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Abstract
A battery has normally a high energy density with low power density, while an ultracapacitor has a high power density but 
a low energy density. Therefore, this paper has been proposed to associate more than one storage technology generating a 
hybrid energy storage system (HESS), which has battery and ultracapacitor, whose objective is to improve the electric vehicle 
(EV) driving range. The HESS parameters have been evaluated in a configuration of EV powered by two in-wheel electric 
motors, coupled straight into the front wheels, and by a unique EM, connected to a differential transmission to drive the rear 
wheels. Moreover, this paper considers a real-world drive cycle based on the urban driving behavior of Campinas city, one 
of the most populous cities in Brazil. Aiming to minimize the HESS size and enhance the EV driving range, an optimization 
problem was formulated and solved using a genetic algorithm technique, in which the EV drivetrain parameters and HESS 
components and control are optimized. Finally, the obtained Pareto frontier defines the optimum EV configurations, in which 
the best-selected configurations were able to perform up to 188 km with a 418 kg HESS (maximum drive range solution), or 
82.75 km with a 146.58 kg HESS (minimum HESS solution) and 319 km with a 188.43 kg HESS (best trade-off solution), 
without presenting performance losses.

Keywords  Electric vehicle (EV) · Hybrid energy storage system (HESS) · Genetic algorithm optimization · Real-world 
driving cycle

1  Introduction

The development of electric vehicles (EVs) is a challenge 
for the automotive industry to face limited fossil fuel sources 
and environmental issues [1–3], of which a major parcel is 
generated by vehicles propelled by combustion engines [2, 
4, 5]. The main characteristics of EVs are no fuel consump-
tion, little noise and good energy efficiency, which makes 
the EVs the best alternative to reach zero-pollution mobility 

in the future [6]. However, this kind of vehicles needs to 
attempt some characteristic as low energy consumption, a 
good range and acceptable driving performance to become 
competitive in the market [7]. To achieve these goals, the 
biggest limitation is related to the energy storage systems 
(ESS), which have a great impact on vehicle range, energy 
consumption, weight and cost of these vehicles [1].

Batteries are considered a vital component due to its 
influence on vehicle acceleration and autonomy on a single 
charge [8]. Although, batteries have drawbacks such as low-
power density, compared with other energy storage devices, 
a high cost and a lower lifetime. Several types of researches 
have been made to overcome some of these limitations. Bat-
teries cost, energy density, and especially lifetime are deci-
sive for the EV market [9]. The combination of batteries 
with other storage devices could be relevant to obtain better 
performance [10]. Therefore, hybrid energy storage systems 
(HESSs) can be developed by combining batteries, ultraca-
pacitors, flywheel and/or hydrogen cell [11, 12].
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The most common types of HESS are composed of 
batteries and ultracapacitors [10], seeking to combine the 
advantages from different power sources [13]. The high-
energy-density of batteries provides vehicle autonomy and 
supports slow transients. In the meantime, the high-power 
density of the ultracapacitors can help the batteries to pro-
long their lifetime, which is susceptible to high-duty fluc-
tuated currents [14] and also can recover energy from the 
regenerative braking. Moreover, the battery/ultracapacitors 
HESS enables battery size reduction, decreasing its cost, 
and also enhancing its power management. In EVs applica-
tions, it is not possible for the system to be powered only by 
ultracapacitors because the energy density is low and the 
price of an ultracapacitors bank is high [15].

Notwithstanding, the HESS practical performance is sig-
nificantly influenced by its complex sizing and the power 
management strategy [16]. The HESS sizing challenge is 
to find the appropriate combination of ultracapacitor banks 
and battery cells to minimize costs and mass of the HESS 
and also maximize the battery’s expected life cycle. Some 
studies have been done into optimal HESS sizing [17–20]. In 
most cases, the optimization constraints are transient power 
requirements, whereas cost, system efficiency, or fuel econ-
omy are usually selected as optimization objectives [21].

In power management control (PMC), rule-based strat-
egies and optimization-based approaches are widely used 
[22, 23]. The first is normally created according to the engi-
neering experience, heuristics, intuition, or mathematical 
models [16]. The second approach is classified as real-time 
and global optimizations. This last is composed for the neu-
ral network [24], dynamic programming [25, 26], convex 
programming [27], and other multi-objective optimization 
[6, 17, 28].

Most of the papers presented in the literature study the 
sizing and power management challenges separately [29], 
however, with this approach, only sub-optimal solutions 
are obtained [16]. Therefore, it is not possible to obtain the 
global optimal performance once the design and control 
problems of a HESS are coupled in practice [30]. In this 
way, this work will investigate the sizing, and the power 
management of the HESS, which will be also used as design 
variables to be optimized.

Regarding the vehicle topology, Shi et  al. [31] and 
Liu et al. [32] highlighted the advantages of distributed elec-
tric propelling systems, with multiple actuators, concerning 
vehicle stability performance. Moreover, Othaganont et al. 
[7] optimized the drivetrain configurations considering four 
different EMs distribution; single EM assemble to a final 
drive system at the frontal wheels; two in-wheel EMs con-
nected directly to the frontal wheels; and the replication 
of these previously described typologies coupled to both, 
frontal and rear propelling systems. Holjevac et al. [6] also 
showed the EMs associated with differential transmission 

assembled to the frontal and rear axles. Furthermore, Eck-
ert et al. [19] and Li et al. [33] studied improved EMs and 
HESS configurations for the four in-wheel drive EV. Beyond 
that, Corrêa et al. [34] and Eckert et al. [20, 35] also stud-
ied some of the listed configurations and added two extra 
alternatives that mixed the in-wheel and differential EMs 
assembly (Fig. 1), resulting in a better trade-off between bat-
tery size and driving range. However, all the mentioned EV 
configurations were analyzed only when submitted to stand-
ard driving cycles as the NEDC, WLTP, FTP-75, HWFET, 
and US06.

