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Abstract
Time-dependent analysis based on layerwise theory (LT) along with higher-order shear deformation theory (HSDT) is studied 
to determine the stress distribution in a simply supported sector of spherical sandwich shell with piezoelectric face sheets 
and functionally graded carbon nanotube (FG-CNT) core subjected to the low-velocity impact. The aim of the current study 
is the investigation of the dynamic analysis of the sandwich sector when the spherical elastic ball hits the top face sheet of 
sector with an initial velocity of 50 m/s. The classical non-adhesive elastic contact theory and Hunter’s relationship are used 
to calculate the normal contact pressure distribution in terms of time, as well as a function of distance from the center of 
contact location. The out-of-shell displacement of the sandwich shell at each layer is assumed to be a quadratic polynomial 
function of the radial component in addition to a function of the coordinate components within the shell. This means that 
the normal out-of-shell strain changes in the form of a linear function along with the thickness of each layer. The nineteen 
equations of motion are obtained by using Hamilton’s principle, Maxwell’s static equation. The numerical method was used 
to solve the nineteen equations of motion based on the finite difference method. The results show that the mechanical prop-
erties of FG-CNT have more effect on the stress distribution in the sandwich sector. Moreover, the variation of the voltage 
in terms of time caused by the impact of the spherical elastic ball was calculated.

Keywords Low-velocity impact · Layerwise theory · Classical non-adhesive elastic contact theory · Spherical sandwich 
shell · Maxwell’s static equation

List of symbols
a  The radius of the contact area
amax  The maximum radius of the contact area
Cij  The elastic constant of the piezoelectric layer (i, 

j = 1, 2, 3)
d  The contact depth
Di  The electric displacement components (i = 1, 2, 3)
dmax  The maximum contact depth
E0  The elastic moduli of the spherical ball
Eeff  The effective elastic modulus
Ei  The electric field density (i = 1, 2, 3)
eij  The piezoelectric constant (i, j = 1, 2, 3)
ECNT
ii

  The elastic modulus of the FG-CNT (i, j = 1, 2, 3)
Em  The elastic modulus of the matrix

F  The applied force
Fmax  The maximum contact force
GCNT

ij
  The shear modulus of the FG-CNT (i, j = 1, 2, 3)

Gm  The shear modulus of the matrix
M0  The mass of the spherical ball
P0  The maximum contact pressure
Q

(2)

ij
  The core stiffness tensor (i, j = 1, 2, 3)

r(1)  The radius of the middle layer of the bottom face 
sheet

r(2)  The radius of the middle layer of the core
r(3)  The radius of the middle layer of the top face sheet
Reff  The effective radius.
tmax  The impact time duration
u0  The displacement of the core’s mid-surface along 

ξ1

u
(k)

1
  The displacement components along ξ1

u
(k)

2
  The displacement components along ξ2

u
(k)

3
  The displacement components along ξ

v0  The displacement of the core’s mid-surface along 
ξ2
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V0  The initial velocity of the spherical ball
Vm  The volume fraction of the matrix
VCNT  The volume fraction of the FG-CNT
w0  The displacement of the core’s mid-surface along 

ξ
WCNT  The mass fraction of the FG-CNT
Γ  The Gamma function
δK  The virtual kinetic energy
δU  The virtual strain energy
δW  The virtual work
�1  The efficiency CNT/matrix parameter number 1
�2  The efficiency CNT/matrix parameter number 2
�3  The efficiency CNT/matrix parameter number 3
�i  The dielectric constant (i = 1, 2, 3)
ν0  The Poisson’s ratio of the spherical ball
νm  The Poisson’s ratio of the matrix
�CNT
ij

  The Poisson’s ratio of the FG-CNT (i, j = 1, 2, 3)
�CNT  The density of the FG-CNT
Φ(k)  The electric potential (k = 1, 3)

1 Introduction

The use of the piezoelectric materials, as well as FG-CNT 
structures in various fields in energy storage, molecular 
electronics, thermal materials, electrical conductivity, air 
and water filtration, conductive adhesive, and biomedical, 
is expanding. The piezoelectric material is a special type 
of dielectric material which simultaneously comprises two 
branches of elasticity and electricity.

Due to the complexity of the dynamic behavior of the 
piezoelectric materials as well as FG-CNT when the struc-
tures are subjected to low-velocity impact, there is an inter-
est to study these materials. Various scientific articles have 
been investigated in the field of low-velocity impact. Cestino 
et al. [1] studied buckling behavior and stress analysis of a 
circular plate after low-velocity impact, experimentally, and 
numerically. In this investigation, the tensile load, impact 
energy, and residual stress were calculated. There was a 
good agreement between the results. Bikakis [2] studied 
dynamic response analysis of Glare plates subjected to low-
velocity impact, theoretically. In this research, the results to 
determine the contact force were compared to those obtained 
by experimental tests. Yellur et al. [3] studied the thermo-
plastic analysis of a rectangular sandwich plate with honey-
comb core subjected to low-velocity impact, experimentally. 
In this study, the contact fore, energy observation, and stress 
distribution were calculated in terms of time. Saleh et al. [4] 
studied a three-dimensional study of the low-velocity impact 
on a rectangular plate. In this study, the contact force was 
calculated as a function of the plate’s deformation. Kareem 
and Majeed [5] studied the transient dynamic analysis of a 

spherical shell subjected to the low-velocity impact, experi-
mentally, and numerically. The equations of motion were 
obtained by using HSDT and Hamilton’s principle. The 
results of the numerical solution to calculate the contact 
force and deflection were compared to those obtained by 
experimental tests. Gao et al. [6] studied the low-velocity 
impact on a sandwich plate with a honeycomb core. In this 
paper, the effect of honeycomb shape on energy observation 
was calculated, theoretically. Mohmmed et al. [7] studied the 
stress analysis of a rectangular sandwich plate with a foam 
core subjected to the low-velocity impact, experimentally, 
and numerically. In this investigation, the maximum contact 
force and stress distribution of the plate were calculated. 
Mao et al. [8] studied the nonlinear dynamic response of 
the FG spherical shell subjected to low-velocity impact. In 
this research, the equations of motion were derived by using 
Giannakopoulos’s 2D contact model, first-order shear defor-
mation theory (FSDT), and Hamilton’s principle. Lei and 
Tong [9] studied stress analysis of a simply supported FG-
CNT cylindrical shell subjected to the low-velocity impact, 
theoretically. In this research, the classic shell theory was 
used and the impact load was considered as the Fourier 
series. In addition, the effects of temperature, length, and 
thickness of the shell on the impact force and deflection of 
the shell were calculated.

