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Abstract
In this work, a strategy is proposed for the automatic diagnosis of failures in gearboxes using current signals from an induction 
motor. The stator currents were represented by the extended Park vector approach technique and decomposed by the wave-
let packet transform. The calculation of the wavelet packet entropy promoted the distinction between broken tooth failures 
and the levels of severity of surface wear. The entropies of two wavelet details were used as inputs for a fuzzy inference for 
automatic classification of the gearbox condition. The experimental results presented a high rate of correctness in the fuzzy 
diagnosis, confirming the efficiency of the strategy for high rotation (60 Hz) and low rotation (20 Hz). The strategy presents 
simplicities related to the practical implementation and reduction of the amount of data analyzed.
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1  Introduction

The monitoring of failures in geared systems has been an 
important task in the design and maintenance stages of these 
machine elements. Gear systems are considered: pumps or 
gear compressors, gear extruders and gearboxes (reduction 
or multiplication). A failure classified as local involves dam-
age to one or two teeth in a row, such as a chipped or broken 
tooth. These problems are caused by: flexion fatigue, abrupt 
overload, advanced stage of contact fatigue or by impact of 
external body. A failure classified as distributed involves 
the wear mechanisms and presents itself in a considerable 
number of teeth.

The contact between two solids at a given frequency and 
the Hertz pressure (contact pressure) causes a level of vibra-
tion [1]. The method of detection by vibration is the most 
used for the prediction of damages in mechanical elements, 
such as: gearboxes, bearings, load unbalance, among others 
[2]. However, the location of the accelerometer installation 

can cause the impossibility of clearly capturing the signal, 
or difficulties in distinguishing effects when there are several 
sources of vibrations. The presence of different oscillatory 
sources gives rise to complex combinations of frequencies 
and modulations. The signals generated in the gears are mul-
ticomponent originating from transient forces. These forces 
arise from the interactions between the elastic interfaces in 
the contact between the work surfaces [1]. The transient sig-
nals of the failures can cause inaccuracies in the analysis. 
It may also be impossible to install the sensor (inaccessible 
locations, contaminants to the sensor, safety risk to the sen-
sor or installer, among other factors). In [3], it is shown that 
the elasticity of the sensor mounting interface can affect the 
transmissibility of the signal by introducing errors in the 
measured signals.

A strategy that emerged as an alternative to vibrational 
analysis to detect gear failures, explores the intrinsic 
capacity of electric motors and generators to act as trans-
ducers [4]. A gear failure produces a torsional vibration in 
the load torque, causing changes in the interaction between 
the stator and the rotor [5]. These changes affect the sta-
tor current and can be detected using the motor current 
signature analysis (MCSA). The amplitude of the electri-
cal current may change with varying operating conditions 
such as operating rotation, load, manufacturing material, 
geometric dimensions, contact reason, among others. In 
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some situations, the failure may not be diagnosed. The 
use of Park transformation for the evaluation of current 
signals, in the technique called extended Park vector 
approach (EPVA), has provided an accurate detection 
[4]. The EPVA technique considers the three phases of 
the current, generating a more significant spectrum when 
compared to MCSA [6]. The impacts of failures in the 
gearbox on the signature of the motor current were studied 
theoretically and experimentally in Kar; Mohanty [7–9], 
Henao; Capolino [10–14], Feki; Clerc; Velex [15, 16] and 
Sena [6, 17].

When there is an increase in the severity of surface wear, 
an increase in noise is observed in the gear meshing region 
(GMR). There is also an increase in the magnitude the gear 
meshing frequency (fGMF) and its sidebands. However, there 
are no relevant changes in the supply line region (SLR). The 
transient signs of wear make the spectral analysis uncharac-
terized. Localized defects, such as pits, splinters and broken 
teeth, are characterized as changes in the SLR by means of 
lateral bands of the supply line frequency (fsup). The changes 
in the SLR in the broken tooth failure are similar to the other 
failures of the electromechanical set that have an eccentric-
ity effect. An unbalance in the load or misalignment of the 
coupling causes eccentricity, for example. For the reliable 
characterization of the broken tooth, the academic com-
munity has investigated small changes in the GMR. In this 
case, evenly spaced backlash appears. The diagnosis using 
spectral analysis is hampered by the low magnitudes of the 
backlash.

