz, 
the damping coefficient g = 0.05 , M = 100 , and noise is 
SNR = −5 dB.

In Fig. 3, a resonance band appears in the spectrum of the 
simulation signal. It is necessary to extract the sideband for 
analysis in order to achieve the purpose of fault diagnosis. 
The two points of local maxima in frequency need to be 
selected according to the rule of EWT, which is highlighted 
by the red point. According to the local maxima rule, the 
first boundary is located near 777 Hz and the second one 
is around 1434 Hz, as shown in Fig. 3. Unfortunately, the 
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Fig. 2   The waveform of the simulation signal

Fig. 3   Ideal boundaries and EWT boundaries
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resonance frequency band deviates greatly from our ideal 
result, and the ideal resonance frequency band is divided 
into two parts, weakening the fault feature information.

Figure 4 shows the filters constructed by original EWT 
which divide the whole frequency domain into three parts. 
Both Ψ̂1 and Ψ̂2 contain a part of the ideal fragment. As 
shown in Fig. 5, the periodic pulses are seen vaguely in the 
second empirical mode with too much noise. Meanwhile, 
the periodic shock in the third empirical mode has been sub-
merged in the strong high frequency. Obviously, the local 
maximum rule cannot extract the appropriate resonance 
sideband in the spectrum due to the limitation of its frag-
ment division, which affects the final extraction effect.

3 � Optimized empirical wavelet transform

The resonance band in the frequency domain can be seen as 
the generation of a series of pulses. Therefore, by dividing 
the spectrum into several scales and calculating the kurtosis 
of each scale, the trend of the spectrum can be depicted, 
which is a good prerequisite for effectively cutting the fre-
quency domain. In this section, multi-scale empirical wave-
let transform (MSEWT) was proposed to introduce the 
concept of multi-scale kurtosis into frequency domain. The 
proposed method is shown in Fig. 6, and the detail proces-
sion can be described as follows:

Step 1: Cutting the frequency domain using a given 
scale. In order to facilitate program editing, η is introduced 
to represent scale (scale = ηfq ). When 1 ≤ η ≤ 3 , the scale 
( fq ≤ scale ≤ 3fq ) is seen as a suitable range.

Step 2: Calculate the kurtosis of each fragment. Since 
kurtosis is sensitive to accidental impulses, the correspond-
ing kurtosis of the segment will increase when there is an 
obvious frequency peak in the scale segment. The local kur-
tosis transformation in the spectrum can reflect the strength 
of the frequency components in the spectrum. Extract the 
frequency concentrated part may be able to obtain the 
desired fault feature components.

Fig. 4   Filters of EWT

Fig. 5   Results decomposed by EWT

After setting the scale , divide the Fourier 
spectrum into several parts evenly

Construct filter bank s based on scale function 
and empirical wavelet function

Reconstruct each component

Normalize the boundar ies to [0, pi]

Start

Load the signal and calculate Fourier spectrum

End

Merge similar parts according to the rules and 
determine the final boundaries

Calculate the Kurtosis of each frequency band

Fig. 6   Flowcharts of multi-scale empirical wavelet transform
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Step 3: Fragments merging. The artificial averaging rule 
is defined by the following formula:

where Ki represents the kurtosis of the i-th scale fragment.
If the scale kurtosis of two adjacent satisfies Eq. 10, the 

middle boundary between the two adjacent scale segments 
will be retained. If the formula is not satisfied, the two 
dimensions will be fused together. The two task segments 
contain the same components and need not be segmented.

Step 4: Construct filter bank based on empirical scale 
function and empirical wavelet function. Each individual 
filter in the filter bank represents an independent component. 
All components make up the original signal. Reconstruct 
the information in each filter. The original signal will be 
decomposed into several components located in different 
frequency bands.

3.1 � Case 1 of simulation experiment

When the rolling balls go through the fault position of the 
bearing outer ring, the pulse will occur. Periodic pulses are 
often used to simulate bearing failures.

For the signal mentioned in Eq. 9, the spectrum will be 
divided into 25 parts of which red are the initial boundaries. 
Kurtosis is used to describe the spectrum trend character-
istics to emerge the resonance frequency band. The useless 
boundaries will be merged by the artificial averaging rule. 
The blue line in Fig. 7 is the boundaries after merging. After 
removing the redundant boundaries, only two boundaries are 
finally determined, which separates the resonance sideband 
from the whole spectrum. Figure 8 shows the filters con-
structed by MSEWT.