Khodadadi et al. [10] studied the failure analysis of an 
aluminum-rubber sandwich plate subjected to the impact of 
a hemispherical impactor. In this paper, the numerical results 
obtained by LS-DYNA were compared to those obtained by 
experimental tests. Sy et al. [11] studied the low-velocity 
impact behavior of a flax-epoxy laminate plate, experimen-
tally. The results of experimental tests to determine contact 
forces were compared with those obtained by LS-DYNA. 
Erklig and Dogan [12] studied stress analysis of a rectangu-
lar hybrid nano-composite plate subjected to the low-veloc-
ity impact, experimentally. In this investigation, the effects 
of the ply-angle orientation, and thickness of the plate as 
well as the energy of the impact on the stress components, 
impact force, and deflection of the plate were calculated. Yao 
et al. [13] studied the failure analysis of a circular compos-
ite plate subjected to low-velocity impact. In this study, by 
using Abaqus software and experimental tests, the impact 
force and energy observation were calculated. Guo et al. [14] 
studied dynamic analysis of a bolted joint in a rectangular 
composite plate subjected to low-velocity impact. In this 
investigation, Abaqus software was used and the effect of 
impact location on the stress distribution was calculated. 
Meo et al. [15] studied the dynamic response of the rec-
tangular sandwich plate with honeycomb core subjected to 
the low-velocity impact experimentally. In this investiga-
tion, the contact force was calculated in terms of the energy 
observation. Sun et al. [16] studied the dynamic response of 
a circular sandwich plate subjected to low-velocity impact, 
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experimentally. In this paper, the contact force and energy 
observation were calculated in terms of the plate’s displace-
ment. Gunes and Sahin [17] studied the effect of surface 
crack on the dynamic response of a rectangular hybrid lami-
nated composite plate subjected to the low-velocity impact, 
experimentally. In this study, the effects of the geometry of 
the plate and the energy of the impact on the impact force 
and deflection of the plate were studied.

He et al. [18] studied failure analysis of a clamped cir-
cular sandwich plate with X-frame core subjected to low-
velocity impact. In this research, by using Abaqus software 
as well as experimental tests, the contact force, and energy 
observation in terms of time were calculated. Dai et al. [19] 
studied dynamic analysis of a rectangular sandwich plate 
with honeycomb core subjected to low-velocity impact, 
experimentally. In this research, the effect of impact energy 
on the contact force, impact duration, and deformation of 
the plate was investigated. Yuan et al. [20] studied dynamic 
analysis of a carbon fiber composite plate subjected to low-
velocity impact, experimentally. In this research, the effect 
of the ply-angle laminate on the contact force was calculated. 
He et al. [21] studied the low-velocity impact of a rectangu-
lar sandwich plate with a honeycomb core, numerically, and 
experimentally. In this investigation, the effects of the thick-
ness of honeycomb as well as the impact velocity were stud-
ied to determine the contact force and the energy observation 
in terms of time. Sohel et al. [22] studied dynamic analysis 
of a column subjected to impact loads. In this investigation, 
the numerical solution based on a finite element analysis was 
done and the results were compared to those obtained by 
experimental tests. Moreover, deflection of the column was 
calculated in terms of time and initial velocity. Sadeghpour 
et al. [23] studied the stress analysis of a curved sandwich 
beam with a foam core subjected to the low-velocity impact, 
theoretically. In this study, the maximum deflection of the 
beam, the variation of projective velocity, and the contact 
force were calculated in terms of time. Fan et al. [24] studied 
the dynamic analysis of a laminated beam with FG-CNT 
layers rested on the viscoelastic foundation subjected to low-
velocity impact. In this investigation, the maximum con-
tact force as well as the maximum deflection of beam were 
compared to those obtained by the previous study. Xu et al. 
[25] studied experimental and numerical investigations on a 
rectangular composite plate with shape memory alloy layers 
subjected to low-velocity impact. In this research, experi-
mental tests and finite element method were used to deter-
mine the contact force. Nasrin and Ibrahim [26] studied the 
dynamic analysis of a beam with an initial crack subjected 
to low-velocity impact, numerically, and experimentally. In 
this investigation, the beam deflection as well as the failure 
analysis of the beam were calculated. Manohar et al. [27] 
carried out some experimental tests to study the dynamic 
analysis of a composite plate. In this study, the drop test 

was carried out and the collision energy and deflection of 
the plate were calculated.

Various studies have been carried out in the field of LT. 
In most studies, it has been assumed that the out-of-plate or 
out-of-shell displacement is an independent function of the 
vertical component of the coordinate system defined along 
with thickness of the plate or shell. Hosseini and Kolah-
chi [28] used LT along with third-order shear deformation 
theory (TSDT) to study the dynamic analysis of a cylindrical 
FG-CNT shell subjected to the earthquake load. Cong et al. 
[29] studied LT along with TSDT to determine the nonlinear 
dynamic response of a curved sandwich shell subjected to 
blast pressure. Raissi [30, 31] studied LT along with HSDT 
to determine the stress distribution in the cylindrical and 
spherical sandwich shells with piezoelectric face sheets and 
FG-CNT core subjected to blast pressure. Romera et al. [32] 
studied LT along with FSDT to determine the stress distribu-
tion in a rectangular composite plate subjected to a tensile 
load. Malikan and Nguyen [33] studied buckling analysis of 
a rectangular piezo-magneto-electric nano-plate subjected to 
a hygro-thermal environment and external voltage. In this 
investigation, LT along with FSDT was used. Van et al. [34] 
studied LT along with FSDT to determine the stress distribu-
tion in a three-layer sandwich plate rested on the viscoelastic 
foundation subjected to a moving mass.