Recently, some researches have proposed the use of the 
discrete wavelet transform (DWT) as an alternative to spec-
tral analysis. The wavelet transform provides a time-scale 
description of a signal. This transformation provides a multi-
resolution analysis of the data. Some characteristics that can 
be extracted from the wavelet decomposition coefficients. 
The application of predictability measures quantifies the dif-
ference between two distributions. Information measures for 
characterizing signals are: entropy, forecast power and nor-
malized error variance [6]. Entropy is generally understood 
as a measure of the degree of order or disorder of a signal. 
After determining the information measures, an algorithm 
for diagnosis is necessary. Entropy was used in the analysis 
of defects in gearbox systems by [4, 6, 18–20].

The proposal for specialist systems based on artificial 
intelligence is growing [4]. Recently, artificial neural net-
works (ANN) were applied for the diagnosis of gearbox fail-
ure with vibration signals in [18, 21]. This research used a 
hybrid classifier based on the support vector machine classi-
fiers (SVM) and ANN for the diagnosis of gear failures. The 
complexity and time of training can make practical applica-
tions of these techniques unfeasible in real production lines. 
The fuzzy inference can be useful when there are uncertain-
ties in the measurement or when there is non-regularity in 

the data such as surface wear. In [4, 6], fuzzy systems have 
been proposed to diagnose gearbox failures.

The cited works do not present a combined diagnosis of 
broken tooth and wear levels in gearboxes using electrical 
current signals. The literature review does not make clear 
the possibility of detecting faults at low rotation. There is 
no conclusion the differences in broken tooth failures and 
surface wear in the entropy levels at GMR in current signals. 
This work seeks a strategy of easy implementation and non-
invasive for the automatic diagnosis of the two main fail-
ures in gearboxes. For this, this research aims to use wave-
let entropy and fuzzy inference to differentiate the broken 
tooth from superficial wear. Changes caused by failures in 
EPVA signals can provide stable entropy patterns in specific 
wavelet details. The strategy can offer advantages over other 
methods because it reduces the amount of data to be ana-
lyzed. Only data from significantly altered frequency bands 
are evaluated. The effectiveness of the proposed classifier 
must be assessed under the condition of noise. This work 
also sought the automatic adjustment of the diagnosis for the 
low (20 Hz) and high rotation (60 Hz) condition, based on 
the estimate of the rotation by the method of harmonic slots.

2 � Diagnostic strategy proposed

The block diagram in Fig. 1 presents the sequence for imple-
menting the proposed diagnostic strategy.

Initially, the modulus of the Park vector is calculated from 
the acquisition of the electric currents of the three phases. 
In the sequence, the signals of the Park vector module are 
decomposed by the packet wavelet transform (WPT). The 
details that characterize the faults are automatically selected 
by estimating the central frequency of GMR and SLR. The 
entropy of the selected wavelet details is calculated from the 
respective relative and total energies. In the present research, 
the signals were normalized to make them comparable 
regardless of differences in the amplitude. Normalized entro-
pies were used for better generalization and to ensure that 
the fuzzy inference results are not influenced by changes in 
signals due to operating conditions. The results remain unaf-
fected so long as the signal patterns are unchanged. Finally, 
the fuzzy rules cross the entropies of the two details evalu-
ated, informing the condition of the gearbox.

The investigative process that converged on this strategy 
was divided into two stages. In the detection stage, it was 
necessary to configure the wavelet decomposition for an ade-
quate entropy calculation. There is a relationship between 
the sample rate, the sample size and the machine rotation for 
the correct detection of failures. The three currents of the 
stator are acquired with 60,000 points and an acquisition rate 
of 30 kHz. The entropy values that differentiate the failures 
in the GMR have been defined. Finally, an analysis of the 
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reliability of the results was carried out. In the diagnostic 
stage, fuzzy rules are created based on the entropy values 
in the SLR and GMR. The crossing of information should 
differentiate the gearbox without fail, with broken tooth and 
the levels of severity of wear.