As mentioned before, previous studies used standard driv-
ing cycles that may generate solutions that are not optimal 
when applied to real driving conditions. On the other hand, 
the urban driving cycles are more complex, due to the fre-
quent vehicle acceleration followed by deceleration [33], 
and are directly associated with the vehicle energy econ-
omy [36]. Therefore, this paper focuses on reaching an EV 
optimized for a real urban driving scenario, by simulating 
an experimentally obtained driving cycle of Campinas [37], 
one of the most populous cities of São Paulo State - Brazil. 
In addition, this cycle considers the road altimetry, a very 
important feature that influences the downhill regenerative 
braking and the uphill requested EMs traction power, fre-
quently not considered in driving cycle standards.

The EV configuration used in this work is powered by an 
EM connected to a differential transmission system, which 
drives the rear wheels, and by two in-wheel electric motors 
(EMs) coupled directly to the front wheels, as shown in 
Fig. 1. The split of the power demand between the drive 
systems and the control of the power source which fulfills 
the EMs is done by the HESS power management con-
trol (PMC). The HESS analyzed considers a battery pack 
associated with an ultracapacitor.

In this way, the main purpose of this work is to opti-
mize the mentioned EV configuration (Fig. 1) drivetrain 
and HESS size, by means of a bi-criteria optimization prob-
lem that minimizes the total mass of the HESS (battery + 
capacitors) and maximizes the EV driving range, under a 
real urban driving cycle. Thereby, a genetic algorithm (GA) 
was used considering the following design variables: battery 

HESS
PMCDifferential

Inverter
EM

Inverter
EM

EM

Battery Pack

Ultracapacitors

Inverter

Fig. 1   Electric vehicle configuration
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voltage, battery capacity, ultracapacitors model, ultracapaci-
tors arrangement, EMs torque curves, differential transmis-
sion ratio, and the power split (between the HESS battery 
and capacitors) control parameter. The robust rule-based 
PMC was applied [35] to find the best efficiency trade-off 
between the propelling systems while minimizes the HESS 
discharges.

Finally, the Pareto frontier of non-dominated solutions 
defines the optimum EV configurations, in which the mini-
mum HESS mass and the maximum drive range configura-
tions were analyzed, in the same way as the solution that 
presents the best trade-off regarding the optimized criteria.

2 � Simulation parameters

The analysis made considers the vehicle longitudinal dynam-
ics modeled by the movement resistance forces, using the 
equations presented by Gillespie [38], associated with the 
maximum transmissible traction force [39], initially imple-
mented to conventional vehicles [40, 41], and adapted to be 
applied on an EV in the current work.

One of the major movement resistance forces, mainly at 
low speed, is the rolling resistance ( Rx ) [N], caused by the 
tire deformation and adhesion on the contact area. It is a 
function of the vehicle speed (V) [m/s], mass (M) [kg], grav-
ity acceleration (g) [m/s2 ] and road angle ( � ) [rad], described 
by Eq. (1).

Another load is the air resistance, represented by the aer-
odynamic drag ( DA ) [N]. It is determined by Eq. (2) and 
depends on the air density  (� ) [kg/m3 ], on the vehicle 
speed (V) [m/s] and on the vehicle geometry (drag coef-
ficient (CD ) and frontal area (A) [m2]).

The total requested torque ( Treq ) [Nm] is based on the move-
ment resistance forces ( Rx and DA ), on the tire external 
radius (r) [m] and on the vehicle required acceleration (areq
) [m/s2 ], as shown in Eq. (3).

As seen previously in Fig. 1, there are two different pro-
pelling systems at the wheels and their inertias need to be 
considered. Firstly, the inertia of the in-wheel EMs is added 
to the inertia of the frontal wheels (Iwf) [kgm2 ], once the EM 
is directly connected without any transmission system. Sec-
ondly, at the rear propelling system, the inertia of the motor 

(1)Rx = 0.01
(
1 +

2.24 V

100

)
Mg cos �

(2)DA =
1

2
�V2CD A

(3)Treq =
(
M(areq + g sin �) + Rx + DA

)
r

is added to the inertia of the differential (Id ) [kgm2 ], once it 
is connected to a differential and its transmission ratio (Nd).

For the first case, the requested torque ( Treq ) defined by 
Eq. (3) is divided by the PMC between the propelling systems, 
frontal and rear. The frontal torque required TreqF [Nm] is split 
to each one of the two EMs ( TEMF ) and the frontal wheels’ 
inertia with the coupled motors (Iwf) [kgm2 ] is also considered, 
as determined by Eq. (4).

For the second case, the rear EM torque (TEMR) [Nm], as 
shown in Eq. (5), is defined as a function of the required 
torque TreqR [Nm] and the inertias divided by the effi-
ciency (�d ) and by the differential transmission ratio (Nd ). 
The inertia terms in Eq. (5) include the differential with its 
coupled EM in Id and the two rear wheels inertia Iwr [kgm2].