The main topic that will be examined in the present study 
is the effect of the low-velocity impact on the stress compo-
nents in a sector of the spherical sandwich shell. The spheri-
cal sandwich shell is made in such a way that there are two 
piezoelectric layers in the face sheets, and it also has an 
FG-CNT core. Layerwise theory, Hamilton’s principle, the 
classical non-adhesive elastic contact theory, and Hunter’s 
relationship are used to determine the equations of motion. 
Raissi [30, 31] studied the stress distribution in a sector of 
the spherical and cylindrical sandwich shells with piezoelec-
tric face sheets and FG-CNT core subjected to blast pres-
sure. The difference between the current paper with those 
carried out in Refs. [30, 31] is that in the current investiga-
tion, the issue of the low-velocity impact will be studied but 
in Refs. [30, 31], the blast phenomena in the sector of the 
spherical and cylindrical sandwich shells with piezoelec-
tric face sheets and FG-CNT core had been investigated. In 
addition, Raissi et al. [35] studied LT along with FSDT to 
study the stress distribution in a five-layer sandwich plate 
subjected to static pressure. It can be seen that the present 
study is completely different from the paper mentioned in 
Ref. [35]. Neves et al. [36, 37] used LT along with sinusoi-
dal and hyperbolic sinusoidal shear deformation theories to 
calculate the free vibration analysis of the FG plate. In these 
investigations, the transverse displacement was considered 
as a quadratic in the thickness direction.

It is noteworthy that the innovation of the present study is 
in three issues. Definition of the problem of the effect of the 
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low-velocity impact on a sector of the sandwich spherical 
shell with two piezoelectric face sheets and one FG-CNT 
core is the first innovation. In addition, the physical model of 
the impact of the spherical ball with the spherical sandwich 
shell is approximated as a mathematical model based on the 
classical non-adhesive elastic contact theory and Hunter’s 
relationship. So far, there has been no research in this regard.

According to the mention references, there is a variety 
of LT along with higher-order shear deformation theory on 
the subject of impact, but few papers [36, 37] have examined 
the vertical displacement of the shell as a quadratic function 
along the thickness direction. The reason for this is the enor-
mous intensity of the volume of the equations and how to 
solve them. In addition, the complex behavior of FG-CNT as 
well as the extraordinary piezoelectric behavior will further 
complicate the problem. The use of layerwise theory along 
with higher-order shear deformation theory in the problem 
of low-velocity impact is the second innovation. Further-
more, it is assumed that the out-of-shell displacement in the 
face sheets and core of the sandwich shell is assumed to be 
a second-order polynomial function of the thickness of the 
layers. This means that the normal strain changes in the form 
of a linear function along with the thickness of the layer.

Finally, the third innovation that consists of two prior 
innovations, the simultaneous solving of the dynamic 

equations will be defined as a function in terms of time. It 
is noteworthy that according to the classical non-adhesive 
elastic contact theory, the normal contact pressure distribu-
tion is defined as a relationship in terms of time, as well as a 
function of distance from the center of the contact location. 
Therefore, the normal contact pressure is defined as the com-
bination of a sinusoidal function in terms of time as well as 
a radical function in terms of distance from the center of the 
contact location. Hamilton’s principle and Maxwell’s static 
equation are used to obtain the equations of motion.

Therefore, the present investigation tries to present a 
new theoretical solution based on layerwise theory along 
with higher-order shear deformation theory and Hamilton’s 
principle to study the dynamic behavior of the three-layer 
spherical sandwich sector with piezoelectric face sheets and 
FG-CNT core subjected to the low-velocity impact.

2  The geometry and material properties 
of the sandwich shell

Figure 1 shows a simply supported spherical sandwich shell 
with two piezoelectric face sheets and one FG-CNT core. 
The sandwich shell is subjected to the low-velocity impact of 

Fig. 1  The simply supported sector of the spherical sandwich shell with FG-CNT core and piezoelectric face sheets subjected to low-velocity 
impact
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the spherical ball that hits on its top face sheet. It is assumed 
that no separation will have occurred between the layers.

The variation in modulus of elasticity, Poisson’s ratio, 
and density of the FG-CNT core along its thickness are 
defined by Eqs. (A1)–(A11) presented in “Appendix A”. The 
stress analysis is performed for the five FG-CNT samples as 
FG-UV, FG-▽, FG-△, FG-O, and FG-X. Moreover, Fig. 2 
shows the shape of the five samples of FG-CNT defined in 
the current study for the core of the sandwich sector. As 
mentioned in Eqs. (A1)–(A11), the direction of the func-
tionally graded nano-carbon layers is defined so that they 
are located in the circular direction of the spherical shell 
(ξ1 direction).

3  Derivation of governing equations

Based on HSDT, the displacement components in the thick-
ness direction for each layer change according to the higher-
order shear deformation theory. The displacement compo-
nents in the sandwich plate are given in Eqs. (B1)–(B9) 
presented in “Appendix B”.

For a simply supported spherical sandwich shell, the dis-
placement components and curvatures (u0, v0, w0, �

(k)

i
 , �(k)

i
 , 

�
(k)

j
 and �(k)

j
 (i = 1, 2, 3; j = 1, 2 and k = 1, 2, 3)) can be intro-

duced by Eqs. (C1)–(C13) presented in “Appendix C.”
Based on linear elasticity, the strain components in the 

kth layer can be written in terms of displacements, as shown 
in Eq. (1). According to Fig. 1, r(k) defined in Eq. (1) repre-
sents the radius of the middle layer of the bottom face sheet, 
the core, and the top face sheet for values of k from one to 
three, respectively. Substituting for displacement compo-
nents from Eqs. (B1)–(B9) presented in “Appendix B,” the 
strain vector in each layer can be written in terms of u0, v0, 
w0, �

(k)

i
 , �(k)

i
 , �(k)

j
 , and �(k)

j
 (i = 1, 2, 3; j = 1, 2 and k = 1, 2, 3).

Based on Hooke’s principle, the stress–strain relation in 
FG-CNT core and piezoelectric face sheets can be written as 
Eqs. (D1) and (D2) (k = 1 and 3) presented in “Appendix D,” 
respectively. Moreover, the electric displacement relations 
for piezoelectric face sheets can be written as Eq. (D3). In 
this study, the electric potential (Φ(k)) for the first and third 
layers of the sandwich shell is assumed as Eq. (2). The rea-
son for choosing this value of the electric potential is that the 
voltage in the middle layer of the piezoelectric face sheets 
( �(1) = 0 or �(3) = 0 ) is not considered zero and at the same 
time it is considered zero in the innermost and outermost 
layers ( �(i) = −hi∕2 or �(i) = hi∕2 , i = 1 or 3). In addition, 
it is essential to choose the electrical potential that satisfied 
the Maxwell equation. Moreover, this value of the electric 
potential distribution was used for the electrical potential 
in Refs. [30, 31]. Furthermore, a similar distribution of the 
electric potential was presented in Refs. [38, 39].
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Fig. 2  The shape of the FG-
CNT samples in the matrix
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It is noteworthy that the electrical fields of the piezoelec-
tric layers affect the resin of the core [40–43]. According to 
Refs. [40–43], it can be observed that by applying a certain 
value of the electrical voltage to the resin, there is a possibil-
ity of mechanical failure in the resin. In the current study, 
the effect of the electrical fields on the mechanical behavior 
of the resin used in the core has been neglected.