2.1 � Current signal failure analysis

The GMF frequency set is calculated by Eq. 1. Equation 2 
presents the SLR frequency set. Figure 2 presents a typical 
current signature (spectral analysis) based on Eqs. 1 and 2.

(1)fReg_GMF = fsup ± mbl ⋅ fpin ± nbl ⋅ fcor ± qbl ⋅ fGMF

where fsup is the frequency of the motor’s electrical supply in 
Hz; mbl, nbl and qbl are the harmonic orders (m, n and q = 1, 
2, 3,); fpin is the rotation of the gear coupled to the motor in 
Hz; fcor is the rotation of the gear moved in Hz and fGMF is 
the gear meshing frequency. GMF is obtained by the rota-
tional of a given gear multiplied by its number of teeth (Z), 
that is, fGMF = Zpin fpin = Zcor fcor.

In the technique called extended Park vector approach 
(EPVA), the analysis of the Park vector module is performed 
in the stator reference. The advantage of the method is that 
the characteristic components of the defect appear demodu-
lated and highlighted [6]. An odq (Park) transformation rep-
resents each original three-phase armature by a two-phase 

(2)fReg_sup = fsup ± mbl ⋅ fpin ± nbl ⋅ fcor

Fig. 1   Block diagram of the diagnostic strategy. Source: Author
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dq armature, plus an isolated coil of index o. The transfor-
mation eliminates the mutual magnetic coupling between 
the phase coils. This makes the flow concatenated on one 
axis independent of the other. In general, information in the 
zero sequence stream (iso) is not used. Equations 3 and 4 
present the dq currents obtained from this transformation in 
a conservative form. In a conservative form, the two-phase 
machine has the same mechanical power, combined and the 
same speed as the three-phase machine.

In expressions, the variables is
s1
, is
s2

e is
s3

 are the three-
phase currents; is

sd
e is

sq
 are the currents of the biphasic 

machine (dq). The Park vector module will be given by:

The technique requires the measurement of the three cur-
rents of the induction motor only when it is also supplied 
with neutral. For the other cases, it is possible to measure 
only two of the currents and the third is estimated.

2.2 � Transformed wavelet packet (WPT)

In wavelet theory, the base functions that constitute 
the representation and reconstruction processes, called 
wavelet daughters, ψm,n(t). These functions are obtained 
through translations and expansions of a single prototype 
wavelet, ψ(t) or ψ1.0(t), known as the mother Wavelet [4]. 
The mother wavelet is scaled by the scaling factor, m, and 

(3)is
sd
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√
2∕3is
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− 1
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− 1
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sq
= 1
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(5)EPVA =
√

(is
sd
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sq
)2

displaced by the translation factor, n, in all possible trans-
lations over time to scan the signal under analysis. This 
process gives rise to the daughter wavelets (dyadic and 
orthonormal), according to Eq. 6.

When wavelets are used to transform a discrete signal, s(t), 
the result will be a series of coefficients called decomposition 
coefficients in wavelets. These coefficients correspond to the 
discrete wavelet transform (DWT), according to Eq. 7.

The DWT provides a non-redundant representation of 
the signal, and its values constitute the coefficients of a 
wavelet series. These wavelet coefficients provide com-
plete information in a simple way and a direct estimate of 
local energies at different scales. In addition, the informa-
tion can be organized in a hierarchical schema of aligned 
subspaces, called multiresolution analysis. In this analysis, 
a signal can be broken down into two components: approx-
imation and detail. The wavelet function is related to a 
high-pass filter, which produces the coefficients of details 
of the wavelet decomposition. An additional function is 
related to the low-pass filter, called the scaling function, 
being associated with the approximation coefficients.

In the decomposition of wavelet packet (WPT), the 
detail coefficients are divided into coefficients of approxi-
mation and details. In this way, the decomposition of the 
signal presents a shape of a binary tree, called the wavelet 
packet tree [6]. The calculation of the WPT coefficients in 
Eq. 8 is the sequence resulting from the internal product 
of an s(t) signal with the wavelet packet functions.