However, the motors required torques ( TEMF and TEMR ) are 
limited by the available EMs propelling torques and also by 
transmissible torque limit on the tire-ground contact [42, 
43]. The TAF [Nm] and TAR [Nm] (maximum EM available 
torques) are determined by the maximum torque curves 
according to the motors’ speed, as seen in the electric motors 
model section. The other limiter is the maximum transmis-
sible torque TR(max) or TF(max) defined in Eqs. (6) and (7), as 
explained by Jazar [39]. Therefore, the PMC has to prevent 
traction limit excesses in the propel systems requiring less 
torque than the indicated limits.

In Eqs. (6 and 7), � is the friction coefficient on the tire-
ground contact. Moreover, the vehicle acceleration is consid-
ered equal to the required acceleration as an initial approxi-
mation ( ax = areq ). Geometrical parameters were also used, 
such as the vehicle wheelbase (L) [m], gravity center height 
(h), [m] and its longitudinal distance between the vehicle 
rear (c) [m] and frontal (b) [m] axes.

Whether the requested motor torques TEMF and/or TEMR 
exceed the mentioned limits, the performance will be bounded 
by the lower torque value of each driving system. The traction 
front TF (Nm) and rear TR (Nm) torques to propel the vehicle 
are shown in Eqs. (8 and 9).

(4)TEMF =
TreqF + Iwf

areq

r

2

(5)TEMR =
TreqR +

(
IdN

2
d
+ Iwr

) areq

r

Nd�d

(6)TR(max) =�

(
Mg cos � b + h sin � +Mh ax

2L

)
r

(7)TF(max) =�

(
Mg cos � c − h sin � −Mh ax

2L

)
r
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According to the second Newton’s law, resultant accelera-
tion is a relation between the sum of the forces and the mass 
in the movement, in this case, the vehicle mass. Thus, the 
resultant vehicle acceleration ax [m/s2 ] is defined as indi-
cated by Eq. (10).

The maximum transmissible torques presented in 
Eqs.  (6  and  7) change with the resultant acceleration 
value ax , featuring an iterative process from Eq. (7, 8, 9 
and 10). This process is performed until the ax conver-
gence. Once the real acceleration is known, the vehicle 
speed V [m/s] is obtained integrating the ax value, finish-
ing the simulation loop. The vehicle parameters used in the 
simulation are shown in Table 1.

Since the values of traction and acceleration have con-
verged, the effective frontal and rear EMs torques ( TFef [Nm] 
and TRef  [Nm]) are calculated by Eqs. (11 and 12).

(8)TF =min

⎧
⎪⎪⎨⎪⎪⎩

2TEMF − Iwf
ax

r

2TAF − Iwf
ax

r

TF(max)

(9)TR =min

⎧
⎪⎪⎨⎪⎪⎩

TEMRNd�d −
�
IdN

2
d
+ Iwr

� ax

r

TARNd�d −
�
IdN

2
d
+ Iwr

� ax

r

TR(max)

(10)ax =

TF+TR

r
− DA − Rx −Mg sin(�)

M

2.1 � Electric motors model

The optimization defines the EMs speed and torque values as 
parameters. Figure 2 presents a generic torque curve and effi-
ciency map, based on the studies of Eckert et al. [19, 20, 35]. 
This approach is a simplified way to find optimum configura-
tions for the EMs, once a theoretical torque curve is generated 
and the efficiency map is interpolated according to it. This 
enables a significant reduction in the computational cost of 
the model.

There are four main points in Fig. 2. The first one is when 
the EM torque is maximum (Tmax) [Nm] at null speed, repre-
senting the startup torque. The second one is the torque con-
stant phase, with the same Tmax value of the previous point, 
and its respective speed (�Tc) [rad/s]. Tong [45] shows that 
the best operating point of the EM happens between 0.1Tmax 
and 0.3Tmax at the constant power regime. Therefore, the third 
point TPc  [Nm] is determined as the recommended upper 
limit (30% Tmax ) [8, 20], in Eq. (13). Knowing the EM power 
is constant, speed values  �Pc [rad/s] are defined according to 
Eq. (14).

(11)TFef =
TF + Iwf

ax

r

2

(12)TRef =
TR +

(
IdN

2
d
+ Iwr

) ax

r

Nd�d

(13)TPc = 0.3Tmax

Table 1   Simulated vehicle parameters [35, 44]

Vehicle mass without HESS ( Mwh) 800 kg

Tires 175/70 R13 radius (r) 0.2876 m
Wheels + tires inertia ( Iw) 2 kgm2

Tire peak friction coefficient ( �) 0.9
Vehicle frontal area (A) 1.8 m 2

Drag coefficient ( CD) 0.33
Differential transmission ratio ( Nd) 4.87
Differential inertia ( Id) 9.22E-04 kgm2

Differential efficiency ( �
td

) 0.9
Wheelbase (L) 2.443 m
Gravity center height (h) 0.53 m
Front axle to gravity center (b) 0.983 m
Rear axle to gravity center (c) 1.460 m
5 kW EM inertia 0.1 kgm2

12 kW EM inertia 0.2 kgm2

30 kW EM inertia 0.3 kgm2

Motor speed [rad/s]

T
or

qu
e 

[N
m

]

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Fig. 2   Electric motor efficiency map [19, 35]
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The last important point is defined as the zero torque and the 
EM maximum speed (�max rad/s) and it is calculated using 
a linear extrapolation based on the previous points, ( Tmax , 
�Tc ) and ( TPc, �Pc).