As shown in Fig. 8, the empirical scale function and 
empirical wavelet function are constructed according to 
the final boundaries. Three components are obtained by 
MSEWT and shown in Fig. 9, with the second empirical 
mode containing rich characteristic frequency. The opti-
mized frequency division method can effectively separate 
the resonance sideband from the signals including noise.

(10)(Ki − Kn)(Ki+1 − Kn) ≤ 0

Fig. 7   Boundaries and kurtosis of the spectrum

Fig. 8   Filters of MSEWT

(a) Components decomposed by MSEWT

(b) Spectra of the components

Fig. 9   The results decomposed by MSEWT
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3.2 � Case 2 of simulation experiment

In this section, a cosine signal is added in the periodic 
pulses, as shown in Fig. 10. The composition of signal 2 
is as follows:

 where the amplitude A=5, the nature frequency fn=1600 Hz, 
the damping coefficient g = 0.05 , M = 100 , frequency f
=300 Hz, and noise is � = (SNR − 3 dB).

The spectrum separated by scaled boundaries is shown 
in Fig. 11. It can be seen that the frequency of 300 Hz is 
quarantined into the second fragment, which should be 
extracted for further analysis. The kurtosis is high in the 
second fragment regions because of its sensitivity to pro-
trusions, shown in Fig. 11b. The dotted blue lines divide 
the frequency domain into five parts, exactly separating 
the single frequency component and the periodic pulse 
component according to the artificial averaging rule.

Then, one scale function and four empirical wavelet 
functions are constructed, as shown in Fig. 12a. The com-
ponents are displayed, and the single frequency component 
and the periodic pulse component are effectively extracted 
in the second and fourth part. The result shows that the 
proposed spectrum partition method can effectively 
divide the frequency band containing a single frequency 
component.

3.3 � Case 3 of simulation experiment

In this section, the simulation signal 3 (shown in Fig. 13) 
including periodic impulse signal, modulation signal, and 
accidental impulse signal is constructed to further verify 

(11)
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Ae−g2�f

i
n
tsin
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sc2(t) = 0.5sin(2�ft)

s2(t) = sc1(t) + sc2(t) + �

the effectiveness of the method in segment segmentation. 
The composition of the simulation signal is as follows:

where the nature frequency is fn1 = 1600 Hz, fn2 = 4000 
Hz. The damping coefficient g1 = 0.05,g2 = 0.1 , M = 100 , 
frequency f=150 Hz, and noise is � = (SNR − 2 dB).

The spectrum of signal 3 is shown in Fig. 14a, which 
was separated into 25 parts. The results decomposed by the 
proposed method are shown in Fig. 14b. MSEWT obtained 
four blue dotted lines as the boundaries. Then, filters are 
obtained according to the boundaries which divide the spec-
trum into five parts. Figure 15 shows the components and 
their spectrum. The periodic pulse information is extracted. 
The periodic characteristics can be well restored in extracted 
component after eliminating noise interference. The modu-
lation signal is separated by the third band-pass filter. The 
waveforms of the two signals are basically identical, and 
obvious modulation frequency spectrum lines appear in the 
spectrum. Signal 3 demonstrates that the MSEWT can effec-
tively separate the periodic pulse component, the accidental 
pulse component, and the modulation component (Fig. 16).
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Fig. 10   Simulated signal

(a) Spectrum and boundaries

(b) Kurtosis of each Scale

Fig. 11   Spectrum and initial boundaries of signal
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4 � Fault feature extraction method based 
on SMSEWT

The MSEWT method proposed in Sect. 3 obtains more 
reasonable boundaries and components, but it is necessary 
to extract required information from them. The analysis of 
envelope spectrum is normally used to diagnose bearing 
faults in engineering applications according to its charac-
teristic frequency and harmonics. The bearing fault char-
acteristic frequency and its harmonics shown in the enve-
lope spectrum can be regarded as a few spikes with large 
amplitudes that reflect bearing fault signatures. Hence, [17] 
defines these spikes in the envelope spectrum as the spar-
sity representation of a bearing fault signal in a frequency 
domain. Sparsity measurement used in envelope spectrum 
shows good performance, which avoids the accidental inter-
ference in spectrum. The paper proposed sparsity-guided 
MSEWT (SMSEWT) to extract information for bearing fault 
diagnosis. More importantly, in order to obtain the envelope 
of the signal directly, we incorporate Hilbert transform into 
the filtering structure of SMSEWT.