(6)�m,n(t) = 2−m∕2�(2−mt − n)

(7)DWT (m,n) = 2−m∕2
∑

t

s(t)�(2−mt − n)

Fig. 2   Typical current spectrum of a gearbox. Source: Author
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where λm,f (n) are the expansion coefficients of s(t) in the 
wavelet packet functions; wmnf (t) are the basic wavelet 
packet functions and f is the frequency index.

The translated, expanded and normalized wavelet packet 
functions are obtained by Eq. 9.

From the conjugated pair of quadrature filters, the library 
of wavelet packet functions is built with a recursive algo-
rithm. The wf (t) are defined, considering the fixed scale [6], 
according to Eqs. 10 and 11.

The initial function for f = 0, w0, is the scaling function 
itself. For f = 1, w1, the wavelet function is ψ1 of the DWT. 
The decomposition of wavelet packet can be implemented by 
applying the filters in the sequence of coefficients in Eqs. 12 
and 13, satisfying the recursive relationship [6].

The WPT based on the quantification of the energy of the 
original signal in specific frequency bands allows the extrac-
tion and obtaining of information in a compact form. There-
fore, this transform becomes very useful for the analysis and 
processing of signals applied to the diagnosis of failures.

(8)�m,f (n) = 2−m∕2
∑

n

s(t)wf (2
−mt − n), f ≥ 0

(9)wmnf (t) = 2−m∕2wf (2
−mt − n)

(10)w2f (t) =
√
2
�

n∈Z

hn wf (2t − n) = Hwf

(11)w2f+1(t) =
√
2
�

n∈Z

gn wf (2t − n) = Gwf

(12)�
m+1,2f

[n] =
∑

k∈Z

h[k − 2n]�m,f [k]

(13)�
m+1,2f+1

[n] =
∑

k∈Z

g[k − 2n]�m,f [k]

This transform makes it possible to retain signal informa-
tion in the frequency band where the frequencies of a fault 
occur. So it is possible to discard the bands that contain noise 
and less important information. For this, some criteria for 
selecting the optimal coefficients are used. The most used the 
criterion based on the quantification of the energy contained in 
the signal [4]. Figure 3 presents a decomposition of the WPT 
type into eight levels and a sampling rate of 30 kHz.

The concept of entropy has been widely used as a measure 
of a system’s disorder. Shannon’s entropy measures the disper-
sion or randomness of energy within a process. The energy 
concentration is related to low entropy values. Entropy-based 
methods allow the comparison of system properties in numeri-
cal terms. This occurs through a distribution of probabilities, 
since entropy can be used as a measure of dispersion [4]. The 
wavelet spectrum of energy on the m scale is defined by Eq. 14.

Therefore, the wavelet energy spectrum for a given time 
window on the m scale, can be calculated according to Eq. 15.

The total energy of the signal can then be expressed by 
Eq. 16.

The normalized energy value (relative energy), which 
corresponds to the energy of each wavelet packet, is given 
by Eq. 17.

Being pm the energy distribution of the signal. It is worth 
mentioning that Σm pm = 1.

(14)Emnf =
|
|
|
�m,f (n)

|
|
|

2

(15)Em =
∑

n

Emnf

(16)E =
∑

m

Em

(17)pm =
Em

E

Fig. 3   WPT decomposition 
used for sample processing. 
Source: Author
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The total entropy of Eq. 19 is defined as the sum of the 
entropy computed over the entire extension of the frequen-
cies of Eq. 18, in nats, called Wavelet Packet Entropy (WPE).

According to [6], this method allows the extraction and 
obtaining of compact information, being able to quantify the 
energy values, relating them the frequency of a fault.

Depending on the phenomenon to be studied, there will be 
a need for scale harmonization through the normalization of 
the entropy values (WPEm)N. A widely used method consists 
of linearly normalizing the data between [0, 1] by means of 
the maximum (WPEmmax) and minimum (WPEmmin) values 
according to Eq. 20.

