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Abstract
As far as the authors are aware, low Mach preconditioned density-based methods found in the peer-reviewed literature only 
employ multi-step schemes for physical-time integration. This essentially limits the maximum achievable temporal accuracy-
order of these methods to two, since the multi-step schemes of order higher than two are conditionally stable. However, 
the present paper shows how these methods can employ multi-stage schemes in physical-time using the same low Mach 
preconditioning techniques developed over the past few decades. In doing so, it opens up the rich field of Runge–Kutta time 
integration schemes to low Mach preconditioned density-based methods. One and two-dimensional test cases are used to 
demonstrate the capabilities of this novel approach. The former simulates the propagation of marginally stable entropy pertur-
bations superposed on a uniform flow whereas the latter simulates the temporal growth of vorticity perturbations superposed 
on an absolutely unstable planar mixing-layer. A novel procedure is employed to generate highly accurate initial conditions 
for the two-dimensional test case, it minimizes receptivity regions as well as deleterious interactions with artificial boundary 
conditions due to the numerical error introduced by approximate initial conditions. These test cases show that second, third 
and fourth order multi-stage schemes with strong linear numerical stability can be successfully utilized for the physical-time 
integration of low Mach preconditioned density-based methods.

Keywords  Unsteady compressible flows · Very low Mach number flows · Multi-stage schemes · High-order physical-time 
integration · Strong linear numerical stability · Dual time stepping

1  Introduction

After decades of evolution, modern computers can now 
perform very complex unsteady three-dimensional numeri-
cal simulations. Even so, selecting a time-marching scheme 
is still of great importance being a compromise between 
accuracy and efficiency. Furthermore, both are controlled 

by stiffness to a great extent, which is caused by disparities 
in characteristic time and/or length scales. One of the major 
difficulties faced by researchers performing simulations of 
very low speed compressible flows is the stiffness due to 
large differences between convective and acoustic veloci-
ties. It should be noted that these speeds are not only found 
in incompressible flows. Compressibility can still present in 
very low Mach number flows in the presence of, for instance, 
strong temperature variations [50]. Nevertheless, stiffness 
decreases efficiency. Realistic computer times are only pos-
sible in such cases with numerical schemes that are at least 
A-stable, a mathematical property defined as unconditional 
stability when solving a linear and homogeneous standard 
test problem. An additional difficulty associated with low 
Mach number flows is the fact that pressure is no longer a 
thermodynamic state variable, but only a Lagrange multi-
plier. Hence, one must solve for it directly, instead of recov-
ering it from an equation of state, to avoid significant round-
off error propagation. In other words, stiffness decreases 
accuracy. Arguably the two main approaches advocated to 
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deal with these difficulties and simulate the compressible 
Navier-Stokes equations at low Mach numbers are known as 
pressure-based and density-based methods [39].

Pressure-based methods are extensions of incompress-
ible flow solvers towards the high Mach regime. Their ori-
gins can be traced back to the marker in cell (MAC) [27] 
and pressure correction [16] methods for incompressible 
flow simulations. SIMPLE is arguably the most used vari-
ant known to date [52]. They were transformed into com-
pressible flow solvers in the early seventies [28]. However, 
research on this subject laid dormant for more than fifteen 
years, until the creation of PISO [34] and SIMPLEC [36]. 
Recent work has addressed many different issues, such as 
zero Mach number singularity [7, 30], low Mach number 
stiffness [56] and discrete conservation of mass, momen-
tum and energy equations at arbitrary Mach numbers [33]. 
Both incompressible and compressible versions mentioned 
so far utilize a time-marching approach known as projection 
or fractional step method, which is based on a Helmholtz-
Hodge decomposition [19]. An extensive review including 
all different variants of projection methods [26] has shown 
that the pressure-velocity decomposition is unconditionally 
stable only up to second-order accuracy. Recent attempts to 
reach higher orders have utilized stable pressure extrapola-
tion schemes [22], but accuracy-order was problem depend-
ent and barely above two. Simulations were limited to short 
time spans.

On the other hand, density-based methods are extensions 
of compressible flow solvers towards the low Mach regime. 
Two popular variants exist. The first one was derived in the 
early eighties and is known today as either acoustic filter-
ing [53] or low Mach number asymptotic Navier-Stokes 
equations [40]. It employs a perturbation expansion proce-
dure to obtain asymptotic forms of the compressible flow 
equations using the Mach number to the first [25] or second 
[47] powers as a small parameter. They are used to this day 
for complex problems [11] and extensive reviews exist in 
the literature [49], but these methodologies apply only to 
low Mach number flows. They are not an arbitrary Mach 
compressible flow solver such as pressure-based methods. 
However, their time-marching schemes are also based on 
projection methods. Hence, they suffer from the same low 
temporal resolution limitations described earlier.

Preconditioned density-based methods provide another 
alternative. Their origins trace back to the artificial com-
pressibility for incompressible flows [15]. This idea was 
extended towards compressible flows twenty years later 
[65], allowing traditional compressible solvers to simulate 
low Mach number flows as well. An important contribution 
was the separation of static (thermodynamic) and dynamic 
(hydrodynamic) pressure contributions, allowing much 
lower Mach numbers to be reached [48]. These methods 
have been optimized for high Reynolds number flows [14], 

reacting flows with non-equilibrium chemistry [60], simu-
lations with highly stretched meshes [9], implicit upwind 
solvers [10], different variable sets [68], reduced eigenvec-
tor orthogonality losses [18, 29], supercritical heat transfer 
[64] and improved energy conservation accuracy at very low 
Mach numbers [43, 44]. Extensive literature reviews can be 
found elsewhere [66, 67, 69]. The introduction of low Mach 
preconditioning into the governing equations alters their 
physical-time evolution, although the correct steady-state 
is always obtained. In order to recover the time accuracy 
of low Mach preconditioned equations, dual time stepping 
[32] must be used as well. This technique was originally 
introduced with artificial compressibility [46] and is still 
used to this day for unsteady flows [21]. However, low Mach 
number preconditioned density-based methods are usually 
limited to second-order accuracy in physical-time [62]. 
In fact, the authors have not been able to find a low Mach 
preconditioned density-based method in the peer-reviewed 
journal literature that has an accuracy-order higher than 
two in physical-time [3]. This restriction is due to the fact 
that these methods always employ multi-step schemes for 
an accurate temporal resolution, but there are no A-stable 
multi-step schemes with accuracy-orders greater than two 
[17]. Higher order versions are available, but they are all 
conditionally stable [45].

The limitation on the stability of high-order implicit 
multi-step schemes led the study of multi-stage schemes to 
minimize the CFL restrictions imposed by stiffness, [8, 35, 
70], since theses schemes, known as implicit Runge–Kutta 
(IRK) methods [12], were capable of simulating unsteady 
compressible flows with high Mach numbers [6, 20, 38, 51, 
73–75]. IRK methods can achieve high accuracy-order with 
strong numerical stability increasing the number of interme-
diate stages within the physical-time step. These methods are 
self-starting as well, and easy to implement with variable 
time-step sizes, which is not the case for multi-step schemes.