4.1 � The theoretical basis of sparsity

Sparsity has been applied in many fields. The basic expres-
sion can be described as:

(c) Spectra of the components

(b) Components decomposed by MSEWT

(a) Filters of MSEWT

Fig. 12   The results decomposed by MSEWT

Fig. 13   Simulated signal

(a) Spectrum and boundaries

(b) Kurtosis of each Scale

Fig. 14   Spectrum and initial boundaries of signal
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where ||d(f)||2 and ||d(f)||1 are L2 norm and L1 norm, and 
d(f) is the corresponding power spectrum of the envelope. It 
is worth mentioning that the sparsity of bearing signal needs 
to be calculated in the envelope spectrum, which can be 
regarded as a sparsity signal. However, the proposed method 
uses Hilbert transform algorithm to obtain the envelope 
spectrum.

4.2 � The theoretical basis of Hilbert transform

Much mechanical fault information exists in the form of 
modulation in vibration and noise. For the processing of 

(13)S =

�
∑ Fs

2
−1

f=0
�d(f )�2

∑ Fs

2
−1

f=0
�d(f )�

=
��d(f )��2
��d(f )��1

modulated signal, there are two main purposes: obtaining the 
envelope and phase demodulation. In digital signal process-
ing, this processing is particularly convenient with the help 
of Hilbert transform. The modulation signal is assumed to 
be in the form of:

Its Hilbert transformation can be expressed as:

Thus the envelope estimation of x(t) can be obtained by:

Then, the envelope spectrum can be obtained by calculat-
ing the FFT of A(t).

4.3 � Connection of two methods

The sparsity cannot be calculated without the corresponding 
power spectrum of the envelope d(f) obtained by the FFT of 
A(t) ’s autocorrelation. Interestingly, d(f) can be worked out 
by EWT because of the coexist calculation of FFT. It will 
reduce a cycle time of FFT by combining Hilbert transform 
when the component is extracted by filter. Therefore, the 
empirical envelope signal is obtained from EWT.

where [∙]∨ , H[∙] denotes Fourier transform and Hilbert 
transform.

4.4 � The proposed sparsity‑guided multi‑scale EWT

In this paper, a new method named sparsity-guided multi-
scale EWT (SMSEWT) is proposed. Firstly, the vibration 
acceleration signals need to be collected by sensors and 
saved as digital signals. Then, set the scale and divide the 
entire spectrum equally. In the sample shown in Fig. 6, the 
initial boundaries divide the spectrum into 25 parts. After 
calculating the kurtosis for each frequency band, the average 
kurtosis can be obtained. It can be found that the kurtosis 
of most frequency bands is lower than average kurtosis, and 
a small number of continuous frequency bands have large 
values. These distinctive contiguous frequency bands will be 
merged according to the rules, and the final boundaries will 
be determined. After constructing the filter bank with empir-
ical scale function and empirical wavelet function, a set of 
components will be obtained. Figure 6 shows the sparsity of 
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(b) Components decomposed by MSEWT

(c) Spectra of the components

(a) Filters of MSEWT

Fig. 15   The results decomposed by MSEWT
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Bearing Acceleration sensor Data acquisition and storage

Signal acquisition

Signal processing

Collect bearing acceleration vibration 
signal and calculate Fourier spectrum

Set the scale and divide the spectrum 
equally to obtain the initial boundaries

Calculate the Kurtosis of each 
frequency band, search for the 

outstanding value

Merge similar parts according to the 
rules and determine the final boundaries

Construct filter bank based on empirical 
scale function and empirical wavelet 

function.

