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Abstract
The nonlinear dynamics of a sliding system with a harmonically modulated normal force and Coulomb friction in contact 
with a rigid plate is studied in this paper. The system is a simple two-DOF linear structure integrated with a geometrically 
nonlinear elastic attachment. Periodically modulated normal force, which is perpendicular to the in-plane modes, is exerted on 
the structure. Nonlinearities are introduced by the elastic attachment and friction forces. Consequently, the two-to-one modal 
interaction between the in-plane modes is imposed. The nonlinear response and bifurcation characteristics of the aforemen-
tioned system are computed using AUTO software. Comprehensive numerical simulations revealed that (a) when the normal 
force frequency is in the vicinity of the vertical natural frequency (or twice the horizontal natural frequency), horizontal 
response loses its stability (period-doubling bifurcation) after a certain normal force threshold, and (b) parameters such as 
in-plane angular misalignment and the plate constant velocity govern the occurrence of the subsequent Hopf bifurcations.

Keywords  Bifurcation characteristic · Geometric nonlinearity · Modal interaction · Sliding friction

1  Introduction

Friction-induced instability has been known as the root 
cause of undesired oscillations and noises in many engi-
neering applications such as pad/pin–disk coupling in 
automotive industry [1–4], machining processes [5–8] and 
wheel–rail interactions [9–11]. Numerous researches have 
been conducted experimentally and theoretically to study the 
response of the systems oscillating due to the frictional con-
tact; see [12–26] for further details. The common underlying 
mechanisms of friction generated instability in mechanical 
systems with various conditions have also been comprehen-
sively reviewed in [27–29].

Nonlinearity in systems with frictional interface can arise 
due to the different mechanisms such as inertial nonlinearity, 
geometric nonlinearity, material nonlinearity, contact stiff-
ness nonlinearity and nonlinearity due to the planar effects 

of friction [30–44]. Understanding the dynamics of oscilla-
tors with planar friction effects has been a canonical problem 
of interest for scientists over the past decades; see [45–47] 
and the references therein for further details. Using a ball-
on-plate-type sliding system, Oberst and Lai investigated 
nonlinear in-plane friction coupling in their system [48]. 
Furthermore, they showed that the variation of the plate 
angle can cause instabilities in the structure. Similar find-
ings about the role of the plate angle (also termed as the 
yaw angle misalignment (YAM)) on the motion stability of 
minimal models were reported in [49, 50].

Such structures may represent complex nonlinear phe-
nomena such as modal interactions under various designs, 
loads and environmental conditions [51–54]. This means 
the energy used to excite a primary mode may be channeled 
to another mode (secondary mode) by means of a nonlinear 
coupling between the modes with commensurate or nearly 
commensurate linear natural frequencies [55]. Nonethe-
less and to our knowledge, the precise role of parameters 
associated with the planar friction (i.e., friction coefficient, 
periodically modulated normal force, plate angle and plate 
velocity) on modal interactions has received less attention 
from nonlinear dynamics perspective [56–58]. Therefore, the 
present problem is introduced to address this scientific issue. 
The system is a simple two-DOF linear structure integrated 
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with a geometrically nonlinear elastic attachment [59]. Peri-
odically modulated normal force, which is perpendicular to 
the in-plane modes, is exerted on the structure. In essence, 
the addition of the external attachment and friction forces 
introduces nonlinearities in the structure while imposing 
the two-to-one internal resonance between the modes. The 
objective of this paper is to investigate the stability of the 
aforementioned system and conduct a comprehensive para-
metric study to understand the role of various parameters on 
the nonlinear response of the system.

This paper is structured as follows. In Sect. 2, physical 
realization and mathematical modeling of a nonlinear two-
DOF system in contact with the rigid plate are established. 
Then, nonlinear response and bifurcation characteristics 

of the aforementioned system are computed using AUTO 
software [60] in Sect. 3. A comprehensive parametric study 
is conducted to show the effect of the various parameters 
on the nonlinear response of the system in Sect. 4. Finally, 
Sect. 5 recapitulates the main findings of the paper.