However, not even the stronger numerical stability of 
IRK methods is able to control the stiffness found in very 
low Mach number flows, where M ≪ 1 , evidenced by the 
fact that lower bounds in previously mentioned studies 
were limited to M ∼ 0.05 . The main goal of the present 
study is to demonstrate how the well-known low Mach 
preconditioning techniques can be employed with these 
multi-stage schemes as well. This is achieved in such a 
way that no modifications whatsoever are required of the 
preconditioning matrix and preconditioned artificial dis-
sipation for spatial resolution, allowing a straightforward 
use of all scientific developments related to preconditioned 
density-based methods achieved over the past twenty-
five years. The present work provides the framework for 
low Mach preconditioned density-based methods to be 
employed with multi-stage schemes, allowing high-order 
unsteady simulations with strong numerical stability of 
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very low Mach number compressible flows. Several test 
cases simulated with Mach numbers as low as M = 10−5 
are presented, providing strong evidence for the improved 
efficiency and accuracy of this novel approach when com-
pared to non-preconditioned multi-stage methods and low 
Mach preconditioned multi-step schemes.

2 � Governing equations

2.1 � Unsteady governing equations

Consider the 2D compressible unsteady Euler equations 
from fluid dynamics

where t is the physical-time independent variable and � and � 
are the independent spatial variables in computational space. 
Their differentials are related to their counterparts in physi-
cal space, x and y, through the Jacobian determinant inverse

Furthermore, the generalized dependent variable � and invis-
cid fluxes �i and �i in the steady-state residue � (�) are related 
to their counterparts in physical space through

which, in turn, are defined in conservative form as

where � stands for density, u for stream wise velocity, v for 
cross stream velocity, E = e + (u2 + v2)∕2 for total energy 
per unit mass, e for thermal internal energy per unit mass 
and P as pressure.
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,

2.2 � Controlling roundoff error propagation

Low Mach number simulations using compressible solvers 
bring some limitations. In the low Mach number limit, den-
sity becomes independent from pressure. Therefore one has 
to solve for the latter instead of the former. Furthermore, 
pressure should be decomposed into P = PT + PH , which 
is the sum of its hydrodynamic ( PH ∼ �u2 ) and thermo-
dynamic 

(
PT ∼ �c2

)
 contributions, since the latter is essen-

tially constant and orders of magnitude higher than the for-
mer when M ≪ 1 . This is essential in order to control the 
propagation of pressure roundoff errors in the momentum 
conservation equations, where P must be replaced by PH . 
It should be noted that PT is constant in space, but allowed 
to vary in time as is often the case in fully bounded flows. 
Nevertheless, here PT is assumed to be constant. Hence, a 
simple chain rule is applied to Eq. (1), leading to

which solves for the primitive dependent variable vectors

where the conservative to primitive variable Jacobian � that 
allows this change in variables is given by

where T stands for temperature, H = h + (u2 + v2)∕2 total 
enthalpy per unit mass and h = e + P∕� enthalpy per unit 
mass. In �̂ temperature can be replaced by enthalpy or 
entropy, among others. Density and enthalpy dependencies 
on pressure and temperature are determined from an equa-
tion of state and only thermally perfect gases are going to 
be considered here, although arbitrary equations of state can 
be used.

2.3 � Removing convective/acoustic time scale 
stiffness

Despite these modifications, Eq. (9) becomes increasingly 
stiff as the Mach number is decreased below M ∼ 0.1 . The 
same is true for Eq. (1). This means that the time steps 
required to march either equation in time would have to 
be on the order of the acoustic time scales, even though 
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acoustics generally does not affect the flow at these very 
low Mach numbers. Hence, a prohibitively large number of 
time steps would be required to reach steady-state. In order 
to prevent such a strong time step restriction and acceler-
ate convergence towards steady-state, a second technique is 
required, i.e., low Mach preconditioning. It works by replac-
ing conservative to primitive variable Jacobian � by a pre-
conditioning matrix � , leading to

where � can be generally defined as

whose density and enthalpy dependencies on pressure and 
temperature are modified to

with the pseudo-speed of sound cp taken from [69] and � = 1 
[71]. Doing so modifies the eigenvalues �i of Eq. (9), e.g. 
given by �1 = �2 = u and �3,4 = u ± c in the x-direction, to 
𝜆̃i ≃ O(u) in Eq. (12) even when M ≪ 1 , i.e. c ≫ |u| . The 
exact expressions for 𝜆̃i can be found in these references. 
It should be noted that the physical-time t in Eq. (9) was 
replaced by the pseudo-time � in Eq. (12) to highlight that 
the time evolution in the latter is no longer accurate. This 
is not relevant when one is searching for steady-states that 
satisfy � (�) = 0 , since they are not modified by low Mach 
preconditioning. Doing so by integrating Eq. (12) instead 
of Eq. (9), however, is significantly more efficient since the 
latter is stiff but the former is not.

2.4 � Recovering time accuracy

If time accurate simulations are still desired when M ≪ 1 , 
Eq. (12) must be modified. In other words, if low Mach stiff-
ness must be removed and time accuracy must be main-
tained, one needs to re-introduce the original physical-time 
derivative that was present in Eq. (1) into Eq. (12), yielding

a technique known as dual time stepping (DTS). It should 
be noted that the physically correct unsteady-state that satis-
fies Eq. (1) is only recovered from Eq. (15) at pseudo-time 
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steady-state. Doing so with Eq. (15) requires reaching the 
pseudo-time steady-state within each physical-time step. 
Equation (15) is the classical equation all low Mach num-
ber preconditioned density-based methods solve to simu-
late unsteady flows. It must be employed instead of Eqs. 
(1) or (9), otherwise the same stiffness issues due to the 
large disparity between acoustic and convective time scales, 
already discussed in the previous subsection, will also 
occur. Hence, using Eq. (15) instead is much more efficient, 
despite the additional pseudo-time iterations per physical-
time step. These additional iterations can be minimized by 
using special marching schemes designed for the calcula-
tion of steady-states [5] when performing each pseudo-time 
integration.

3 � Temporal resolution

3.1 � Physical‑time integration with multi‑step 
schemes

A careful review of the literature shows that Eq. (15) is always 
solved by relocating the physical-time derivative to the right 
hand side of the equation and treating it as a source term,

and applying multi-step schemes to the unsteady residue 
�̃ (�) . In the vast majority of cases, a second-order backwards 
differentiation formula (BDF2) is employed,

although the second-order Crank-Nicholson (CN2) scheme,

has been used as well. In both approximations, n (as well as 
n − 1 ) and n + 1 represent the known and unknown indexes 
in physical-time, respectively, and �t is the physical-time 
step. BDF2 is the preferred choice because of its L-stability. 
Despite being only A-stable, CN2 can still be an interest-
ing choice because of its non-dissipative nature. L-stability 
is also called strong A-stability, since it is equivalent to 
A-stability but with the added property of zero, as opposed 
to bounded, gain at infinite CFL numbers. In general, �̃ (�) 
can be approximated with any arbitrary multi-step scheme,
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where coefficients ai , Na , bi and Nb are selected a priori to 
impose a pre-determined physical-time accuracy-order and 
numerical stability.