Lastly, based on the interpolation of the points ( Tmax , �Tc ) 
and ( TPc , �Pc ), the curves that determine the available tor-
ques ( TAF and TAR ) are defined. Once the torque curves are 
defined, the respective EM efficiency maps (�EMF and �EMR ) 
are obtained. Moreover, the EMs inertias are interpolated 
based on the values presented in Table 1.

After the definitions of motors efficiencies ( �EMF and 
�EMR ) and their respective inverse efficiencies ( �invF and 
�invR ), according to Table 2, the total electrical current con-
sumption I [A] of the vehicle is determined as shown in 
Eq. (15). Beyond efficiencies, it is a function of the HESS 
voltage VHESS (V), of the current EM speed �EM (rad/s), and 
of the EM effective torques TFef and TRef.

Over than providing power during accelerations, the EMs 
can retrieve part of the kinetic energy during the braking, 
acting as generators [47] to recharge the HESS ultracapaci-
tors. This braking energy recovery represents an effective 
approach to increase the EV driving range [48]. In this study, 
the regenerative braking capacity is bounded to 10% of its 
maximum torque [19]. Whenever the required torque to 
brake exceeds this limit, the residual one is supplied by the 
vehicle’s frictional brake system [49].

2.2 � Ultracapacitor and battery models

The PMC divides the current I (A) between the HESS power 
sources (as seen in Eq. (15)), in this case, a battery pack and 
an ultracapacitor.

One of the main objectives of this study is to find out 
the optimum battery size for the EV HESS, therefore, a 
simplified method is applied to estimate the battery mass 

(14)�Pc =
Tmax�Tc

TPc

(15)I =
2TFefV

r VHESS �EMF �invF
+

TRefVNd

r VHESS �EMR �invR

Mbat (kg) as seen in Eq. (16). Once the capacity Bc (Ah) 
and the battery voltage Vbat [V] will be determined by the 
optimization algorithm (see Sect. 4), the Mbat is defined by 
lithium-ion specific energy SE . The battery considered is a 
lithium-ion model (Simulink™database).

In this paper, it is assumed the state-of-the-art lithium-ion 
batteries, considering SE = 150 (Wh/kg) specific energy [50, 
51]. This SE value was also reported as typical for EV batter-
ies [52, 53]. It is important to highlight that this simplified 
approach is used only to define the optimum battery capac-
ity Bc and voltage Vbat by simulations. Once the optimum 
parameters were defined, it is necessary to design or to find 
out a commercial battery that these required parameters are 
able to be applied in the real HESS.

Knowing the specific battery power Pmax (300 [W/kg]  
for lithium-ion batteries), the mass Mbat and the volt-
age Vbat values, the maximum discharge current Imax (A) 
of the battery is determined as indicated by Eq. (17).

Another source is the ultracapacitor Cap . The ultracapacitors 
model can be simplified as ideal capacitors Cuc in series with 
their respective internal resistances Ruc where the parallel 
resistance was neglected as presented by Zhang and Mi [54]. 
The parameters used for the ultracapacitor simulations are 
presented in Table 3.

(16)Mbat =
VbatBc

SE

(17)Imax =
PmaxMbat

Vbat

Table 2   Inverter efficiency map [35, 46]

�EM

TEM 0.1�Pc 0.3�Pc 0.5�Pc 0.7�
Pc

�
Pc

0 0.65 0.84 0.9 0.84 0.83
0.11Tmax 0.74 0.89 0.94 0.91 0.91
0.33Tmax 0.82 0.93 0.96 0.96 0.96
0.56Tmax 0.83 0.94 0.97 0.97 0.97
Tmax 0.83 0.94 0.97 0.97 0.97

Table 3   Ultracapacitor parameters [19, 20]

Cap(n) Vuc(n) [V] Cuc(n) [F] Ruc(n) [ �] Muc(n) [kg]

Cap(1) 16 108 3.6E-03 3.0
Cap(2) 108 4.3E-03 3.7
Cap(3) 200 3.5E-03 4.1
Cap(4) 266 3.0E-03 4.6
Cap(5) 333 2.4E-03 5.1
Cap(6) 500 1.9E-03 6.0
Cap(7) 48 36 13E-03 9.5
Cap(8) 66 10.4E-03 11.5
Cap(9) 88 8.9E-03 12.5
Cap(10) 111 7.1E-03 13.5
Cap(11) 166 5.6E-03 16.0
Cap(12) 64 83 9.5E-03 17.0
Cap(13) 125 7.5E-03 20.0
Cap(14) 86 62 12.7E-03 21.0
Cap(15) 93 10E-03 26.0
Cap(16) 125 62 15E-03 67.0



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:259

1 3

259  Page 6 of 15

Capacitors connected in parallel in the HESS present 
no vantage when compared to those connected in series, 
as asserted by prior works [19, 55]. Thus, the bank of ult-
racapacitors considered has only series arrangements and 
demand Ns units, quantified in Eq. (18).

Once defined the quantity Ns , the total mass of the capaci-
tors Mcap (kg) is worked out by Eq. (19).