2 � Description of the mechanical model

Inspired by [49, 59, 61], a minimal two-DOF model 
in contact with a sufficiently large rigid moving plate 
( Vd ) and under a periodically modulated normal force 
( N = Ns + Nd cos(2�ft) ) is considered, as sketched in Fig. 1. 
It must be noted that 0 < Nd < Ns (i.e., dynamic normal force 

(a) (b)

(d)(c)

Fig. 1   a A minimal two-DOF structure, ci = 4��imifi , and fi is the 
natural frequency of the structure without the external spring; b struc-
ture under the periodic normal force (perpendicular to the x-y plane) 
and in contact with the sliding rigid plate; c the deformed structure in 
contact with the sliding rigid plate; d side view of the model under 
the exerted normal force (N) and always in contact with the suffi-
ciently large sliding rigid plate. Note that the vertical and horizontal 
modes have almost the same natural frequencies ( f

1
≈ f

2
 ) without the 

external attachment. The external attachment and friction forces 
introduce nonlinearities [49, 59] and impose 2:1 internal resonance in 
the structure ( f

1a ≈ 2f
2
 ) . Note that x and y are the horizontal axis and 

the vertical axis, respectively. � is the angle of misalignment or plate 
angle, � is the angle of the relative velocity ( Vrel ) with respect to the x 
axis, Vd is the velocity of the rigid moving plate, and � is the angle of 
the deformed geometry. It can be understood that sin(𝜙) = Vd sin(𝛼)−ẏ

Vrel

 
and cos(𝜙) = Vd cos(𝛼)−ẋ

Vrel
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amplitude ( Nd ) is less than the static normal force ampli-
tude ( Ns)); thus, the structure is constrained to only oscil-
late in x-y plane. The Coulomb friction force ( Ff = � N  ) 
aligned with the relative velocity ( Vrel ) is assumed in this 
study. The external attachment ( kext = 1000 N∕m ) with 
an initial length (L) and the planar friction force impose 
a two-to-one ratio between the vertical ( f

1a ) and the hori-
zontal ( f

2
 ) natural frequencies of the structure, f

1a ≈ 2f
2
 . 

In this study, frequency range of investigation (f) for the 
normal force is around the vicinity of the vertical mode. 
The linear modal parameters of the structure (damping ratio 
coefficient(�) , stiffness(k), natural frequency ( fn )) without 
the addition of the external attachment are assumed as 
k
1
= 317.98 N/m, �

1
= 0.006, f

1
= 6.12 Hz, k

2
= 362.58 N/m,

�
2
= 0.0057, f

2
= 6.59 Hz . Indices one and two denote the 

vertical and the horizontal directions, respectively. After the 
attachment of the external spring to the structure, the verti-
cal linear natural frequency becomes f

1a = 12.46 Hz (i.e., 
approximately twice the horizontal natural frequency). Note 
that these values were chosen as representative examples 
without loss of generality of the problem.

Linear modal stiffness and linear modal damping cause 
the linear restoring/dissipative forces ( flx, fly ). As shown in 
Fig.  1, the external elastic attachment imposes length-
dependent nonlinear restoring forces ( fNlx, fNly ) in the 
deformed configuration due to its length variation ( �L ). 
Considering the angle of deformed geometry ( � ) and the 
angle of the relative velocity with respect to the x axis ( � ), 
the restoring, dissipative and friction forces ( ffx, ffy ) are math-
ematically expressed as:

where

Having defined the forces applied to the structure, the gov-
erning equations of motion are written based on the New-
ton’s law of motion as:

(1)
fly = k

1
y + c

1
ẏ, fNly

= kext(
√

(L + y)2 + x2 − L) sin 𝜃, ffy = Ff sin𝜙

(2)
flx = k

2
x + c

2
ẋ, fNlx

= kext(
√

(L + y)2 + x2 − L) cos 𝜃, ffx = Ff cos𝜙

(3)

sin 𝜃 =
L + y

√

(L + y)2 + x2
, cos 𝜃 =

x
√

(L + y)2 + x2

sin𝜙 =
Vd sin(𝛼) − ẏ

Vrel

, cos(𝜙) =
Vd cos(𝛼) − ẋ

Vrel

(4)m
1
ÿ + fly + fNly = ffy

(5)m
2
ẍ + flx + fNlx = ffx

Finally, the governing differential equations (DEs) of such 
model are expressed as:

where ỹ = y∕L  (dimensionless ver tical displace-
ment), x̃ = x∕L (dimensionless horizontal displace-
ment), �i =

√

ki∕mi, �i = ci∕(2�imi) ; ci and mi, i = 1, 2 
are the damping coefficients and masses, respectively; 
Ff = � (Ns + Nd cos(2�ft)) , t is time; and � is the Coulomb 
friction coefficient.

Equations (6) and (7) are solved numerically for zero ini-
tial conditions and then the bifurcation characteristics of the 
system is studied using AUTO software. Considering 
Vrel =

√

(V2

d
+ (ẋ2 + ẏ2) − 2Vd (ẋ cos 𝛼 + ẏ sin 𝛼)) , velocity-

dependent friction models [18] could also be assumed to 
study the stick–slip response of the system. This issue will 
be investigated in the future studies. This paper considers 
the effect of modal interaction in the regions where stick-slip 
behavior does not exist (i.e., relatively large values for Vd)
[49]. Therefore, it is reasonable to consider Coulomb fric-
tion model in the aforementioned structure.     

3 � Numerical bifurcation analysis

AUTO can be used to study the bifurcation characteris-
tics of the dynamical systems with a periodic force. In that 
regard, the first step is to rescale time as t → t∕T  and write 
the equations of motion in the state space with displace-
ments and velocities as the state variables. Note that T is the 
period of the solution. Then, the non-autonomous system 
should be converted to the autonomous one by either of two 
methods: (i) time is introduced as a new added state and (ii) 
the harmonic forcing term is replaced by an autonomous 
dynamical system with a stable periodic orbit. The latter is 
used to calculate the bifurcation diagrams; see Chapter 7 in 
[62] for further details. Force–response curves [51] (Figs. 2a 
and   b) are calculated by fixing the normal force excitation 
frequency (f) and increasing the dynamic part of the nor-
mal force excitation amplitude ( Nd ). Given a fixed nonzero 
number for the static part of the normal force ( Ns ), when 
the Nd has a certain amplitude with a frequency close to 
the twice the horizontal natural frequency ( f ≈ 2f

2
 ), hori-

zontal response loses its stability, period-doubling (PD) 

(6)

̈̃y + 2𝜁
1
𝜔
1
̇̃y + 𝜔2

1
ỹ

+
kext(1 + ỹ)

m
1

(1 −
1

√

(1 + ỹ)2 + x̃2
) =

Ff

m
1
L
sin𝜙

(7)

̈̃x + 2𝜁
2
𝜔
2
̇̃x + 𝜔2

2
x̃

+
kextx̃

m
2

(1 −
1

√

(1 + ỹ)2 + x̃2
) =

Ff

m
2
L
cos𝜙
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bifurcation, leading to the formation of a periodic limit cycle 
with a frequency of f

2
 (Fig. 2c–f). The criticality (sub-critical 

vs super-critical) of the PD bifurcation is controlled by f 
for a constant set of parameters as shown in Fig. 2. Further 
increase in the excitation amplitude ( Nd ) may lead to an 
amplitude–phase-modulated response in the structure. The 
occurrence of the Hopf bifurcation is also governed by the 
parameters such as in-plane angular misalignment ( � ) and 
the plate constant velocity ( Vd ). This will be investigated 
comprehensively in the next section.