Applying an implicit Euler scheme to march Eq. (16) 
in pseudo-time leads to

where p and p + 1 represent the known and unknown 
indexes in pseudo-time, respectively, and �� is the pseudo-
time step. Equation (20) can be linearized using the O(��2) 
approximation

without incurring in additional pseudo-time accuracy loss, 
to yield

where 𝜕�̃∕𝜕�̂ includes the transient and inviscid Jaco-
bians with respect to the primitive variable vector �̂ and 
�̂p+1 = �̂p + 𝛥�̂ . Combining Eqs. (19) and (22) yields

where 𝜕�∕𝜕�̂ contains the inviscid Jacobians.
There is a difficulty that, at this point, it is something 

worth discussing [68]. Eq. (19) yields �n+1 but Eq. (20) 
requires �p+1 . Since they are not related, �n+1 ≃ �p+1 is 
required as an additional approximation during the deri-
vation of Eq. (23). If an explicit scheme for pseudo-time 
marching was employed instead, the approximation 
would be �n+1 ≃ �p . Both approximations are only rigor-
ously true at pseudo-time steady-state, since �̃ (�) ≃ 0 and 
𝛥�̂ ≃ 0 once this limit is reached. Nevertheless, they must 
be employed when using DTS with multi-step schemes 
in physical-time to solve Eq. (16). Their true impact on 
accuracy and efficiency of preconditioned density-based 
methods is not yet known, but can be determined from the 
use of DTS with multi-stage schemes in physical-time.
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3.2 � Physical‑time integration with multi‑stage 
schemes

In order to enable low Mach preconditioned density-based 
methods to use multi-stage schemes in physical-time, one 
must first treat the preconditioned pseudo-time derivative 
in Eq. (15) as a source term, leading to

where �̄ (�) is the pseudo-unsteady residue. Then, the above 
equation is marched in physical-time by a general IRK 
method using

where the k intermediate stage variable vectors �i are 
obtained from

defined at specific times tn + �i �t between tn and tn+1 , where 
� , �i and �i,j are determined a priori by accuracy and stabil-
ity requirements. Explicit RK (ERK) methods are obtained 
with �i,j = 0 if j ≥ i , diagonally implicit RK (DIRK) meth-
ods with �i,j = 0 if j > i , singly DIRK (SDIRK) methods 
with �i,j = 0 if j > i and all �i,i equal to the same constant, 
and fully implicit RK (FIRK) methods with all coefficients 
being generally nonzero. Steady-state residue and precon-
ditioned pseudo-time derivative inside the pseudo-unsteady 
residue are separated in Eq. (26) to yield

for 1 ⩽ i ⩽ k . Furthermore, �̂i are the intermediate variable 
vectors in primitive form. They are related to their con-
servative counterparts �i in the same way �̂ is related to 
� . Nevertheless, this equation is written in such a way that 
its numerical solution is obtained very inefficiently. This is 
caused by the existence of multiple pseudo-time derivatives 
in each intermediate stage. One may note, however, that the 
summations on both sides have the same coefficients. Hence, 
this equation can be written in the diagonal form
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where �−1
i,j

 represents the coefficients of the inverse of the 
coefficient matrix determined a priori [4]. Once pseudo-time 
steady-state is reached for all intermediate stage equations 
within each physical-time step, Eq. (28) converges to its 
original non-preconditioned version �̃ (�i) ≃ 0 . Equation (25) 
can be then utilized for the physical-time update of Eq. (1) 
with �̄ (�i) replaced by � (�i) , since they become approxi-
mately equal when pseudo-time steady-state is reached.

It is important to note that this new explicit coupling in 
DIRK schemes retains the same triangular structure of the 
implicit coupling from the original versions in Eq. (26). In fact, 
all preconditioned implicit RK (PIRK) methods maintain the 
original nature of their respective implicit couplings, although 
in an explicit manner. Hence, it becomes quite difficult to gen-
erate a preconditioned ERK (PERK) method for physical-time 
marching. The reason is that the re-definition of � (�) as �̄ (�) in 
Eq. (24) no longer introduces the pseudo-time derivative of �i 
at the intermediate stage i, i.e. �i,i = 0 in Eq. (27), preventing �i 
from being marched forward in pseudo-time in the respective 
version of Eq. (28).

In order to maintain consistency among all preconditioned 
density-based methods utilized in this paper and ensure a 
proper comparative analysis, Eq. (28) is marched in pseudo-
time with the same implicit Euler method applied to multi-step 
variant (20), yielding

which, upon linearization with expansion (21), becomes
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for 1 ⩽ i ⩽ k , where �j = 𝜕�j∕𝜕�̂j is now the conserva-
tive to primitive intermediate stage variable vector Jaco-
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𝜕�∕𝜕�̂ does. This development consider the general case of 
a fully implicit RK scheme. At any given stage in diagonally 
implicit RK schemes, the equation above can be re-written 
as

(29)�
p

i

�̂
p+1

i
− �̂

p

i

𝛥𝜏
≃ �̃

(
�
p+1

i

)
for 1 ⩽ i ⩽ k ,

(30)

{
�i
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𝛥�̂i ≃ �̃
(
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)
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(31)
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𝛥�̂j ≃ � (�

p

i
)

+

k∑
j=1

𝛽−1
i,j

(
�n − �

p

j

𝛥t

)
,

for 1 ⩽ i ⩽ k . SDIRK schemes of second and third-order 
accurate derived by [1] and fourth-order accurate derived 
by [13] that are either A-stable (AS) or strongly S-stable 
(SSS) were chosen for the present study. The latter prop-
erty is equivalent to L-stability (LS), but when applied to 
a linear but nonhomogeneous standard test problem. FIRK 
schemes were also tested but are not shown because they 
are not competitive with or without preconditioning. Spe-
cific details about the form taken by Eq. (32) for each IRK 
scheme and its respective preconditioned version are given 
elsewhere [4].

The main advantage of using either Eq. (31) or (32), 
obtained from this novel PIRK methodology presented 
here, is their consistency with Eq. (15). It follows the tra-
ditional DTS approach employed by preconditioned den-
sity-based methods to simulate unsteady low Mach number 
flows. Hence, all the low Mach preconditioning techniques 
employed during the past decades can now be directly used 
with multi-stage schemes as well without any modifications 
whatsoever to either the preconditioning matrix or the pre-
conditioned spatial discretization.