Similar to the work of Ravey et al. [56], the previously cal-
culated masses of the battery Mbat and the ultracapacitors 
Mcap are added to the EV mass without the HESS Mwh (kg) 
(seen Table 1) to define the total vehicle mass M as shown 
in Eq. 20.

According to Yang et al. [57] and Prochazka et al. [58], deep 
discharging and over-charging of the Li-ion cells must be 
avoided to ensure sufficient lifetime. Therefore, to avoid 
damages provoked by the whole battery discharge, the power 
source charge condition SoC is limited by the vehicle PMC 
to 40% [34, 59]. For the same reasons, the capacitors dis-
charge also is limited by the PMC [60].

(18)Ns =
Vbat

Vuc(n)

(19)Mcap = NsMuc(n)

(20)M = Mwh +Mbat +Mcap

2.3 � Power management control model

The PMC controls the power using a rule-based strategy and 
considering the EMs/inverters efficiency in its algorithm. It 
uses a discretization loop to evaluate all possible propelling 
arrangements among the available drive systems and to dis-
tribute the EMs (frontal and rear) requested torque Treq , as 
shown in Eqs. (4 and 5). It is important to highlight it may 
exist some cases where the use of only one drive system is 
better than a combination of both.

This control splits the EV power demand in such a way 
that the battery supplied continuous power and the super-
capacitor quickly compensates the instantaneous demands, 
acting as power buffers [61–63]. With all these features, 
the PMC keeps the EV working while it generates fewer 
HESS discharges, which is the best global efficiency among 
the EMs and its inverters. The PMC algorithm is shown in 
Fig. 3.

In order to avoid poor acceleration caused by excessive 
tire slipping, this control also considers the tire ground trac-
tion limit, according to Eqs. (7 and 6), which define the max-
imum applicable torques on the vehicle wheels. In this way, 
the traction limits will not be exceeded while the propelling 
systems fulfill the torque request.

It is well known that the major advantage of assembling 
batteries and ultracapacitors in a HESS is transferring the 
high peak powers response to the ultracapacitors, avoiding 
the battery high-frequency power fluctuations [64]. Ma et al. 

Fig. 3   Power management control algorithm
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[61] highlight that the batteries are more efficient at low and 
steady power loads, therefore, to make these devices robust 
to current spikes, it is necessary to excessively increase their 
storage capacity. Furthermore, Veneri et al. [65] showed that 
high charging and discharging rates reduce battery efficiency 
because it is difficult for these devices to recover from rapid 
power fluctuations, which leads to a lifetime decrease [61]. 
On the other hand, the ultracapacitors are designed to pro-
vide high power and their life cycles are much longer than 
those presented by batteries [62].

In this paper, the maximum discharge current Imax of the 
battery is multiplied by a percentage PI (%) to define the 
battery current limit, which is defined by the optimization 
algorithm limit ( Ilim = PIImax [A]). If the required current 
I (A) defined in Eq. (15) exceeds the battery current limit 
( I > Ilim ), the ultracapacitors provide the remaining required 
current. In Eq. (21), it is shown the calculation of the bat-
tery Ibat (A) and ultracapacitors Icap (A) currents. This cur-
rent split strategy was previously implemented by Eckert 
et al. [19, 20] and Corrêa et al. [55], presenting satisfactory 
results.

Such rule-based power split strategy where the battery pro-
vides the average required power and the ultracapacitors ful-
fill the peak power is presented by Veneri et al. [65]. Moreo-
ver, this strategy also considers the possibility of the battery 
providing the maximum capable discharge power and the 
ultracapacitors pack providing the remaining required power. 
Furthermore, when the power demand is very high, the bat-
tery can provide the power directly to the motors [63].

Because the discharge limit of the capacitors is higher 
than the battery limit, the required Icap values are not limited. 
Therefore, the input current resulting from the regenerative 
braking is fully absorbed by the ultracapacitors, isolating the 
battery from these power peaks [62–64]. In the same way as 
the battery, the ultracapacitors pack is also limited to avoid 
its complete discharge, which decreases its life, thus, when 
the ultracapacitors stage of charge SoCUC (%) is less than 
35%, the EV will only be driven by the battery, limited to 
its Ilim value. Therefore, the vehicle will exhibit a decrease 
in acceleration performance due to the reduced torque EMs.

2.4 � Driving cycle

In the analysis made in this paper, the simulations were 
developed with an experimental driving cycle proposed 
by Oliveira et al. [37]. This cycle allows us to evaluate 
the EV performance based on the urban driving reality 
from Campinas city (Fig. 4). Moreover, this cycle was suc-
cessfully applied in the optimization process of a hybrid 

(21)

{
if I ≤ Ilim ; Ibat = and Icap = 0

if I ; Ilim ; Ibat = Ilim and Icap = I − Ilim

vehicle drivetrain [66]. The driving cycle profile, shown 
in Fig. 4ab, provides the target speed Vt  (m/s), that is 
compared to the actual EV speed V (m/s) to define the 
requested acceleration calculation areq , as seen in Eq. (22). 
The Vt is the speed one-time step �t (s) ahead of the cur-
rent simulation time. Furthermore, Fig. 4c provides data to 
define the road angle � from the cycle’s altimetry. The real-
world driving cycle has a duration of 7500 s and 42 km,  
normally a reality of Brazilian traffic in some cities.