Calculate the sparse of the envelope 
spectrum of each empirical mode

Extract the component represented by 
the largest sparse value, display its 

waveform and envelope spectrum, and 
diagnose faults

Fig. 16   The SMSEWT method
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the envelope spectrum of each component, and the compo-
nent with the largest value will be extracted. There are peri-
odic pulses in the time-domain waveform, and the envelope 
spectrum contains characteristic frequencies and harmonics. 
The fault diagnosis is realized by further analysis.

5 � Experimental Verification

5.1 � Experimental verification of Case 1

As shown in Fig. 17, it is a schematic diagram of a bearing 
failure test bench, which can simulate the bearing fault type 
of the inner race, outer race, and balling. In the first case, 
SMSEWT is applied to the diagnosis of bearing faults in the 
rotor test rig. The collected signal shown in Fig. 18 comes 
from 6397 deep groove ball bearing with outer ring fault 
accompanied by characteristic frequencies of 76.08 Hz.

The bearing type and fault characteristic frequency is 
detailed in Table 1. The sampling frequency is 15360 Hz. 
An obvious resonance sideband near 2000 Hz needs to be 
extracted for bearing fault analysis.

As shown in Fig. 19, boundaries obtained by SMSEWT 
divide the whole frequency domain into seven parts accord-
ing to the kurtosis of each part. The empirical wavelet filters 
are constructed based on the obtained boundaries. According 
to the proposed method, the sparsity of envelope signal is 
calculated to judge the fault information contained in this 
part. The maximum sparsity of envelope decomposition 
appears in the fourth part. Extracting this part, the enve-
lope spectrum is obtained by FFT plotted in Fig. 19d. The 
extracted envelope signal embodies obvious periodic pulse 
in the time domain. At the same time, the fault characteristic 
frequency 76.88 Hz and its harmonics are obtained clearly 
in the envelope spectrum. The proposed method can effec-
tively extract the bearing outer ring fault characteristic and 
successfully realize the bearing fault diagnosis.

In order to further verify the effectiveness of this method, 
Sparsogram, Fast Kurtogram (FK), and Protrugram are used 
for comparison. Figure 20 shows the maximum sparsity found 
for the Sparsogram at different decomposition levels (level = 6 
and 7). When the number of decomposition levels is 6, the 

center frequency and bandwidth corresponding to the reso-
nance frequency band obtained by the maximum sparsity are 
1980 Hz and 120 Hz. Figure 20b shows the extracted fault 
feature envelope component. It is found that the envelope spec-
trum of the component has the pulse of the periodic interval 
but only the fault characteristic frequency and its second har-
monics can be detected. The center frequency of the finally 
determined resonance frequency band is located at 7530 Hz, 
and the bandwidth is 60 Hz, when the level is 7. The result is 
completely different from the range determined when the level 
is 6. However, the fault signature frequency cannot be found 
in the envelope spectrum, and the extracted envelope signal 
has no regularity. The Sparsogram always goes to a narrower 
bandwidth in the frequency domain segmentation. As the level 
increases, the bandwidth will become smaller, and at the same 
time, the accuracy of the center frequency of the resonance 
band will decrease.

The filter-based FK is shown in Fig. 21 with a center fre-
quency of 2080 Hz and a bandwidth of 320 Hz. Because of 
the deviation of the determined center frequency and the nar-
row bandwidth, the envelope component extracted contains 
only the fault characteristic frequency and its second har-
monics, and the fault information is obviously less than that 
extracted by SMSEWT. The same result occurs in STFT-based 
FK. Considering comprehensively, the frequency segment 
extracted by Fast Kurtogram contains less fault feature infor-
mation than SMSEWT because of the limitation of frequency 
band division.

Fig. 17   Bearing fault test rig

Fig. 18   Vibration signal of bearing failure of outer race

Table 1   Characteristics frequency of 6307 bearing fault

Rotating speed Inner race Outer race Rolling element Cage

1496 rpm 123.39 Hz 76.08 Hz 49.61 Hz 9.51 Hz
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The results of Protrugram are plotted in Fig. 22a, and it 
can be seen that the maximum value appears at 1795 Hz with 
the bandwidth which is 250 Hz. The envelope component 
extracted in Fig. 22b also contains inadequate fault feature 
information. Although this method can obtain more accurate 
central frequency, it sacrifices a lot of computing time with 
the scanning process.