It should be mentioned that no additional approximation 
correlating intermediate stage vectors in physical ( �n+1

i
 ) and 

pseudo-times ( �p+1
i

 or �p
i
 ) is necessary, which is not the case 

for preconditioned density-based methods with multi-step 
schemes in physical-time, as discussed at the end of the 
previous subsection. This is simply due to the absence of a 
physical-time derivative in the original (non-preconditioned) 
version of intermediate stage Eq. (28). The importance of 
this fact will become clear when comparing multi-step and 
multi-stage schemes later on in the results section.

4 � Spatial resolution

In every test case reported next, numerical resolution is 
dominated by temporal instead of spatial errors. This is 
assured by increasing the spatial grid until it becomes suf-
ficiently large, combined with a high-order spatial discretiza-
tion, using the fifth-order version [41, 59] of the well-known 
flux-difference method with a preconditioned artificial dissi-
pation matrix [10]. Hence, one-dimensional test cases render 
Eq. (32) block tri-diagonal whereas two-dimensional ones 
make it block penta-diagonal. For this reason, a diagonally 
dominant symmetric relaxation technique is applied to 
the latter case with line sweeps in both directions at each 

(32)

�
�i

𝛥𝜏
+ 𝛽−1

i,i
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pseudo-time step [10], where two block tri-diagonal matri-
ces are inverted per step.

Finally, all selected model problems are periodic in the 
stream wise direction in order to eliminate a source of errors, 
originated by the boundary closure scheme. Periodic bound-
ary conditions are exactly enforced in the explicit residue 
of Eqs. (23) and (32), while approximated in their implicit 
operator to avoid a cyclic matrix structure. Cross stream 
boundary conditions for the two-dimensional test case use a 
zero derivative approximation for all variables but pressure, 
which is fixed. No buffer zones are needed in these bounda-
ries because initial conditions are specially constructed to 
satisfy the steady governing equations, essentially eliminat-
ing initial condition noise. However, grid stretching was 
employed in this direction away from the physically rele-
vant domain region to damp any perturbations that reach the 
cross stream boundaries. Furthermore, the modified artificial 
dissipation was altered near these boundaries to reduce the 
scheme to fourth-order, enhancing numerical stability of the 
overall method.

5 � Results and discussion

In the following sections, all density-based methods using 
both multi-stage and multi-step schemes in physical-time 
will have the capital letter P added to their acronym when-
ever low Mach preconditioning is used. Among multi-step 
schemes, these acronyms are BDF and CN for backwards 
differentiation formula and Crank-Nicholson, respectively. 
The acronym for all multi-stage schemes is SDIRK, which 
stands for singly diagonally implicit Runge–Kutta, since 
they are all triangular schemes with the same coefficient 
in the diagonal. There is only one exception, which is IRK 
(implicit Runge–Kutta), because it refers to a single stage 
scheme. These acronyms are followed a number represent-
ing the accuracy-order of the scheme. A dash is introduced 
at this point, followed by another acronym that represents 
the linear stability of the scheme. These are AS, LS, and 
SSS standing for A Stable, L Stable and Strongly S Stable, 
respectively.

Unsteady simulations with third-order multi-step schemes 
Adams-Moulton (AM3) and backwards differentiation for-
mula (BDF3) in physical-time were also tested, but without 
success. The former did not pass the first periods for any 
Mach number. Although more stable, the latter could only 
finish a simulation in each problem when the number of grid 
points per period was too large for any practical purposes. 
As mentioned in the introduction, this is due to the fact that 
all multi-step schemes with accuracy-orders higher than two 
are no longer unconditionally stable. Hence, their results will 
not be shown here.

5.1 � Convection of one‑dimensional entropy 
perturbations

This test case has a very specific purpose. The idea here is 
to show that the present approach to introducing low Mach 
preconditioning into multi-stage schemes does not change 
the accuracy of their results. In other words, their diffusive/
dispersive error characteristics as well as accuracy-order 
remain the same. On the other hand, low Mach precondi-
tioning significantly reduces the number of iterations per 
physical-time step as the Mach number decreases, i.e. it sig-
nificantly improves efficiency.

5.1.1 � Initial conditions

Entropy waves were simulated solving the one-dimensional 
version of Eq. (1) at Mach numbers ranging from M = 10−1 
to 10−5 . They are generated with density perturbations at 
constant pressure and velocity. Compressible flows can sus-
tain three distinct perturbation fields according to Perturba-
tion Theory: entropy, vorticity and sound waves. Whenever 
fluctuations are sufficiently small they don’t interact. As 
a consequence, small density perturbations are convected 
downstream without any modifications in amplitude, fre-
quency or phase. Arbitrating a dimensionless function f(x) 
as initial condition for density, its transient behavior is 
described by �(x, t)∕�0 = f (x − u0 t) . The wave form

is chosen here in order to keep mean values unaltered. The 
therms �0 and u0 are the average density and constant flow 
speed, and �0 = 1% of �0 , l0 and t0 = l0∕u0 are the perturba-
tion amplitude, wavelength and period, respectively. Refer-
ence pressure and temperature are given by P0 = 101325Pa 
and T0 = 300K , respectively.

5.1.2 � Analysis framework

As physical-time advances density values are monitored in 
location x∕l0 = 0 . Time-steps are defined as �t = t0∕NT  , 
where NT is the number of points per period of oscillation 
and one hundred periods were simulated in each run with 
NT = 4 , 8, 16, 32, 64 and 128. In order to evaluate dissipa-
tive (or anti-dissipative) and dispersive (either lagging or 
leading) errors, peak to peak changes of the expected maxi-
mum or minimum values and deviations from the expected 
periodic location of each one of these peaks after each 
period were verified.

In order to demonstrate the capabilities of this novel PIRK 
methodology for density-based methods, two separate com-
parative analyzes are made. First, all PIRK schemes selected 

(33)f (x) = 1 + �0 sin
[
2� x∕l0

]
, with 0 ≤ x ≤ l0 ,
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are compared to their respective (non-preconditioned) IRK 
schemes in order to demonstrate they can simulate very low 
Mach number flows more efficiently and accurately. This 
can be achieved by changing the preconditioning matrix � 
back to the conservative to primitive variable Jacobian � in 
either Eqs. (31) or (32). Nevertheless, � can still be referred 
to as pseudo-time since the explicit and implicit sides of 
both equations utilize approximations with different spatial 
accuracy-orders [55]. Such a comparison is actually very 
conservative, since standard compressible flow codes solve 
for conservative variables instead. As was discussed earlier, 
solving for pressure directly as opposed to density improves 
both convergence and accuracy. Nevertheless, such a path 
still shows the advantages of PIRK methods while avoiding 
excessive coding at the same time. The second comparative 
analysis is between preconditioned density-based methods 
using multi-step and multi-stage schemes in physical-time, 
focusing on efficiency and accuracy as well.