3 � Experimental results of the detection 
stage

The experimental setup presents in Fig. 4a consists of a 
Siemens™ three-phase Induction Motor of 2 hp (1.5 kW), 
8.6 Nm, 4 poles, 3.64 A/380 V. The motor can be driven 
with a WEG™ CFW08 vector control frequency inverter 
(2 hp/220 V) or direct start (380 V/60 Hz).

The gearbox present in Fig. 4b is made up of spur cylin-
drical gears of module 3 and a gear ratio of 2:1. The drive 
gear has 23 teeth, tooth height of 675 mm and pressure angle 
of 20°. The motor drives the gearbox which is coupled to 
a mechanical brake by means of a toothed belt. To obtain 
surface wear, the load imposed on the electric motor was 
approximately 60% of the nominal. This is an orientation 
suggested by [22]. After the formation of the fault, the sys-
tem was activated in the other loads.

(18)WPEm = −pm ln(pm)

(19)WPEtot =
∑

m

WPEm

(20)(WPEm)N =
WPEm −WPEm min

WPEm max −WPEm min

The frequency inverter does not follow the motor’s nomi-
nal characteristics. Thus, chosen loads were obtained through 
sensitivity tests. The same loads were adopted for conveni-
ence for the broken tooth tests. A load cell measures the load 
applied by the mechanical brake to the electric motor.

The currents are obtained from linear sensors of Hall 
Effect type ACS712ELC-30 A that has a sensitivity of 
66 mV/A. The data acquisition (DAQ) used was the NI 
USB-6211 model from National Instruments™. The module 
has 16-bit converters with a sample rate of up to 250 ks/s. 
From the signals obtained by DAQ, the failure analysis is 
performed using a LabView™ code.

All samples were decomposed by WPT as presents in 
Fig. 3. In the 60 Hz rotation (supply line and frequency 
inverter), the wavelet details λ7.0 and λ7.5 were used. The 
λ7.0 wavelet detail is the SLR, and the λ7.5 detail is the GMR. 
For the 20 Hz rotation, the λ8.0 wavelet detail is the SLR and 
the λ8.3 detail is the GMR.

3.1 � Experimental tests of broken tooth

The failure of a broken tooth was obtained by cutting a tooth at 
its base. Were broken two gears (driving wheel), to observe the 
repeatability of the results. For each failed gear, five samples 
of each operating condition were obtained. Figure 5 presents 
the transmission system with a broken tooth failure. Figure 6 
presents a schematic of the procedure used to detect failure.

Figure 7 presents the percentage changes in the entropy of 
each wavelet packet detail (first fifty) with broken tooth failure. In 
Fig. 7, it is possible to verify that the literature references on the 
location of the characteristic frequencies of the broken tooth pre-
sent significant changes in the distribution of the set of entropies.

Figure 8 presents the wavelet entropy values for each sam-
ple in the broken tooth tests. The graphs present the changes 
in the SLR and GMR due to the presence of the fault.

The entropy calculations applied to the wavelet decom-
positions of EPVA signals presented good homogeneity 
according to the classification proposed by [23]. A low 
dispersion (CV ≤ 15%) expressed by the Pearson variation 

Fig. 4   Proposed experimental 
setup: a main components, b 
damaged gear. Source: Author
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coefficients (CV) for detecting broken teeth is observed. 
Table 1 presents a statistical summary of entropies for the 
broken tooth. In the SLR, the condition of broken tooth 
showed significant changes in entropy in relation to the 
state without failure. In the GMR, the backlash effect caused 
by the broken tooth presented a small increase in entropy. 
Changes in the two wavelet details differentiate the broken 
tooth from the other failures in the electromechanical set.

3.2 � Experimental tests of surface wear formation

The surface wear stages were obtained naturally in approxi-
mately 20 h. Five samples were acquired for each severity 
level in each damaged gear (two gears) operating without 

lubrication. The testing time was limited due to the noise 
level affecting the acquisition system. The measurement 
intervals were chosen due to the significance of the changes 
in the tooth profiles observed by visual inspection. Only soft 
wear did not show relevant changes in relation to the condi-
tion without failure.