5.2 � Experimental verification of Case 2

In actual industrial production, some accidental effects 
caused by man-made or mechanical collisions are regularly 
mixed in vibration signals, which cause great difficulties for 
bearing fault diagnosis results. In this part, a fault vibration 
signal of bearing outer race containing accidental effects is 
obtained from HZXT-008, the small rotor rolling bearing 
test bench, shown in Fig. 23a. Figure 23b shows the loca-
tion of the vibration sensor’s measuring points in the actual 
acquisition: horizontal and vertical directions on the side 
near the planetary gearbox. In order to obtain vibration sig-
nals with more obvious fault characteristic frequencies, the 
signals collected by vertical sensors are analyzed to verify 
the effectiveness of the proposed method. The fault char-
acteristic frequency of the measured bearing with the type 
of NSK HPS 6200 is shown in Table 2. The fault vibra-
tion signal of the bearing outer ring is obtained with the 
characteristic frequency of 76.20 Hz. The speed of motor 
is set to 1500 rpm, the sampling frequency is 12000 Hz, 
and the length of sampling sequence is 24000 (2 s sampling 
time). Figure 24 shows the collected vibration signal and 
its spectrum from the HZXT-008 rotor test bench. In the 
time domain, it can be found that there is a large accidental 
interference at 1.9 s, which will have a great influence on the 
kurtosis value. Affected by large disturbances, the value of 
the frequency in the frequency domain fluctuates within the 
range of 2500 Hz to 4000 Hz. If the segment filtered signal 
is obtained for analysis, an unsatisfactory analysis result may 
be obtained to make the diagnosis result fail. Four methods, 
SMSEWT, Sparsogram, FK, and Protrugram, were applied 
to analyze the signal with interference, and the results of the 
analysis were compared as follows.

Figure 25 shows the SMSEWT process. The sparsity of 
the two parts is higher, which correspond to 0–100 Hz fil-
tered by ∅1 and 900–1200 Hz filtered by Ψ2 . The sparsity 
of the envelope component obtained by Ψ2 is the largest, 
indicating the most faulty feature information. In the fre-
quency domain obtained by Ψ2 , the frequency 76.25 Hz and 
its second, third harmonics can be found which are close to 
the outer race fault characteristic frequency. These charac-
teristic frequencies are sufficiently significant to diagnose 
the bearing outer ring failure. However, the filter ∅1 extracts 
the envelope component of the low-frequency component 
containing more abundant power frequency information. 

(a)

(b)

(c)

(d)

Fig. 19   The results decomposed by SMSEWT
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Fig. 20   Results decomposed by 
Sparsogram
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Fig. 21   Results decomposed by 
Fast Kurtogram
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The same as the former, although the envelope contains the 
interference component in the time domain, the envelope 
spectrum can show the periodicity. This fully proves that 
the proposed method can effectively avoid the accidental 

interference and successfully extract the bearing fault infor-
mation to realize the bearing fault diagnosis.

As shown in Fig. 26, when level is equal to 4, the center 
frequency and bandwidth of the resonance band correspond-
ing to the maximum value obtained by Sparsogram are 
937.5 Hz and 375 Hz. The resonance band range acquired 
is slightly lower than that obtained by SMSEWT. However, 
the obtained fault characteristic frequencies are found with-
out any harmonic frequencies in the envelope spectrum. It 
is worth mentioning that when level is equal to 7, the whole 
spectrum was divided into smaller segments. The position of 
resonance band is determined to a lower frequency band. No 
periodic impulse information in the envelope waveform is 
obtained without any obvious fault characteristic frequency 
found in the envelope spectrum. The result cannot provide 
reliable data basis for bearing fault diagnosis.

The results of the FK are plotted in Fig. 27. By divid-
ing of filter-based FK, the maximum kurtosis correspond-
ing to the band range is determined in the middle of the 
entire frequency domain (2000 Hz ~ 4000 Hz). For STFT-
based FK, the obtained frequency domain is located in 
3000 Hz ~ 4500 Hz. Figure 27b shows the envelope signal 
and its envelope spectrum obtained by the filter-based FK. 
There is a prominent accidental interference in the envelope 
signal of the time domain. Since the amplitude of the inter-
ference is large, the vibration information of bearing fault 
cannot be clearly expressed. The frequency of the envelope 
spectrum has a trend of fluctuate due to the influence of 
interference, though the power frequency and the character-
istic frequency appear in envelope spectrum. Obviously, the 
extraction performance of this method is unsatisfactory. The 
same situation also appears in Fig. 27d, the envelope spec-
trum of components obtained by STFT-based FK. Therefore, 
FK loses its ability to determine the resonance sideband for 
the bearing vibration signal with accidentally disturbed. At 
the same time, it confirms that kurtosis has strong sensitivity 
to accidental pulse.