Convergence criterium is based on the velocity field’s L∞
-norm and set to M × 10−7 . Inner iterations were performed 
until maxima pseudo-time increment (either 𝛥�̂ or 𝛥�̂i ) and 
residue (either �̃ (�) or �̃ (�i) ) based on the velocity field’s 
L∞-norm were below that limit, which is close to machine 
precision. Average values change very little over several 
periods, although they may have a considerable standard 
deviation within a given period. When large dissipative 
errors are present, they force convergence to an artificial 
physical-time steady-state and reduce the number of itera-
tions per period in the process. Therefore, it becomes useful 
to establish the control parameter m̄ , which is the iteration 
count averaged over all simulated periods and utilized as a 
global measure of convergence. When multiple stages i are 
used, m̄ =

∑
m̄i . A procedure similar to Brent’s method was 

implemented to determine respective optimal CFL numbers 
and it was stopped when the average quadratic difference 
between bounds was below 5 × 10−3 [54]. Lower tolerance 
values were not feasible as they created convergence prob-
lems caused by the oscillatory nature of the iteration count 
and were not considered.

5.1.3 � Validation of multi‑step and multi‑stage methods

The final periods of density values with M = 10−4 at 
x∕l0 = 0 for all second-order methods are shown in Fig. 1. 
For each curve, the solid points represent the position of 
the maximum density value after 95 periods of oscillation. 
Their asymptotic location as NT increases is t∕t0 = 95 − 1∕4 
because the first peak occurs at t∕t0 = 3∕4 . As presented, 
PBDF2-LS with NT = 16 generate and artificial steady-
state solution close to t∕t0 = 100 . As a result of dissipative 
and dispersive errors, there are significant vertically and 
horizontally distance between points. By doing a similar 
analysis, PCN2-AS, PIRK2-AS and IRK2-AS shows to be 

non-dissipative as predicted by numerical linear stability, 
and have much smaller dispersive errors than the previ-
ous one. Dispersive errors in all cases are of a lagging type 
because it takes longer for each point to reach its expected 
location when NT decreases. All these results are Mach num-
ber independent and converge towards the analytical solu-
tion. Higher-order multi-stage schemes provide essentially 
similar results with expected dissipative and/or dispersive 
numerical behavior and, hence, do not need to be shown 
here as well.

5.1.4 � Verification of second‑order methods

Code verification can now be performed, first we compare 
standard multi-step schemes PBDF2-LS and PCN2-AS with 
single-stage PIRK-AS and IRK-AS schemes, all second-
order. The reference of the numerical stability in the meth-
ods names may be omitted in the text but not in the figures. 
To compute a single pseudo-time iteration, the computa-
tional cost for a multi-step and a single-stage scheme are 
nearly the same, therefore, the average number of iterations 
per period can be taken as a measured of the overall costs.

For all four methods, the dimensionless density absolute 
error presented in Fig. 2 are computed using a reference 
numerical solution with twice as many points per period. 
To confirm second-order accuracy, a slope is also presented. 
The reason why PBDF2-LS’s absolute error decreases dra-
matically at larger physical-time steps is given by Fig. 1, 
which shows that this method leads to an artificial steady-
state in this limit. As expected, PCN2, PIRK2 and IRK2 
generate machine precision equal solutions, which also 
shows that low Mach preconditioning has no effect on tem-
poral accuracy. They also maintain accuracy-order march-
ing long periods of time, improving solutions accuracy, an 
issue not addressed for short term simulations [8]. Results 
generated in a dimensionless error form for Mach numbers 
decreasing up to M = 10−5 are graphically identical and 
hence not shown here.

In order to compare all second-order methods at differ-
ent Mach numbers, Fig. 3 shows the computational cost 
based on the average number of pseudo-time iterations per 
physical-time step m̄ . The preconditioning matrix chosen 
for all schemes here presented was developed applying 
PBDF2-LS, therefore, fewer iterations are needed and it 
decreases for larger physical-time step sizes due dissipa-
tion as shown in Fig. 1, additionally is the closest one to 
Mach number independence. For PCN2-AS and PIRK2-
AS, even though generate essentially identical solu-
tions over time, the convergence rates are very different. 
When M = 10−1 , PIRK2-AS requires from 1.09 to 1.53 
times as many pseudo-time iterations per physical-time 
step as PCN2-AS, while when M = 10−2 these numbers 
goes from 1.35 to 1.90. This discrepancy in convergence 
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rates continue to increase for lower Mach numbers, Fig. 3 
does not show the results of PIRK2-AS at M = 10−5 since 
NT ⩾ 32 was the minimum number of points per period to 
generate results. PCN2-AS’s better convergence rates may 
be explained in the context of numerical stiff accuracy, 
which the pseudo-time acts on �n+1 instead of the halfway 
�1 in PIRK2-AS. As discussed at the end of subsections 3.1 
and 3.2, the development of low Mach preconditioned 
multi-stage schemes enabled the understanding of the role 
played by the additional approximation required to write 
Eq. (23) but not Eq. (32). A comparison between PIRK2-
AS and PCN2-AS schemes shows that this approximation 
has no effect on either order or accuracy, but improves 
convergence by enhancing numerical stability.

As a result of no preconditioning on multi-stage 
schemes, even at M = 10−1 in unsteady problems, m̄ val-
ues for IRK2-AS are approximately 1 to 4.81 times higher 
than its PIRK2-AS counterparts. As the Mach number 
decreases, the computational cost increases dramatically, 
for M = 10−2 from 1.55 to 32.1 times more iterations are 

needed. IRK2-AS simulations with even lower Mach num-
bers are outside the range shown in Fig. 3. Without low 
Mach preconditioning, poorly resolved acoustic waves 
deteriorate convergence dramatically.

5.1.5 � Verification of higher‑order methods

Figure 4 shows the absolute error per physical-time step, 
both show density error in dimensionless form for all 
schemes tested for M = 10−5 at t∕t0 = 1 and 25. With one 
period of oscillation, the designed accuracy-order of all 
schemes are maintained. However, accuracy-order loss is 
observed after twenty-five periods of oscillation. At this 
later time, PIRK schemes with stronger numerical stability 
can maintain their order and higher accuracy but the same 
number of stages. The same reasoning does not apply to 
BDF2-LS and CN2-AS schemes, but that is probably due 
to the latter’s non-dissipative nature. Finally, all multi-stage 
schemes with and without preconditioning yield the same 
results, as observed in the previous subsection, confirming 

Fig. 1   Dimensionless density measured at x = 0 versus physical-time 
from PBDF2-LS and PCN2 = PIRK2 = IRK2-AS with N

X
= 102 and 

M = 10−4 . Curves generated with N
T
= 16( ), 32 ( ), 

64 ( ) and 128 ( ). Solid points are the 95th maximum 
peak of each curve
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that preconditioning does not affect accuracy. For this rea-
son, figures such as Fig. 1 will not be shown any longer, 
since dissipative and dispersive errors of all IRK schemes 
selected are well known already [12].