3 � Optimization algorithm

The optimization uses a GA technique to minimize the 
total mass of the HESS (battery + ultracapacitors), that 
corresponds to the first optimization criterion f1 , as seen 
in Eq. (23). The second criterion  f2 (Eq. (24)) is to maxi-
mize the EV drive range ( DR ), represented by the traveled 
distance reached by the EV when the battery reaches the 
maximum allowed discharge limit ( SoC = 40%), consider-
ing the repetition of the analyzed driving cycle. The opti-
mization algorithm is implemented in MATLAB™.

The GA technique requires the definition of a chromo-
some [�] , which has the optimization parameters used at 
the EV simulation. Several of these chromosomes and their 
data make a population database. This algorithm defines 
the battery voltage Vbat (V) and capacity BC (Ah), to opti-
mize the criteria presented in Eq. (23) and Eq. (24) ( f1 and 
f2 ). With this information, the algorithm allows obtaining 
the battery mass Mbat using Eq. (16). The GA also decides 
the ultracapacitor type n that will be used among the avail-
able presented in Tab. 3 and the series capacitors number is 
obtained by Eq. (18).

Another important parameter in the chromosome is 
the maximum current percentage of the battery PI (%). It 
is needed to determine the current limit Ilim of the bat-
tery that is used by the power control to split the current 
between the ultracapacitors and the battery of the HESS. 
The chromosome [�] with the optimization criteria is 
shown in Eq. (25).

Subject to: constraints C presented in Eq. (26).

(22)areq =
Vt − V

�t

(23)f1 = min(Mbat +Mcap)

(24)f2 = max(DR)

(25)[�] = [Vbat BC n TmaxF �TcF TmaxR �TcR Nd PI]
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Fig. 4   Campinas driving cycle [37]
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To ensure the EV can execute the proposed driving cycle, the 
vehicle performance acts as a constraint. Therefore, the sim-
ulated solutions need to present a minimum traveled distance 
of 98% of the standard Campinas driving cycle (42.11 km  
in its first repetition) or they are removed from the popula-
tion. Furthermore, it is required the EV performs at least two 
complete loops of the driving cycle ( DR ≈ 82.52 km, con-
sidering the minimum acceptable performance) to include 
its solution in the population.

3.1 � Selection, Crossover and Mutation

The Pareto ranking classifies the population using the adap-
tive-weight approach [67] for fitness values. For the non-
dominated solutions, the Pareto frontier receives the first rank 
P = 1 . Based on the dominated solutions only from the first 
rank solutions, it is determined the second rank P = 2 , and 
so on. For the first Pareto frontier rank ( P = 1 ), the PR = 1 , 
increasing its fitness value. On the other hand, the dominated 
solutions ( P ≥ 2 ) receive PR = 0.

The fitness formulation also considers the optimization cri-
teria. For each optimization criterion j, the maximum fjmax

pop
 and 

minimum fjmin
pop

 values are defined. As shown in Eq. (27), fjmax
pop

 
and fjmin

pop
 are used to calculate a weight value fj(�) for each 

solution.

The roulette wheel method was chosen for the algorithm 
selection procedure, aiming to raise the probability of higher 
fitness Ft(X) values in the selected members. As seen in 
Eq. (28), this probability SP(�) is defined based on the sum 
of the fitness values Ft(X) of every member ( 1 ≤ k ≤ Ps ), 
where Ps is the size of the population.

Based on the SP(�) , the crossover operator chooses five 
pairs of population members [�] from the database. The new 
chromosome [�] generated is a random combination, with 

(26)C(�) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

100 ≤ Vbat ≤ 400 (V)

50 ≤ BC ≤ 150 (Ah)

1 ≤ n ≤ 16

50 ≤ TmaxF ≤ 300 (Nm)

250 ≤ �TcF ≤ 3000 (rpm)

10 ≤ TmaxR ≤ 50 (Nm)

500 ≤ �TcR ≤ 1500 (rpm)

3.5 ≤ Nd ≤ 7

5 ≤ PI ≤ 95 (%)

(27)Ft(�) =
f1max

pop
− f1(�)

f1max
pop

− f1min
pop

+
f2(�) − f2min

pop

f2max
pop

− f2min
pop

+ PR

(28)SP(�) =
Ft(�)∑k=Ps

k=1
Ft(Xk)

equal probability among the selected, of the design vari-
ables of each selected pair of solutions [68]. A new simula-
tion is made with this new chromosome [�] and the result 
is included in the population. This crossover procedure is 
replicated in the optimization until one of the parameters, at 
least, differs from the selected member, in order to avoid a 
configuration already simulated.

A simple way of mutation in the case of binary rep-
resentation is just flipping the chromosomes’ value. The 
mutation operator modifies some of the parameters from 
the selected pair of solutions and also from the chromo-
some generated by the crossover process. In this way, new 
values are inserted into the population. The mutation oper-
ator generates a random value ( 0 ≥ MUT ≥ 1 ) to define 
whether the selected parameter will or not be mutated. For 
each parameter, the probability of mutation is 50%.

The constraints [C] in Eq. (26) must be considered by 
the mutated parameters. If one of the parameters exceeds 
the limits of the constraints or if no parameters of the 
chromosome generated present mutation, then this chro-
mosome is disregarded and a new mutation is made until 
generating a combination that considers the constraints 
[C]. Table 4 shows the mutation limits.