The analysis results of the Protrugram are described 
in Fig. 28, with the filter bandwidth of 230 Hz and the 
step size of 1. The center frequency found by this method 

Fig. 22   Results decomposed by 
Protrugram
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Fig. 23   HZXT-008 small rotor test bench

Table 2   Characteristics frequency of NSK HPS 6200 bearing fault

Rotating speed Inner race Outer race Rolling element Cage

1500 rpm 123.80 Hz 76.20 Hz 49.55 Hz 9.53 Hz
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Fig. 24   Vibration signal of bearing failure of outer race with acciden-
tal pulse
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is 1322 Hz. Protrugram estimates the center frequency 
by calculating the spectral kurtosis of the filtered signal, 
avoiding the effects of accidental interference. However, 
due to the fixed bandwidth, only fault characteristic fre-
quency and the power frequency with its second harmonics 

appear in the obtained envelope spectrum, and the extrac-
tion effect is obviously inferior to SMSEWT.

In engineering applications, the collected vibration signal 
is often mixed with accidental interference. By analyzing 
the bearing vibration signal with accidental pulse, it is fully 

Fig. 25   Results decomposed by 
SMSEWT

0 0.5 1 1.5

10
20
30

time(s)

A
(m

/s2 )

0 200 400 600 800 1000
0

0.5

frequence(Hz)

A
(m

/s2 ) 76.25Hz
153.5Hz

229.75Hz

1 and its envelope spectrum

0 0.5 1 1.5

10
20
30

time(s)

A
(m

/s2 )

0 200 400 600 800 1000
0

0.5
1

frequence(Hz)

A
(m

/s2
) 25Hz

50Hz
75Hz
100Hz

2 and its envelope spectrum

φ_1 ψ_1 ψ_2 ψ_3 ψ_4
0

5

10

15

20

25

30

Sp
ar

se
 v

al
ue

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

frequence(Hz)

η=2.6247

φ1
ψ1
ψ2
ψ3
ψ4

(c)  Waveform of (d)  Waveform of 

(b)  Sparse distribution of each frequency band(a)  Filters of SMSEWT
frequency(Hz)

frequency(Hz) frequency(Hz)

Fig. 26   Results decomposed by 
Sparsogram
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verified that the proposed SMSEWT can effectively avoid 
the influence of accidental interference and successfully 
extract the bearing fault characteristic frequency.

6 � Conclusion

In this paper, a new method named sparsity-guided multi-
scale empirical wavelet transform (SMSEWT) is proposed 
for rolling element bearing fault features extraction. Two 
major parts are included in the proposed algorithm. The first 
part is to improve the segmentation of the empirical wavelet 

method. By defining the concept of multi-scale kurtosis, the 
spectrum was divided into several sub-parts and the kur-
tosis of each sub-portion was obtained. Then, the bound-
ary merging was carried out by the artificial averaging rule, 
and the boundary adaptive rational division was realized. 
Three simulated signals were used to verify the validity of 
the boundary partitioning method. The second part is the 
extraction of the special effective component of the fault. 
The sparsity was selected as the basis for judging the regu-
larity component of the fault feature to determine whether 
the segment was extracted. The highlight of this part is that 
the Hilbert transform and EWT are combined properly to 
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extract the envelope information of the fault feature com-
ponent directly, which optimizes the calculation time. In 
this study, two experimental signals were used to verify the 
effectiveness of the proposed method.

This method optimizes the segmentation of EWT and 
makes it more suitable for analyzing bearing vibration sig-
nals. With adaptability, it avoids the influence of traditional 
methods. This method can be extended to fault diagnosis for 
gear, providing a novel and effective diagnostic method for 
fault diagnosis of rotor machinery.
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