Figure 5 is the equivalent of Fig. 3, but for three-stage 
schemes PSDIRK3-SSS, SDIRK3-SSS, PSDIRK4-AS 
and SDIRK4-AS. The former second-order Runge–Kutta 
schemes are equivalent to PCN2 in terms of pseudo-time 
iterations per physical-time step and more accurate than 
multi-step counterpart, which make a competitive scheme 
if a non-dissipative one is necessary. On the other hand, 
approximately twice as many iterations than both are 
required by PSDIRK4-AS to obtain more accurate results 
only for short integration times. The impact of precondi-
tioning is analyzed once once again for high-order schemes. 
For M = 10−1 SDIRK3-SSS is 1 to 5.32 times slower than 
PSDIRK3-SSS, which increase to 1.61 and 51.1 when 
M = 10−2 . The results are similar for fourth-order accu-
rate schemes, SDIRK4-AS is 1.04 to 5.72 times slower 
than PSDIRK4-AS when M = 10−1 , and 2.50 to 50.3 when 
M = 10−2 . Whenever there is no need to simulate acous-
tic waves in flow, if preconditioning techniques are used, 
physical-time steps based on convective wave speeds can 
be employed. Two, four and five-stage schemes yield quali-
tatively similar results and, hence, will not be discussed any 
further here.

5.1.6 � Efficiency analysis

In engineering applications of compressible flows where 
small error tolerances are required, a more efficient choice 
is high-order versions of multi-step schemes, since there is a 
limitation in terms of accuracy-order for the latter one. It is 
important to note that efficiency was defined as the computer 
time required to generate a solution with a prescribed toler-
ance. Here, the total iteration count m̄ NT is used instead of 

computer time because all schemes have the same computer 
cost per pseudo-time iteration.

Results presented in Fig. 6 show the same conclusion is 
valid for low speed compressible flows when PIRK methods 
are employed and, considering the data from previous fig-
ures, it shows the absolute error data as a fraction of the per-
turbation amplitude versus the number of pseudo-time itera-
tions per physical-time period for M = 10−5 with t∕t0 = 1 
and 25. For t∕t0 = 1 , PBDF2 is the optimal choice when 
errors higher than 10% can be tolerated. Below this value, 
PSDIRK2-SSS has a better performance up to a certain 
point. PSDIRK4-SSS outperforms all other methods if errors 
below 0.1% are required. Performance-wise PSDIRK3-SSS 
is similar to the latter two methods in both cases. Consider-
ing the scenario where t∕t0 = 25 , i.e., later physical-times, 
the differences are even more pronounced. In order to bet-
ter exemplify these characteristics, a hypothetical scenario 
given by the imposition of a 1% tolerance for both times is 
shown in Table 1. Excessive dissipation can lead to an arti-
ficial steady-state solution, which is the reason of the drop-
off as m̄NT decreases. In low Mach number flows, precon-
ditioned k-stage methods with higher accuracy-orders and 
stronger numerical stabilities despite to solve k times more 
equations per physical-time step outperform their multi-step 
counterparts. Moreover, PIRK methods are very close to 
physical-time step and Mach number independent conver-
gence rates. The results shown and characteristics identified 
are responsible for making these high-order time integration 
techniques more efficient than their multi-step counterparts 
for low Mach number compressible flows.

5.2 � Absolutely unstable planar mixing‑layer

The previous test case showed that the present approach to 
applying low Mach preconditioning to multi-stage schemes 
maintains their accuracy while drastically reducing the 
required number of iterations per physical-time step as 

Fig. 2   Dimensionless density’s absolute error per physical-time step 
from PBDF2-LS (left) and PCN2 = PIRK2 = IRK2-AS (right) with 
N
X
= 102 and M = 10−1 . Curves generated at t∕t

0
= 1( ), 3 

( ), 9 ( ), 25 ( ) and 75 ( ). Solid line is 
O(�t2) slope
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the Mach number decreases. This was verified, however, 
in a rather simple problem. From a linear stability point of 
view, it is marginally stable and non-dispersive. In other 
words, small disturbances are simply convected down-
stream by the mean flow without changing their amplitude. 
Hence, the goal of this second test case is to show that 
the proposed approach also works in a much more com-
plex flow, where disturbances grow in amplitude as they 
propagate until nonlinear saturation occurs. Once again, 
the non-preconditioned versions yield the same results but 

with a much higher number of pseudo-time iterations and, 
hence, are not shown.

5.2.1 � Initial conditions

The two-dimensional linear and nonlinear temporal evolu-
tion of inviscid perturbations in a planar mixing-layer with 
stream wise periodicity are simulated. They are super-
posed on an absolutely unstable base flow of air mod-
eled as an ideal gas. It is approximated by the traditional 

Fig. 3   Optimal average number of pseudo-time iterations per physical-time step from PBDF2-LS, PCN2-AS, PIRK2-AS and IRK2-AS with 
N
X
= 52 . Curves generated with M = 10−1( ), 10−2( ), 10−3( ),, 10−4( ) and 10−5( ) 

Fig. 4   Dimensionless density’s absolute error per dimensionless physical-time step generated with M = 10−5 at t∕t
0
= 1 (left) and 25 (right) for 

all preconditioned density-based methods tested
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hyperbolic tangent function with 0.05m momentum thick-
ness, 101325Pa pressure, 300K temperature and 0.5 velocity 
ratio, where the Mach number based on the slower layer is 
fixed at 10−3.

Although such a base flow profile is quite commonly used 
in the literature [23, 42, 57, 58], these studies differ in their 
choice of perturbation method. While some superpose per-
turbations obtained from linear stability analysis [57, 58], 
other studies approximate the perturbation being superposed 
as well [23]. Regardless of the chosen approach, exact solu-
tions of the Navier-Stokes equations are not used. Hence, 
these profiles introduce unwanted numerical perturbations 
in the simulation even in the absence of additional perturba-
tions superposed onto the base flow [42]. Such errors can 
create long receptivity regions before the behavior predicted 
by linear stability theory can be detected or even mask this 
behavior to a large extent, greatly jeopardizing its detection. 
This is one major reason why most numerical simulations 
of absolutely unstable flows [57, 58] and globally unstable 
flows [8, 35] provide perturbation oscillation frequencies 
but not their temporal growth rates for comparisons with 
linear stability theory results, since growth rate calculations 
are significantly more sensitive to numerical errors than fre-
quency calculations.

A few steps have been taken in the present study to avoid 
these difficulties and present both frequency and growth rate 
results. First, the compressible Euler equations have been 
solved instead of Navier-Stokes equations in tis compress-
ible form, since the hyperbolic tangent profile satisfies the 
former but not the latter. Such an approach is justified by the 
fact that the instability mechanism governing perturbation 
behavior in this flow field is inviscid [31]. Second, unwanted 
numerical oscillations introduced by the perturbations 
imposed [23] are minimized using Physical-Time Damping 
or PTD [63]. Since the perturbation imposed will have a 
higher energy content than any other undesired perturba-
tions, it is the last one to be damped. The solution obtained 
by interrupting PTD when the cross stream velocity is one 
order of magnitude higher than its steady-state value repre-
sents a highly accurate perturbed initial condition. Relative 
errors based on perturbation wavenumber are on the order 
of 0.001% . Frequency spectra of the cross stream velocity 
data from initial conditions with and without PTD reveals 
that unwanted perturbations have an amplitude up to 5 times 
smaller than the one with the targeted frequency.