In order to generate the equations of motion, Hamilton’s 
principle is used as Eq. (3). In this equation, δK, δU, and δW 
are virtual kinetic energy, virtual strain energy, and virtual 
work due to the external forces, respectively.

Equation (4) shows how to calculate the virtual kinetic 
energy. Equation (E1) presented in “Appendix E” can be 
derived for the virtual kinetic energy by simplifying Eq. (4) 
and classifying component by component,

Equation (5) shows how to calculate the virtual strain 
energy. By simplifying Eq. (5) and classifying component 
by component, Eq. (E2) presented in “Appendix E” can be 
calculated for the virtual strain energy.

In order to calculate the virtual work, it is necessary to 
determine the normal contact pressure distribution resulting 
from the collision of the spherical ball when it hits the top 
face sheet in terms of time. According to Fig. 1, the spherical 
ball hits the top face sheets of the sector with initial velocity 
V0. According to the classical non-adhesive elastic contact 
theory, the radius of the contact area and the applied force 
can be defined as Eqs. (6a) and (6b), respectively.

In addition, the effective radius and the effective elastic 
modulus can be defined as Eqs. (6c) and (6d), respectively.
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ẅ0+

�
h2
1

4
I
(1)

0
−h1I

(1)

1
+I

(1)

2

�
�̈�

(1)

3
−

h2

2

�
−

h1

2
I
(1)

0
+I

(1)

1

�
�̈�

(2)

3

+

�
−

h3
1

8
I
(1)

0
+

h2
1

4
I
(1)

1
−

h1

2
I
(1)

2
+I

(1)

3

�
�̈�
(1)

3
+

h2
2

4

�
−

h1

2
I
(1)

0
+I

(1)

1

�
�̈�
(2)

3

⎫
⎪
⎬
⎪
⎭

(10k)

𝛿𝜓
(2)

3
∶

⎛
⎜
⎜
⎜
⎝

h2

2

�
1

r(1)

�
1

sin 𝜉2

𝜕N
(1)
13

𝜕𝜉1
+

𝜕N
(1)
23

𝜕𝜉2

�

−
1

r(3)

�
1

sin 𝜉2

𝜕N
(3)
13

𝜕𝜉1
+

𝜕N
(3)
23

𝜕𝜉2

��

−
1

r(2)

�
1

sin 𝜉2

𝜕M
(2)
13

𝜕𝜉1
+

𝜕M
(2)
23

𝜕𝜉2

�

+
h2

2

�
N
(1)
11

r(1)
+

N
(1)
22

r(1)
−

N
(3)
11

r(3)
−

N
(3)
22

r(3)

�

−
1

r(2)

�
M

(2)

11
+M

(2)

22

�
+N

(2)

33

⎞
⎟
⎟
⎟
⎠

=

⎧
⎪
⎨
⎪
⎩

�
−

h2

2
I
(1)

0
+I

(2)

1
+

h2

2
I
(3)

0

�
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Fig. 3  The rectangular composite laminated plate with ply-angle [0/-
45/45/90]s subjected to the low-velocity impact of a hemispherical 
projectile with an initial velocity of 4 m/s

Table 1  The mechanical 
properties of the composite 
carbon fiber/epoxy laminated 
plate [44]

E1 (GPa) E2 (GPa) E3 (GPa) υ12 G12 (GPa) G23 (GPa) ρ (Kg/m3)

55 4 4 0.3 1.35 1.35 1600

Fig. 4  The variation of displacement in terms of time in the compos-
ite plate subjected to a hemispherical projectile with an initial veloc-
ity of 4 m/s

Table 2  The geometrical 
location of two points defined 
in Fig. 1 on the spherical 
coordinate system

Point number Location on the ξ-Coordinate ξ1-Coordinate ξ2-Coordinate

Point 1 Top piezoelectric layer R + h/2 π/2 0
Point 2 FG-CNT core R + h/2 π/2 amax/(R + h/2)

In order to satisfy Maxwell’s static equation, Eqs. (11a) 
and (11b) need to be true for the first and third piezoelectric 
face sheets of the spherical sandwich shell, respectively.

(10q)��(3) ∶
1

sin �2

�Γ
(3)

1

��1
+

�Γ
(3)

2

��1
− Γ

(3)

3
= 0

(11a)
∇⃗ ⋅ D⃗(1) = 0 ⇒

1

r(1) sin 𝜉2

𝜕D
(1)

1

𝜕𝜉1
+

1

r(1) sin 𝜉2

𝜕
(
D

(1)

2
sin 𝜉2

)

𝜕𝜉2
+

𝜕D
(1)

3

𝜕𝜉
+

2D
(1)

3

r(1)
= 0

(11b)
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By inserting Eqs. (C1)–(C13) and (D3) into Eqs. (11) 
and classifying relations, Eqs. (12) can be written. In order 
to solve the low-velocity impact problem in the spherical 

sandwich shell, it is necessary that the nineteen Eqs. (10) 
and (12) are solved together.
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Table 3  The location and direction of the six paths defined in Fig. 1, based on its first and end-points in the spherical coordinate system

Path number Location on the First-point (ξ, ξ1, ξ2) End-point (ξ, ξ1, ξ2)

Path 1 Top piezoelectric layer (R + h/2, π/2, 0) (R + h/2, π/2, π/6)
Path 2 The boundary between FG-CNT core and 

top piezoelectric face sheet
(R + h2/2, π/2, 0) (R + h2/2, π/2, π/6)