Frequency–response curves show the effect of normal 
force excitation frequency (f) while the dynamic normal 
force amplitude ( Nd ) remains constant. Internal resonance 
property is manifest through the frequency splitting of the 
vertical response in Fig. 3a [51]. Moreover, it is observed 
that there is an interval (bandwidth) for the normal force fre-
quency over which the horizontal mode is activated by show-
ing a softening behavior in Fig. 3b. The width of the interval 
depends on Nd . It is understood that increasing Nd provides 
a wider bandwidth for the horizontal mode activation. Fur-
thermore, frequency–response curves show the existence of 

Hopf bifurcation, which causes an amplitude–phase-mod-
ulated response, for a range of normal force frequencies in 
Fig. 3. In fact, the 2:1 internal resonance between the in-
plane modes are superficially similar to Froude oscillations 
of a ship and other previously reported mechanical structures 
in the literature [51, 52].

To conclude this section, the horizontal mode activation 
occurs because of the presence of 2:1 internal resonance (2:1 
ratio between the natural frequencies) and friction forces 
with a time-periodic normal force with an excitation fre-
quency close to the twice the horizontal natural frequency.

4 � Parametric study

This section examines the role of the dynamic normal force 
amplitude ( Nd ), static normal force amplitude ( Ns ), in-plane 
angular misalignment or YAM ( � ), friction coefficient ( � ) 
and the plate velocity ( Vd ). While the two-to-one internal 
resonance property is retained, this parametric study dem-
onstrates practical ways to alter the required threshold for 

Fig. 2   a Auto-calculated 
force–response curves with 
f = 12.5 Hz and f = 12.2 Hz 
for the dimensionless verti-
cal displacement ( ̃y = y

L
 ). The 

dashed lines represent the unsta-
ble motion due to the denoted 
bifurcations; b force–response 
curves with f = 12.5 Hz and 
f = 12.2 Hz for the dimension-
less horizontal displacement 
( ̃x = x

L
 ); c fast Fourier transform 

(FFT) of ỹ for f = 12.2 Hz and 
Nd = 0.05 N;d FFT of x̃ for 
f = 12.2 Hz and Nd = 0.05 N

;e FFT of ỹ for f = 12.2 Hz and 
Nd = 0.15 N ; f FFT of x̃ for 
f = 12.2 Hz and Nd = 0.15 N . 
L is 5 mm in all the above simu-
lations. Parameters are � =

�

3
 , 

Vd = 0.6 m/s , Ns = 1 N , � = 0.5

(a) (b)

(d)(c)

(e) (f)
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the PD bifurcation and the elimination of the subsequent 
Hopf bifurcation in the structure response. As discussed 
earlier, there is a threshold for Nd above which the hori-
zontal mode is activated . While other parameters remain 
the same, force–response curves for different values of the 
plate velocity ( Vd ) are shown in Fig. 4. It is understood that 
increasing Vd leads to a lower required threshold ( Nd ) for the 
(super-critical) PD bifurcation. Furthermore, lower values 
of Vd eliminate the occurrence of the Hopf bifurcation in 
the system response. Figure 5 depicts the effect of the static 

normal force ( Ns ) while the other parameters are the same. It 
can be seen that the lower values of Ns reduce the thresholds 
for the PD bifurcation and the subsequent Hopf bifurcation 
alongside reducing the vibration level of the structure. It can 
be seen that the required threshold for the PD bifurcation and 
the subsequent Hopf bifurcation grows by decreasing the 
value of the friction coefficient ( � ) while other parameters 
are unchanged (Fig. 6). force–response curves for different 
values of the plate angle ( � ) are illustrated in Fig. 7. It can 
be seen that the in-plane angular misalignment alters the 

(a) (b)

Fig. 3   a Auto-calculated vertical frequency responses; b horizon-
tal frequency responses; the dashed lines and dotted lines denote the 
unstable solutions due to the saddle-node bifurcation and Hopf bifur-
cation, respectively. Response is not periodic after the occurrence of 

the Hopf bifurcation (amplitude–phase-modulated response). Note 
that frequency response curves are calculated by fixing Nd and sweep-
ing f (the horizontal axis). Note that L is 5 mm , � =