Fig. 5   Optimal average number of pseudo-time iterations per physical-time step from PSDIRK3-SSS, SDIRK3-SSS, PSDIRK4-AS and 
SDIRK4-AS with N

X
= 52 . Curves generated with M = 10−1( ), 10−2( ), 10−3( ), 10−4( ) and 10−5( ) 
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5.2.2 � Analysis framework

Linear stability analysis (LSA) data, obtained with a tempo-
ral version of a code originally developed for a spatial analy-
sis [2, 37], was employed to properly set up the numerical 
simulations. Once the perturbation wave number kR was cho-
sen, the domain stream wise length was set to its wave length 
l0 and LSA revealed the related perturbation period t0 and 

cross stream width 2 h0 . The former guided the physical-time 
step selection, with the number of points per period fixed at 
NT = 4 , 8, 16, 32, 64 and 128, whereas the latter fixed the 
domain width, chosen as the cross stream location where 
the maximum perturbation amplitude is 1000 times smaller. 
Furthermore, grid resolution studies were performed before-
hand to guarantee this data is dominated by temporal errors 
instead of spatial ones. They led to a uniform grid in the 
periodic stream wise direction with NX = 102 points. On 
the other hand, they required a non-uniform grid in the non-
homogeneous cross stream direction with NY = 301 . A uni-
form grid was employed in the vorticity containing region, 
where the cross stream velocity difference over two con-
secutive grid points at the center divided by the maximum 
cross stream velocity is equal to 0.114164, approximately, 
for all tests performed. This grid was stretched towards the 
lateral boundaries, with the last three grid points clustered to 
enhance numerical stability [61, 76]. The function

with ∓� ⩾ 0 and for −1 ⩽ � ⩽ +1 , was used to generate this 
grid, where a, b and c are adjustable coefficients.

All numerical simulation data was fitted to the Fourier 
mode functional form known from linear stability analysis 
using a least squares based nonlinear regression procedure 
programmed in the Mathematica built-in function Find-
Fit [72]. This allowed the extraction of perturbation wave 
numbers, frequencies and temporal growth rates from these 
simulations. Several numerical data sets were fed to this fit-
ting procedure, with all possible initial and final simulation 
time combinations leading to a data set size of at least 5 
periods. The one yielding the smallest standard deviation for 
frequency was selected, although doing so for the temporal 
growth rate instead led to the same result in almost all cases 
tested. Since the initial dimensionless cross stream velocity 
perturbation amplitude was approximately 10−7 , the per-
turbation behavior remained linear for a long enough time. 
Hence, a large enough data set was generated to maintain 
these standard deviations small. For instance, when an ini-
tial condition with the targeted dimensionless perturbation 
wave number k∗

R
= 0.4 is used, this fitting procedure selects 

unsteady simulation data within 3 ≲ t∕t0 ≲ 8 . At both limits, 
k∗
R
≃ 0.400002 and 0.400447, obtained with standard devi-

ations of 8.07344 × 10−5 and 1.11019 × 10−3 , respectively. 
Hence, wave number relative errors vary from 5 × 0.0005% 
to 1.1175 × 0.1% , providing strong evidence that the tar-
geted perturbation is indeed the one being amplified during 
linear growth. The dimensionless frequency and tempo-
ral growth rate during this period are �∗

R
≃ 0.300076 and 

�∗
I
≃ 0.0466667 , after minimizing their respective stand-

ard deviations to 7.62142 × 10−6 and 8.4249 × 10−6 . Their 

(34)y∕(2 �0) = a �
(
1 + b exp

[
−c ( � ± 1 )2

])
,

Fig. 6   Dimensionless density’s absolute error as a fraction of the per-
turbation amplitude versus the number of pseudo-time iterations per 
physical-time period generated with M = 10−5 at t∕t

0
= 1 (top) and 

25 (bottom)

Table 1   CPU time ratio of each scheme and the respective fastest one 
for each time evaluated in Fig. 6. Data taken at a 1% tolerance

t∕t
0
= 1 t∕t

0
= 25

PSDIRK2-SSS 1.00 1.53
PSDIRK3-SSS 1.46 1.22
PSDIRK4-SSS 1.76 1.00
PSDIRK3-AS 2.25 1.99
PBDF2-LS 2.89 4.41
PCN2-AS 4.16 6.57
PSDIRK4-AS 4.93 2.88
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relative errors are 2.53333 × 0.01% and 7.86504 × 0.1% , 
respectively. Even though the temporal growth rate error is 
larger than its frequency counterpart, as expected, both are 
relatively small and indicate a good agreement with LSA 
data.

5.2.3 � Validation of multi‑step and multi‑stage methods

The processes described in the previous two sections 
were repeated for k∗

R
= 0.1 , 0.2, … , 0.8 and 0.9. Frequen-

cies (left) and temporal growth rates (right) extracted from 
these simulations are compared to LSA data (solid lines) in 
Fig. 7. There is an excellent agreement for the frequency 
data whereas non-negligible but still relatively small dif-
ferences can be observed for the temporal growth rates. It 
is important to note that such a higher error for the growth 
rate, compared to its respective frequency, is observed even 
in the LSA calculations. These errors are sensitive to the 
spatial location chosen for the extraction of the temporal 
data points, but they always stay approximately within the 
minimum and maximum values presented in the legend 
of this figure. Nevertheless, temporal growth rate relative 
errors do appear to systematically increase with wave num-
ber, which is consistent with the dissipative error expected 
of biased upwind schemes such as the one employed for 
the present spatial discretization. Despite these issues, the 
present results are well within the accuracy bounds found in 
the cited literature and, hence, provide sufficient validation 
for the novel methodology applied to the planar mixing-
layer. Furthermore, all the other multi-step and multi-stage 
schemes tested provide similar results.

5.2.4 � Verification of second‑order methods

In order to present an accuracy-order verification in a con-
cise manner, only results for the k∗

R
= 0.4 case are discussed. 