Path 3 FG-CNT core (R − h2/2, π/2, 0) (R + h2/2, π/2, 0)
Path 4 Top piezoelectric layer (r(3) − h1/2, π/2, 0) (r(3) + h1/2, π/2, 0)
Path 5 FG-CNT core (R − h2/2, π/2, amax/(R + h/2)) (R + h2/2, π/2, amax/(R + h/2))
Path 6 Top piezoelectric layer (r(3) − h1/2, π/2, amax/(R + h/2)) (r(3) + h1/2, π/2, amax/(R + h/2))

Table 4  Mechanical properties 
of the sandwich shell [30]

Sheet type Mechanical properties

Face sheet  (BiTiO3/CoFe2O4) c11 = c22 = 226GPa; c12 = 125GPa;c13 = 124GPa;

c33 = 216GPa; c44 = c55 = 44.2GPa;c66 = 50.5 GPa;

e1 = e2 = e3 = 9.3
C

m2
; e4 = e5 = −2.2

C

m2

�1 = �2 = 5.64 ∗ 10−9
CV

m
;�3 = 6.35 ∗ 10−9

CV

m
;

� = 5550
Kg

m3

Core (Poly methyl methacrylate) E
CNT

11
= 5.6466 TPa;ECNT

22
= 7.0800 TPa;GCNT

12
= 1.9445 TPa;

�CNT = 1400
Kg

m3
; �CNT

12
= 0.175;Em = 2.5GPa; �m = 0.34; �m = 1150

Kg

m3
;

�1 = 0.137; �2 = 1.022; �3 = 0.715;V∗
CNT

= 0.12;

Spherical Ball (Steel) E0 = 200GP; �0 = 0.3; �0 = 7850Kg/m
3
;R0 = 0.1mm
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4  Validation of the theoretical solution 
with experimental tests

In order to validate the layerwise theory along with higher-
order shear deformation theory, the results of the current 
theory are compared to those obtained by the experimental 
tests carried out by other researchers for a rectangular com-
posite plate subjected to the low-velocity impact.

In Ref. [44], an experimental test was carried out for the 
rectangular composite plate as shown in Fig. 3. According to 
Fig. 3, the clamped rectangular composite with the carbon-
fibers laminates and the ply-angle orientation [0/-45/45/90]s 
is subjected to the low-velocity impact of a steel hemispheri-
cal projectile with an initial velocity of 4 m/s. The composite 
laminate made of the epoxy vinyl ester matrix (Derakane 
470-30-S) reinforced with a level of 30% carbon fiber volu-
metric ratio. The mechanical properties of the carbon-fiber 
laminate are presented in Table 1. In addition, the total thick-
ness, length, and width dimensions of the rectangular com-
posite plate are 2.5 mm, 125 mm, and 75 mm, respectively.

(12b)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e5

r(3) sin �2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

r(3) sin �
(3)
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�2w0

��2
1

+
h2

2

�2�
(2)
3

��2
1

+
h
2
2

4

�2�
(2)
3

��2
1

+
h3

2

�2�
(3)
3

��2
1

+
h
2
3

4

�2�
(3)
3

��2
1

+�(3)
�2�

(3)
3

��2
1

+�(3)
2 �2�

(3)
3

��2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

��
1−

4

h
2
3

�(3)
2

�
��

(3)
1

��1
−�(3)

��
(3)
1

��1
−�(3)

2 ��
(3)
1

��1

�

−
1

r(3)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�u0

��1
+

h2

3

��
(2)

1

��1
−

h
2

2

8

��
(2)

1

��1
−

4

3h2
2

��
(2)

1

��1

−
h
3

2

24

��
(2)

1

��1
+

h3

3

��
(3)

1

��1
−

h
2

3

8

��
(3)

1

��1

−
4

3h2
3

��
(3)

1

��1
−

h
3

3

24

��
(3)

1

��1
+

�

�(3) −
4

3h2
3

�(3)
3

�
��

(3)

1

��1
−

1

2
�(3)

2 ��
(3)

1

��1

−
4

3h2
3

��
(3)

1

��1
−

1

3
�(3)

3 ��
(3)

1

��1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
e4

r(3)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

��
1−

4

h
2
3

�(3)
2

�
��

(3)
2

��2
−�(3)

��
(3)
2

��2
−�(3)

2 ��
(3)
2

��2

�

+
1

r(3)

⎡
⎢
⎢
⎢
⎢
⎣

�2w0

��2
2

+
h2

2

�2�
(2)
3

��2
2

+
h
2
2

4

�2 �
(2)
3

��2
2

+
h3

2

�2�
(3)
3

��2
2

+
h
2
3

4

�2�
(3)
3

��2
2

+�(3)
�2�

(3)
3

��2
2

+�(3)
2 �2�

(3)
3

��2
2

⎤
⎥
⎥
⎥
⎥
⎦

−
1

r(3)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�v0
��2

+
h2

3

��
(2)
2

��2
−

h
2
2

8

��
(2)
2

��2
−

4

3h2
2

��
(2)
2

��2

−
h
3
2

24

��
(2)
2

��2
+

h3

3

��
(3)
2

��2
−

h
2
3

8

��
(3)
2

��2
−

4

3h2
3

��
(3)
2

��2
−

h
3
3

24

��
(3)
2

��2
+

�
�(3)−

4

3h2
3

�(3)
3

�
��

(3)
2

��2

−
1

2
�(3)

2 ��
(3)
2

��2
−

4

3h2
3

��
(3)
2

��2
−

1

3
�(3)

3 ��
(3)
2

��2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ cot �2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

r(3)

⎡
⎢
⎢
⎢
⎢
⎣

�v0

��
(3)
2

+
h2

3

��
(2)
2

��
(3)
2

−
h
2
2

8

��
(2)
2

��
(3)
2

−
4

3h2
2

��
(2)
2

��
(3)
2

−
h
3
2

24

��
(2)
2

��
(3)
2

+
h3

3

��
(3)
2

��
(3)
2

−
h
2
3

8

��
(3)
2

��
(3)
2

−
4

3h2
3

��
(3)
2

��
(3)
2

−
h
3
3

24

��
(3)
2

��
(3)
2

+

�
�(3)−

4

3h2
3

�(3)
3

�
��

(3)
2

��
(3)
2

−
1

2
�(3)

2 ��
(3)
2

��
(3)
2

−
4

3h2
3

��
(3)
2

��
(3)
2

−
1

3
�(3)

3 ��
(3)
2

��
(3)
2

⎤
⎥
⎥
⎥
⎥
⎦

+

1

r(3)

�
w0+

h2

2
�

(2)