�

3
 , Vd = 0.6 m/s , 

Ns = 1 N , � = 0.5

Fig. 4   Vd effects on a 
force–response curves with 
f = 12.5 Hz and for the dimen-
sionless vertical displacement 
( ̃y = y

L
 ) and b force–response 

curves with f = 12.5 Hz and 
for the dimensionless horizontal 
displacement ( ̃x = x

L
 ). Other 

parameters are � =
�

3
 , � = 0.5 , 

Ns = 1 N , L = 5 mm

(a) (b)

Fig. 5   Ns effects on a 
force–response curves with 
f = 12.5 Hz and for the dimen-
sionless vertical displacement 
( ̃y = y

L
 ) and b force–response 

curves with f = 12.5 Hz and 
for the dimensionless horizontal 
displacement ( ̃x = x

L
 ). Other 

parameters are � =
�

3
 , � = 0.5 , 

Vd = 1 m/s , L = 5 mm

(a) (b)
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required threshold of PD bifurcation. Furthermore, the Hopf 
bifurcation can be eliminated due to the YAM angle ( � ). 
Similar to the earlier works [49], It can be understood that 
the YAM angle, the rigid plate velocity and the friction coef-
ficient provide a damping effect to reduce the vibration level 
of the structure. This parametric study showed a trade-off 
between the vibration level of the structure and the occur-
rence of the potential bifurcations.

To sum up, the parameters such as in-plane angular mis-
alignment ( � ), friction coefficient ( � ) and initial plate veloc-
ity ( Vd ) act as threshold force tuning parameters. These find-
ings can be useful for design improvement of the vibration 
mitigation structures and problems which involve frictional 
contacts such as disc brake squeal [27, 49].

5 � Conclusions

The nonlinear dynamics of a two-DOF internally resonant 
sliding system in contact with a rigid plate is investigated in 
this work. The structure, subjected to a harmonic normal load, 
shows period-doubling (PD) and Hopf bifurcations when the 
dynamic normal force amplitude is increased at a frequency 
close to the twice the horizontal natural frequency. Compre-
hensive numerical calculations reveal that (a) the required 
threshold for the occurrence of the PD bifurcation can be 

altered by the system parameters and (b) Hopf bifurcation can 
be eliminated by properly choosing the plate angle and plate 
velocity. These can be attributed to the fact that the total damp-
ing of the structure can be altered by the generated friction 
forces due to the different configurations for the rigid plate. 
The results presented in this work may provide some insights 
in the design improvement of the current vibration mitiga-
tion structures and systems with frictional contacts such as 
pad–brake coupling in automotive industries.

The future plan of this work is to build a test rig of the 
model presented in this study. Furthermore, the practicality 
of tuning the nonlinearities by changing the parameters such 
as in-plane angular misalignment, friction coefficient and 
plate velocity will be studied experimentally. Exploring the 
dynamics of the system in the regions where stick–slip behav-
ior occurs under certain conditions will also be discussed in 
future works.
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Fig. 6   � effects on a 
force–response curves with 
f = 12.5 Hz and for the dimen-
sionless vertical displacement 
( ̃y = y

L
 ) and b force–response 

curves with f = 12.5 Hz and 
for the dimensionless horizontal 
displacement ( ̃x = x

L
 ). Other 

parameters are � =
�

3
 , Ns = 1 N , 

Vd = 1 m/s , L = 5 mm

(a) (b)

Fig. 7   � effects on a 
force–response curves with 
f = 12.5 Hz and for the dimen-
sionless vertical displacement 
( ̃y = y

L
 ) and b force–response 

curves with f = 12.5 Hz and 
for the dimensionless horizontal 
displacement ( ̃x = x

L
 ). Other 

parameters are Ns = 1 N , 
� = 0.5 , Vd = 1 m/s , L = 5 mm

(a) (b)
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