As was done for the previous test case, errors are estimated 
using the numerical solution obtained with twice as many 
points per period. Figure 8 shows dimensionless frequency 
and temporal growth rate absolute errors, which are the real 
and imaginary parts of ��∕�0 , respectively, versus dimen-
sionless physical-time step for all four second-order-methods 
analyzed. It is important to note that this analysis is even 
more stringent than the one presented for the first test case in 
Figs. 2 and 4, since density is one of the simulated variables 
whereas frequency and growth rates are extracted after post-
processing the simulated cross stream velocity component 
variable. The numerical results presented in Fig. 8 show 
that all schemes do follow their theoretical second-order 
slope, at least approximately. This is true for both frequency 
and growth rate curves, although the former has a smaller 
error than the latter as expected. Furthermore, PCN2-AS 
and PIRK2-AS generate essentially identical results, which 

is another expected result. However, there are differences 
among these schemes. Arguably, PBDF2-LS results have 
a higher error whereas PSDIRK2-SSS results have a lower 
error. Once again, stronger linear numerical stability leads 
to lower errors in general. This is not true when compar-
ing PBDF2-LS with PCN2-AS, but this particular behavior 
is caused by the excessive dissipative error introduced by 
the former scheme with the latter one being non-dissipa-
tive. Such an excessive dissipative error also decreases the 
order of this scheme, whose slope is the furthest away from 
second-order among the schemes in Fig. 8. These results are 
consistent with the previous test case.

5.2.5 � Verification of higher‑order methods

A similar analysis is performed for the higher-order multi-
stage schemes and their results are shown in Fig. 9. Most 
curves in this figure are further away from straight lines than 
their counterparts in Fig. 8. These oscillations are likely 

Fig. 7   Frequency (top) and temporal growth rate (bottom) as func-
tions of wave number. Frequency relative errors in percentage values 
are 4.35798 × 10−1 , 7.46618 × 10−2 , 7.79251 × 10−1 , 2.52349 × 10−2 , 
4.99809 × 10−2 , 9.02838 × 10−2 , 1.30255 × 10−1 , 1.26476 × 10−1 and 
1.2845 × 10−1 , whereas temporal growth rate errors in percentage 
values are 8.62826, 3.27743 × 10−1 , 8.19625 × 10−2 , 8.04703 × 10−1 , 
1.91886, 3.03887, 4.45349, 7.04191 and 14.0822. Solid lines repre-
sent the results from linear stability analysis
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caused by the increased complexity of this 2D test case, 
which often leads to this behavior in high-order multi-stage 
schemes when compared to simpler flows such as the 1D 
test case [24]. One major difference is the fact that error 
measurements are not taken directly from the simulated data, 
but are instead based on frequencies and temporal growth 
rates calculated from the simulated data. When temporal 
accuracy-order is increased, error measurements decrease 
towards their respective minimal standard deviations found 
in the nonlinear fitting procedure ( ∼ O(10−5) ). This prob-
lem could be avoided by employing larger data samples, 
which would reduce the minimal standard deviations. How-
ever, this would require either the use of initial perturba-
tions with even smaller amplitudes or the simulation of lin-
earized equations instead. The former would increase much 
further the CPU time required for the present study whereas 
the latter is beyond the scope of the present study. Neither 
approach is necessary though, given the reasonable quali-
tative agreement between theoretical and numerical slopes 
observed in Fig. 9.

5.2.6 � Efficiency analysis

Finally, as was done for the one-dimensional test case in 
Fig. 6, an efficiency analysis for the two-dimensional test 
case is shown in Fig. 10. Once again, efficiency is defined as 
the total iteration count m̄ NT required to generate a solution 
for ��∕�0 with a prescribed tolerance, be it frequency or 
temporal growth rate, since the computer time per pseudo-
time iteration is essentially the same for all multi-step and 
multi-stage schemes studied here. In general, Fig. 10 for this 
two-dimensional test case indicates that higher-order and/or 
stronger numerical stability lead to more efficient methods. 
Although the same general statement was made based on 
Fig. 6, some important differences exist.

When focusing on frequency data, shown in Fig. 10 (left), 
PCN2-AS is the most efficient choice when errors higher 
than 3% can be tolerated. Otherwise, PSDIRK2-SSS is the 
optimal choice, but only when errors higher than 0.6% can be 
tolerated. If smaller errors are required, PSDIRK3-SSS is the 
best available choice among the schemes analyzed. Similar 
conclusions can be reached from temporal growth rate data 
as well, which is shown in Fig. 10 (right). PCN2-AS is still 
the most efficient choice, but only when tolerances higher 
than 9% are imposed. When smaller errors are required, 

Fig. 8   Dimensionless frequency and temporal growth rate absolute errors per dimensionless physical-time step for all second-order accurate 
schemes in physical-time. Dashed lines indicate theoretical orders



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:341

1 3

341  Page 16 of 19

PSDIRK2-SSS is the preferred choice within the range ana-
lyzed. Nevertheless, PCN2-AS takes a close second place for 
tolerances down to 0.5% , where it is replaced by PSDIRK3-
SSS when smaller tolerances are needed. A more quantita-
tive comparison amongst all schemes analyzed here can be 
performed by imposing a 1% tolerance. This is shown in 
Table 2 when applied to both the frequency and temporal 
growth rate data. In contrast with the one-dimensional test 

case results, PCN2-AS performs significantly better than its 
multi-step counterpart PBDF2-LS and PSDIRK4-SSS is not 
the most efficient scheme when imposing the smallest toler-
ances. The latter is likely due to the stronger error propaga-
tion caused by the combined effects of an additional spatial 
dimension and an additional intermediate stage equation. 
Nevertheless, multi-stage schemes with improved numeri-
cal stability and/or higher accuracy-order still outperform 

Fig. 9   Same as Fig. 8, but for third and fourth-order accurate schemes in physical-time

Fig. 10   Dimensionless frequency (left) and temporal growth rate (right) absolute errors versus the number of pseudo-time iterations per physi-
cal-time period for the conditions reported in Fig. 8
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the multi-step schemes whenever the required tolerances are 
small enough.

6 � Conclusions

Since its creation approximately thirty years ago, low 
Mach number preconditioned density-based methods have 
employed multi-step schemes for physical-time marching. In 
most cases, a second-order Backwards Differencing Scheme 
(BDF2) in employed, although a second-order Crank-
Nicholson (CN2) has been used as well. Both are uncondi-
tionally stable, but this preference for the former comes from 
its ability to reach zero gain in the infinite time step limit 
(L-stable) whereas the gain is only bounded in the same 
limit (A-stable) for the latter. All higher-order multi-step 
schemes are conditionally stable, which makes them unsuit-
able for problems with even a moderate level of stiffness.

In recent years, temporal integration in high Mach num-
ber compressible flow simulations has achieved higher 
accuracy orders and/or stronger numerical stability by 
using multi-stage schemes. The present paper shows that 
the same can be done for low Mach preconditioned density-
based methods. Furthermore, this is done using the same 
low Mach preconditioned dual-time-stepping procedure tra-
ditionally employed with multi-step schemes, but without 
introducing any additional approximations. This means that 
all low Mach preconditioning matrices and all low Mach 
preconditioned artificial dissipation schemes used for spatial 
resolution developed over the past three decades can now 
be used with multi-stage physical-time integration schemes, 
requiring no modifications or adjustments whatsoever. In 
doing so, the large field of research devoted to Runge–Kutta 
schemes is now open to low Mach preconditioned density-
based methods as well. One and two-dimensional test cases 
are simulated to demonstrate the capabilities of this novel 
approach.
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