3
+

h
2
2

4
�
(2)

3
+

h3

2
�

(3)

3
+

h
2
3

4
�
(3)

3
+�(3)�

(3)

3
+�(3)

2
�
(3)

3

�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

r(3) sin �
(3)
2

⎡
⎢
⎢
⎢
⎢
⎣

�
1−

4

h
2
3

�(3)
2

�
��

(3)
1

��
(3)
1

−�(3)
��

(3)
1

��
(3)
1

−�(3)
2 ��

(3)
1

��
(3)
1

⎤
⎥
⎥
⎥
⎥
⎦

+

1

r(3)

�
�

(3)

3
+2�(3)�

(3)

3

�
+

1

r(3)

⎡
⎢
⎢
⎢
⎣

�
1−

4

h
2
3

�(3)
2

�
�

(3)

2
−�(3)�

(3)

2

−�(3)
2
�
(3)

2

⎤
⎥
⎥
⎥
⎦

cot �
(3)

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+e2

⎡
⎢
⎢
⎢
⎢
⎣

1

r(3)

⎡
⎢
⎢
⎢
⎢
⎣

�
1−

4

h
2
3

�(3)
2

�
��

(3)
2

��
(3)
2

−�(3)
��

(3)
2

��
(3)
2

−�(3)
2 ��

(3)
2

��
(3)
2

⎤
⎥
⎥
⎥
⎥
⎦

+
1

r(3)

�
�

(3)

3
+2�(3)�

(3)

3

�
⎤
⎥
⎥
⎥
⎥
⎦

+2�
(3)

3
e3+

2

r(3)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

r(3) sin �
(3)
2

⎡
⎢
⎢
⎢
⎢
⎣

�

��
(3)
1

�u0

��
(3)
1

+
h2

3

��
(2)
1

��
(3)
1

−
h
2
2

8

��
(2)
1

��
(3)
1

−
4

3h2
2

��
(2)
1

��
(3)
1

−
h
3
2

24

��
(2)
1

��
(3)
1

+
h3

3

��
(3)
1

��
(3)
1

−
h
2
3

8

��
(3)
1

��
(3)
1

−
4

3h2
3

��
(3)
1

��
(3)
1

−
h
3
3

24

��
(3)
1

��
(3)
1

+

�
�(3)−

4

3h2
3

�(3)
3

�
��

(3)
1

��
(3)
1

−
1

2
�(3)

2 ��
(3)
1

��
(3)
1

−
4

3h2
3

��
(3)
1

��
(3)
1

−
1

3
�(3)

3 ��
(3)
1

��
(3)
1

⎤
⎥
⎥
⎥
⎥
⎦

+

1

r(3)

�
w0+

h2

2
�

(2)

3
+

h
2
2

4
�
(2)

3
+

h3

2
�

(3)

3
+

h
2
3

4
�
(3)

3
+�(3)�

(3)

3
+�(3)

2
�
(3)

3

�
+

1

r(3)

⎡
⎢
⎢
⎢
⎢
⎣

v0+
h2

3
�

(2)

2
−

h
2
2

8
�
(2)

2
−

4

3h2
2

�
(2)

2
−

h
3
2

24
�
(2)

2
+

h3

3
�

(3)

2
−

h
2
3

8
�
(3)

2

−
4

3h2
3

�
(3)

2
−

h
3
3

24
�
(3)

2
+

�
�(3)−

4

3h2
3

�(3)
3

�
�

(3)

2
−

1

2
�(3)

2
�
(3)

2
−

4

3h2
3

�
(3)

2
−

1

3
�(3)

3
�
(3)

2

⎤
⎥
⎥
⎥
⎥
⎦

cot �
(k)

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+e2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

r(3)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�v0

��
(3)
2

+
h2

3

��
(2)
2

��
(3)
2

−
h
2
2

8

��
(2)
2

��
(3)
2

−
4

3h2
2

��
(2)
2

��
(3)
2

−
h
3
2

24

��
(2)
2

��
(3)
2

+
h3

3

��
(3)
2

��
(3)
2

−
h
2
3

8

��
(3)
2

��
(3)
2

−
4

3h2
3

��
(3)
2

��
(3)
2

−
h
3
3

24

��
(3)
2

��
(3)
2

+

�
�(3)−

4

3h2
3

�(3)
3

�
��

(3)
2

��
(3)
2

−
1

2
�(3)

2 ��
(3)
2

��
(3)
2

−
4

3h2
3

��
(3)
2

��
(3)
2

−
1

3
�(3)

3 ��
(3)
2

��
(3)
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

1

r(3)

�
w0+

h2

2
�

(2)

3
+

h
2
2

4
�
(2)

3
+

h3

2
�

(3)

3
+

h
2
3

4
�
(3)

3
+�(3)�

(3)

3
+�(3)

2
�
(3)

3

�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+e3

�
�

(3)

3
+2�(3)�

(3)

3

�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ cos

�
��(3)

h1

��
−�1

1

r(3)
2
sin

2 �2

�2�(3)

��2
1

−�2

1

r(3)
2

�
��(3)

��2
cot �2 +

�2�(3)

��2
2

�
+

�2�3

h
2

1

�(3)
�

+
2��3

h1r
(3)
�(3) sin

�
��(3)

h1

�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0

By using LT along with HSDT, the results of Fig. 4 for 
the displacement variation in terms of time at the point of 
impact were derived. According to Fig. 4, the results of the 
experimental tests were compared to those obtained by theo-
retical solution. It can be seen that the results of LT have 
good agreement with a difference of less than 7% with the 
results of the experimental tests.

5  Numerical results and discussion 
for the spherical sandwich sector

According to Fig. 1, the spherical sandwich shell is exposed 
to the low-velocity impact of a spherical ball that moves at 
the initial velocity of V0 = 50 m/s. Furthermore, the normal 
contact pressure distribution function is considered in terms 
of time, according to Eq. (8b) and assuming V0 = 50 m/s. 
By solving the nineteen equations [Eqs. (10) and (12)], the 
stress components can be calculated in terms of time in the 
sector.
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The spherical coordinates of two points, as well as the 
six paths that are highlighted in Fig. 1, are presented in the 
spherical coordinate system shown in Tables 2 and 3, respec-
tively. The mechanical properties of the three layers of the 
spherical sandwich shell and spherical ball are presented in 
Table 4.