Table 4   Mutation operator

Mutation operator Mutated
MUT ≥ 0.5 Chromosome [�Mt]

T

−50 ≤ Vmut ≤ 50 Vbat + Vmut

−20 ≤ Bmut ≤ 20 BC + Bmut

Integer value (1 ≤ nmut ≤ 16) nmut

−5 ≤ Tmut ≤ 5 Tmax + Tmut

−500 ≤ �mut ≤ 500 �Tc + �mut

−1 ≤ Nmut ≤ 1 Nd + Nmut

5 ≤ Pmut ≤ 95 P
mut
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200
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260
280
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340
360
380
400
420

Fig. 5   Optimization results
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The first population has 100 simulation results that 
respect the constraint limits. Each one of these was obtained 
by randomly defined chromosomes. The maximum popula-
tion size was established as Plim = 500 . When the popula-
tion oversteps the limit, the last Pareto rank (worst results) 
is deleted from the population. Whether the non-dominated 
solutions (P = 1 ) overstep the population limit, it is rede-
fined as Plim = Plim + 100.

The convergence criterion is defined by the recurrence 
of the same Pareto frontier [69] for over 10 generations. 
Each generation is defined by the offspring of five-pairs of 
selected chromosomes combined with the crossover and 
mutation operators.

4 � Results

The GA algorithm convergence results in a set of non-dom-
inated solutions (Pareto frontier) presented in Fig. 5. These 
EV configurations are considered as optimum compromised 
solutions with a trade-off between the two optimization cri-
teria. Among these results, three were selected to be ana-
lyzed in this section. The first one is the min(f1) solution that 
corresponds to the minimum mass of the HESS system. The 
second one is the max(f2) that improves the estimated drive 
range of the EV and the last one is the solution that presents 
the best trade-off between the optimization criteria, in other 
words, the solution that has the higher fitness value among 
the optimum configurations max(Ft).

Table 5 presents the design variables and respective 
results of the three selected configurations: min(f1) , max(f2) 
and max(Ft).

Due to the uniformity of the analyzed driving cycle, it is 
composed basically of urban driving behavior (lowes speed 
and acceleration) and it only presents a small section of high 
speed (250 s at ≈ 70 km/h). The optimum EV configurations 
do not present a large variation as shown in Tab. 6, espe-
cially in the drivetrain design variables, that were minimized 
according to the HESS additional mass.

The optimum HESS configurations converge to the use 
of the capacitor n = 1 and n = 8. The variation in the battery 
design variables ( Vbat and BC ) associated with the percentage 

PI , that controls the HESS power split, defines the estimated 
drive range of the EV that vary from 82.75 km (minimum 
acceptable drive range of 2 cycle loops) up to 188.43 km 
(largest HESS pack). The EV power system and resulting 
speed profile for the three selected configurations are pre-
sented in Fig. 6.

As presented in Fig. 6, the HESS capacitor state of charge 
SoCUCi behavior is very similar in the three analyzed cases. 
Because the optimum capacitors ( Cap(1) , Cap(2) and even 
Cap(7) ) models do not assemble a high power pack, the 
SoCUCi drops at the beginning of the cycle until it reaches 
the maximum allowed discharge of 35%. On the other hand, 
this low power capacity ultracapacitor pack enables faster 
recharging during regenerative braking, which is ampli-
fied in the downhill sections, as presented in Fig. 7. Also, it 
shows the SoCUCi of the three analyzed solutions. In other 
words, a low-power ultracapacitors pack presents a fast dis-
charge while performs a quick recovery, ensuring the system 
will be able to assist the battery in the current demand peaks. 
This SoCUCi charging/discharging behavior is repeated dur-
ing the remaining driving time.

Besides the HESS system similar behavior of all analyzed 
solutions, the best trade-off ( max (Ft) ) configuration presents 
a driving range close to the max (f2) solution (25.6 km or 
13.58%), however, with HESS pack 23.63% lighter (less 
98.78 kg). This happens basically because the HESS mass 
increases the EV total mass M and, consequently, it increases 

Table 5   Non-dominated solution

Solutions Frontal drive Rear drive Capacitor Battery HESS mass (kg) Drive range (km) Fitness

TmaxF �TcF TmaxR �TcR Nd n Ns Mcap Vbat Bc PI Mbat

(Nm) (rpm) (Nm) (rpm) (kg) (v) (Ah) (%) (kg)

min(f1) 201.90 263 41.86 795 5.64 1 7 21 108 139 8.18 83.62 146.58 82.75 2.00
max(f2) 199.72 263 22.82 1210 6.1 2 19 70.30 295 141 12.80 347.72 418.02 188.43 2.00
max(Ft) 171.23 263 25.78 1097 6.74 7 5 42.50 239 139 6.55 276.74 319.24 162.83 2.12

Table 6   Limit values of the optimum solutions chromosomes

Optimum Minimum Maximum Mean Standard
solutions value value value deviation

Vbat (V) 104.63 295.15 181.52 60.84
Bc (Ah) 103.25 149.89 136.04 12.97
n 1 8 - - - - - -
TmaxF (Nm) 133.42 230.29 180.25 22.08
�TcF (rpm) 255.03 316.71 264.06 9.65
TmaxR (Nm) 13.44 49.56 31.94 9.78
�TcR (rpm) 552 1380 1000 176.50
Nd 4.04 6.99 6.23 0.66
P
I
 (%) 5.42 92.70 38.09 26.77
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Fig. 6   HESS state of charge behavior and resultant speed profile according to the optimized EV configurations
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the vehicle power demand, as shown in Eqs. (1 and 3). In 
other words, even with more power capacity, a bigger HESS 
also implies a power consumption increase that limits the 
HESS size. Furthermore, the bigger HESS system implies 
technical difficulties to assemble all components in the 
vehicle.