Figure 5 shows the stress distribution in terms of time in 
points 1 and 2 for the five samples as FG-UV, FG-▽, FG-△, 
FG-O, and FG-X. Figure 5a–c shows the variation of the 
radial stress 

(
��
)
 , the circumferential stress 

(
��1

)
 , and the 

meridian stress 
(
��2

)
 in terms of time at point 1, respectively. 

Whereas, Fig. 5d shows the variation of the shear stress (
�
��2

)
 in terms of time at point 2. The shear stress is shown 

only at point 2 due to the fact that the maximum shear stress 
at this point causes on the top face sheet.

According to Fig. 5, it is observed that, the mechanical 
properties of the core have more effect on the stress compo-
nents in the top face sheets. Moreover, it can be seen that the 
sector with FG-UV and FG-O has the minimum and maxi-
mum stress distribution in point 1. This means that when 

the nanotubes are located in the center of the core relative to 
when they are made uniform leads to an increase in the stress 
distribution in the top face sheet. According to Fig. 5d, it 
can be seen that this nanotube arrangement has the opposite 
effect on shear stress.

Figure 6 shows the stress distribution in the outermost 
layer of the top piezoelectric face sheet (path 1) at t = tmax/2, 
where the maximum stresses are observed in the sand-
wich shell. As shown in Fig. 6a–c, the maximum radial, 
circumferential, and meridian stresses are observed at the 
angle ξ2 = 0° in the outermost layer of the top face sheet. 
According to Fig. 6d, the maximum shear stress occurs at the 
maximum radius of the contact area (r = amax or ξ2 = amax/
(R + h/2)). According to Fig. 6a–c, it can be seen that the 
radial, circumferential, and meridian stresses are maximum 
in the sample FG-O as well as being minimum in the sample 
FG-UV. According to Fig. 6d, it can be seen that the shear 
stress has the maximum and minimum value in the samples 
FG-UV and FG-O, respectively.

Figure 7 shows the stress distribution in the innermost 
layer of the top piezoelectric face sheet (path 2) at t = tmax/2, 

Fig. 5  The variation of the stress components in terms of time, a �� at point 1, b ��1 at point 1, c ��2 at point 1, d ���2 at point 2, for 
h∕R = 0.1, h1∕h = 0.1,R = 5mm and �0 = 30◦
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where the maximum stresses are observed in the sandwich 
shell. As shown in Fig. 7, the maximum radial, circumfer-
ential and meridian stresses are generated at the angle ξ2 = 0 
in the innermost layer of the top face sheet. In addition, the 
maximum shear stress occurs at the maximum radius of the 
contact area (r = amax or ξ2 = amax/(R + h/2)). According to 
Fig. 4a, b, it can be seen that the radial and circumferential 
stresses are maximum in the sample FG-▽ as well as being 
minimum in the sample FG-UV. This means that when the 
nanotubes are located in the top layer of the core relative 
to when they are made uniform leads to an increase in the 
radial and circumferential stresses in the innermost layer of 
the top face sheet.

In addition, according to Fig. 7c, d, the meridian and 
shear stresses are maximum in the sample FG-△ as well as 
being minimum in the sample FG-▽. This means that when 
the nanotubes are located in the bottom and top layers of the 
core, the maximum and minimum in both the meridian and 
shear stresses in the innermost layer of the top face sheet are 
generated, respectively.

Figure 8 shows the stress distribution in the outermost 
layer of the core (path 2) at t = tmax/2. As shown in Fig. 8, 
the maximum radial, circumferential, and shear stresses are 
generated at the angle ξ2 = amax/(R + h/2). In addition, the 
maximum meridian stress occurs at the angle ξ2 = 0. Accord-
ing to Fig. 8a, it can be seen that the radial stress has the 
maximum and minimum value in the samples FG-O and 
FG-UV, respectively. This means that when the nanotubes 
are located in the center of the core relative to when they 
are made uniform leads to an increase in the radial stress 
in the core.

According to Fig. 8b, d, it can be seen that the circumfer-
ential and shear stresses are maximum in the sample FG-△ 
as well as being minimum in the sample FG-▽. This means 
that when the nanotubes are located in the bottom and top 
layers of the core, the maximum and minimum in both the 
circumferential and shear stresses in the core are generated, 
respectively.

According to Fig. 8c, it can be seen that the meridian 
stress has the maximum and minimum value in the samples 
FG-△ and FG-UV, respectively. This means that when the 

Fig. 6  The variation of the stress components in terms of �2 on path 1, a �� , b ��1 , c ��2 , d ���2 , for h∕R = 0.1, h1∕h = 0.1,R = 5mm and �0 = 30◦
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nanotubes are located in the bottom layer of the core relative 
to when they are made uniform leads to an increase in the 
meridian stress in the core.

Figure 9 shows the maximum radial, circumferential, and 
shear stresses on path 5, as well as the maximum merid-
ian stress on path 3 at the core at t = tmax/2. According to 
Fig. 9a, it can be seen that the radial stress has the maxi-
mum and minimum value in the samples FG-O and FG-UV, 
respectively. According to Fig. 9b, it can be seen that the 
circumferential stress has the maximum and minimum value 
in the samples FG-△ and FG-UV, respectively. According 
to Fig. 9c, it can be seen that the meridian stress has the 
maximum and minimum value in the samples FG-▽ and 
FG-UV, respectively. According to Fig. 9d, it can be seen 
that the shear stress has the maximum and minimum value 
in the samples FG-△ and FG-▽, respectively.

Figure 10 shows the maximum radial, circumferential, 
and meridian stresses on path 4, as well as the maximum 
shear stress on path 6 at the top piezoelectric face sheet at 
t = tmax/2. According to Fig. 10, it can be seen that the maxi-
mum stress components in the sample FG-O are generated 
compared to the other four models of FG-CNT core. In addi-
tion, it can be seen that the minimum stress components in 
the sample FG-UV are generated compared to the other four 
models of FG-CNT core. This means that the top face sheet 
experiences more stress distribution when the nanotubes are 
located in the center of the core. Whereas, the top face sheet 
experiences minimal stress distribution when the nanotubes 
are made uniform in the core.