On the other hand, smaller HESS, as the min (f1) , presents 
54.08% less mass as compared to the max (Ft) configuration, 
however, the driving range also decreases 49.18%. This spe-
cific configuration can be applied in smaller EVs developed 
for short travels or cities with available charging parks in 
the EV drive range.

Regarding the EVs drivetrain, it was possible to conclude 
the resulting configurations are most indicated to urban driv-
ing, due to the optimization constraints and mostly because 
of the chosen driving cycle. The major limitation of this con-
figuration is related to the maximum vehicle speed, once the 
EMs reach null torque in a specific rotation, that is a direct 
function of the vehicle longitudinal speed, according to the 
drive train configuration (in-wheel or differential system).

Equations (29 and 30) show the correlation between the 
EMs and vehicle speed for the    frontal VFront( m ∕s) and 
rear VRear (m/s) driving systems, respectively. The resulting 
torque curve for the frontal TFront [Nm] and rear TRear (Nm) 
propelling systems are presented by Eqs. (31 and 32).

(29)VFront =
�r�EMF

30

(30)VRear =
�r�EMR

30Nd

(31)TFront =2TEMF

(32)TRear =TEMRNd�d

The resulting torque curves as a function of the vehi-
cle speed and drivetrain configurations are presented in 
Fig. 8 and it is possible to observe the rear system reaches 
null torque up to 60 km/h ( min (f1) solution) and up to 
≈ 92 km/h ( min (f2) solution). This happens because the 
differential gear transmission ratio increases the system’s 
final torque and also allows it to quickly reaches the good 
efficiency region of the EM (see Fig. 2). This kind of 
assembling is useful in urban driving, where the vehicle 
needs to stop several times, especially in jammed traffic 
conditions as presented between the 1600   and 2300 s 
(Fig. 4a) and between 5100  and 5600 s (Fig. 4b) of the 
analyzed cycle.

However, this kind of assembly presents some additional 
issues. Besides the low-speed limit, this EM needs to be 
disconnected when it reaches critical speed, possibly by the 
addition of a clutch system in the powertrain, avoiding possi-
ble EM damages caused by high rotation. On the other hand, 
the rear EM operation at higher rotations could improve the 
regenerative braking efficiency, but it is necessary to care-
fully evaluate it due to the EMs operation speed limit.
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Once the rear propelling system optimization leads to 
improve the EV startup and low-speed performance, the 
frontal in-wheel EMs become responsible to propel the vehi-
cle in the renaming situations, fulfilling the torque demand at 
low speed and also acting as a single propelling system when 
the EV reaches the speed of null torque in the rear system.

Finally, the resulting EMs become capable to fulfill the 
power demand, without significant performance losses, once 
these configurations were able to complete the desired speed 
profile. However, the optimization process minimizes the 
EMs, because smaller EMs reach the high-efficiency regions 
faster than the larger ones and it results in frontal EMs that 
reach null torque at ≈ 125 km/h. In this situation, the rear 
propelling system is already disabled. However, in these 
high-speed situations, the EV power demand increases espe-
cially by the aerodynamic drag action and it can overcome 
the available traction power, provided only by the frontal 
in-wheel EMs. Therefore, it may represent an issue, if this 
vehicle needs to be used in an overtaking and/or highway 
situation, where high speeds are required.

5 � Conclusion

This paper showed a simulation-based approach to the sizing 
of an EV battery/ultracapacitor pack and drivetrain, using a 
real driving cycle recorded in Campinas City. A compara-
tive analysis of the EV optimizations was made, consider-
ing three different solutions: the maximum drive range, the 
minimum HESS mass and the best combination between 
these criteria. The optimization results show that the HESS 
system presents a similar behavior in all analyzed solutions. 
Moreover, the optimum EMs converge to a minimum size 
that reaches the higher efficiency regions faster, without 
compromising the vehicle acceleration performance.

Furthermore, the results show that HESS technology 
currently provides the most suitable expansion possibility, 
given its moderate weight associated with its relatively small 
volume. The simulations point out the HESS mass could be 
reduced without decreasing the EV performance. Series bat-
tery/ultracapacitor combination offers many benefits, which 
make it well-suited for light EVs as efficiency and perfor-
mance enhancement.

However, it is important to highlight that the results 
reached by this study are theoretical and the optimum con-
figuration parameters need to be evaluated. The battery for 
a HESS real application should be an adequate commercial 
model according to the optimum theoretical values, moreo-
ver, it is possible to design a battery with a combination of 
cells to meet the desired voltage and capacity. The optimized 
EMs also need to be evaluated regarding constructive con-
straints and the same applies to the differential transmission 

ratio, that needs to be tuned considering a manufacturable 
gear teeth combination.

Besides the listed limitations, this paper has shown the 
HESS is a suitable solution to decrease the electric vehicle 
overall mass, when submitted to a real urban driving sce-
nario, that considers the road altimetry, without performance 
losses.

Expansions of this study may include a different real driv-
ing cycle considering more highway periods, once the stor-
age system varies depending on different scenarios.
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