Figure 11 shows the variation of the voltage changes 
caused by the impact of the spherical elastic ball in the 
top face sheet layer at the point with spherical coordinate 
(R + (h − h3)/2, 0, 0). According to the figure, it can be 

Fig. 7  The variation of the stress components in the top piezoelectric layer in terms of �2 on path 2, a �� , b ��1 , c ��2 , d ���2 , for 
h∕R = 0.1, h1∕h = 0.1,R = 5mm and �0 = 30◦
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observed that the impact phenomena lead to the production 
of the voltage in the piezoelectric layer in terms of time. 
Moreover, the maximum and minimum values of the volt-
age are generated in the sandwich sector with the samples 
FG-▽ and FG-X, respectively. Furthermore, it can be seen 
that for tmax ≤ t, the voltage acts as a damping function in 
terms of time and eventually becomes zero.

6  Conclusions

In the current study, a new theory solution was introduced 
in the field of layerwise theory along with higher-order 
shear deformation theory to calculate the stress distribution 
in the three-layer spherical sandwich shell subjected to the 
low-velocity impact. In order to solve the impact problem 
at the three-layer spherical sandwich shell, the sets of the 
nineteen nonlinear equations should be solved. The results 
showed that the sample of the FG-CNT core has more effect 

on the stress distribution in the top face sheet. In addition, 
the results showed that the top face sheet experiences more 
stress distribution when the nanotubes are located in the 
center of the core. Moreover, the top face sheet experiences 
minimal stress distribution when the nanotubes are made 
uniform in the core.

According to the results, it can be observed that although 
the theoretical calculations of the present study are very 
complex and heavy, LT was able to efficiently solve the issue 
of the low-velocity impact in a three-layer spherical sector. 
Moreover, the advantages of the theory are categorized as 
follows:

• Solving the low-velocity impact issue of the three-layer 
sandwich sector with piezoelectric face sheets and FG-
CNT core in less than 15 min with high accuracy.

• Ability to change the geometric dimensions as well as 
the mechanical properties of the layers and find relevant 
results, easily.

Fig. 8  The variation of the stress components in FG-CNT core in terms of �2 on path 2, a �� , b ��1 , c ��2 , d ���2 , for 
h∕R = 0.1, h1∕h = 0.1, R = 5mm and �0 = 30◦
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Finally, the limitations of the current theoretical based on 
LT along with HSDT are:

• The other geometry of the structures
  In complex geometries, due to the high volume of cal-

culation, this method may not work well.
• When the issue of mechanical failure arises
  Due to the mechanical failure, the geometry of the 

structure will certainly undergo a large deformed shape. 
The current study only can be used for small deformation 
and small strain.

• The classical non-adhesive elastic contact theory and 
Hunter’s relationship.

Due to the different nature of the high-velocity impact, 
this theory is not able to accurately estimate the contact pres-
sure in terms of time and other parameters.

Appendix A

Expressions for the variation in modulus of elasticity, 
Poisson’s ratio, and density of the FG-CNT core along its 
thickness.

(A1)E11(�) = �1VCNT(�)E
CNT
11

+ Vm(�)E
m

(A2)
�2

E22(�)
=

VCNT(�)

ECNT
22

+
Vm(�)

Em

(A3)E33(�) = E22(�)

(A4)
�3

G12(�)
=

VCNT(�)

GCNT
12

+
Vm(�)

Gm

Fig. 9  The variation of the stress components in terms of �(2)∕h2 , a �� on path 5, b ��1 on path 5, c ��2 on path 3, d ���2 on path 5, for 
h∕R = 0.1, h1∕h = 0.1, R = 5mm and �0 = 30◦
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where

(A5)G13(�) = G23(�) = G12(�)

(A6)�12(�) = VCNT(�)�
CNT
12

+ Vm(�)�
m

(A7)�21(�) =
�12(�)

E11(�)
E22(�)

(A8)�13(�) = �12(�)

(A9)�31(�) = �21(�)

(A10)�32(�) = �23(�) = �21(�)

(A11)�(�) = VCNT(�)�
CNT + Vm(�)�

m

(A12)VCNT(�) + Vm(�) = 1

(A13)VCNT(�) = ΥV∗
CNT

Fig. 10  The variation of the stress components in terms of �(3)∕h1 , a �� on path 4, b ��1 on path 4, c ��2 on path 4, d ���2 on path 6, for 
h∕R = 0.1, h1∕h = 0.1, R = 5mm and �0 = 30◦

Fig. 11  The variation of the voltage changes caused by the 
impact of the spherical elastic ball in the top face sheet layer 
at the point with spherical coordinate (R + (h − h3)/2, 0, 0) for 
h∕R = 0.1, h1∕h = 0.1, R = 5mm and �0 = 30◦
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Appendix B

Expressions for the displacement components in the sandwich. 
In these equations, ξ(k) is measured from the kth layer mid-
surface (see Fig. 1). Furthermore, it is assumed that u(k)

3
 (k = 1, 

2 and 3) is considered a function in terms of ξ1, ξ2 and ξ(k).
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Appendix C

Expressions for the displacement components and curva-
tures (u0, v0, w0, �
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simply supported boundary conditions for the spherical 
sandwich shell. In these equations, umn, vmn, wmn, � (k)
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(i = 1, 2, 3; k = 1, 2, 3), are the coefficients yet to be deter-
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50,000 terms for both were used for a complete 
convergence.
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Appendix D

Expressions for the stress–strain relation in the FG-
CNT core and piezoelectric face sheets can be written as 
Eqs. (D1) and (D2), respectively. Moreover, the electric 
displacement relations for piezoelectric face sheets can be 
written as Eq. (D3).
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Appendix E

Expressions for the virtual kinetic energy  (E1) and the vir-
tual strain energy  (E3).

(D5)E
(k)

1
= −

1

r(k) sin �2

�Φ(k)

��1
;E

(k)

2
= −

1

r(k)
�Φ(k)

��2
;E

(k)

3
= −

�Φ(k)

��
; for k = 1, 3.
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where in Eq. (E1), I(k)
q

 (k = 1, 2, 3 and q = 0, 1, 2, 3, 4, 5, 6) 
is defined as Eq. (E2).
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where in Eq. (E3), N(k)

ij
 , M(k)

ij
 , P(k)

ij
 , q(k)

ij
 and Γ(k�) (k = 1, 2, 3 

and kʹ = 1, 3) are defined as Eqs. (E4)–(E7).
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where the elements of matrices A, B, D, E, F, G and H 
(k = 1, 2, 3) are given as;
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