Figure 9 presents the severity levels observed in the visual 
inspection in the superficial wear tests, adopting the terms: 
smooth, moderate, severe and excessive, suggested by [22]. 
Figure 10 presents a schematic of the procedure performed 
in the wear formation tests.

Figure 11 presents the wavelet entropy values for each 
sample in the surface wear tests. The graphs present the 
changes in the SLR and GMR due to the presence of the 
fault.

Table 2 presents a statistical summary of entropies for the 
surface wear. The entropy calculation presented a low disper-
sion for most samples when defining the levels of severity of 
surface wear. These values confirm the increase in entropy 
with increased wear. The condition of excessive wear presented 
medium dispersion due to the high level of vibration. The 
greatest dispersion was observed in the rotation of 60 Hz with 
the frequency inverter. These samples had a Pearson coefficient 
of variation of 29.01%. Excessive wear measurement harms the 
data acquisition system by limiting the analysis.

There are differences between the entropy values in the 
GMR comparing the two failures. Broken tooth failure values 
are below moderate wear values. Transient signs of surface 

Fig. 5   Experimental tests of broken teeth in the detection stage. 
Source: Author

Fig. 6   Test base for broken 
tooth: a gear without failure, b 
gear with broken tooth. Source: 
Author

Fig. 7   Percentage changes in wavelet entropy due to broken tooth failure. Source: Author
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wear also alter the SLR with values below the broken tooth 
failure. These results prove the possibility of a combined diag-
nosis of the two failures. Inaccuracies in the visual inspec-
tion to choose the measurement intervals caused differences 
between the tests of the first and second gear. Even with dif-
ferences, the entropy calculation provided a reliable analysis.

4 � Experimental results of the fuzzy 
diagnosis

The proposed fuzzy inference system has two inputs for 
the 60 Hz rotation called SLR-H and GMR-H, referring to 
the entropies of the SLR and GMR. Figure 12 presents the 

Fig. 8   Entropies normalized to conditions without failure and broken tooth at each rotation. Source: Author
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membership functions of the SLR-H and GMR-H input vari-
ables, with their respective linguistic terms (GI, GII, GIII, 
GIV and GV). The membership functions were based on 
the averages and standard deviations from Tables 1 and 2 
(stage detection). The distributions were adjusted to define 
fuzzy sets.

In the 20 Hz rotation, the inputs are called SLR-L and 
GMR-L, also related to the entropies of the SLR and GMR, 

respectively. Figure 13 presents the membership functions 
of the SLR-L and GMR-L input variables. The member-
ship functions were also based on the statistical distributions 
defined in Tables 1 and 2. The same linguistic terms were 
used for 60 Hz.

For the proposed system, the variable DIH was defined 
for the diagnosis of failures with a rotation of 60  Hz, 
and DIL for the rotation of 20 Hz. The linguistic terms 

Table 1   Statistical summary of 
entropies to conditions without 
failure and broken tooth. 
Source: Author

SLR GMR

Mean Deviation CV (%) Mean Deviation CV (%)

60 Hz (supply line)
 Without fail 0.5028 0.0083 1.64 0.0555 0.0045 8.13
 Broken tooth 0.9002 0.0245 2.72 0.1112 0.0067 6.04

60 Hz (frequency inverter)
 Without fail 0.0960 0.0020 2.14 0.0392 0.0019 4.94
 Broken tooth 0.5950 0.0061 1.03 0.0970 0.0074 7.60

20 Hz (frequency inverter)
 Without fail 0.1566 0.0066 4.23 0.1212 0.0136 11.23
 Broken tooth 0.8562 0.0343 4.01 0.2954 0.0152 5.14

Fig. 9   Surface wear levels observed in the tests: a without failure, b smooth wear, c moderate wear, d severe wear and e excessive wear. Source: 
Author

Fig. 10   Test base for the forma-
tion of surface wear. Source: 
Author
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adopted for the two variables were: WF (Without failure), 
BT (Broken Tooth), MW (Moderate Wear), SW (Severe 
Wear), EW (Excessive Wear) and IN (Inconsistency of the 
result). Therefore, there are 25 rules for the implication of 
the DIH output, and 15 rules for DIL. Table 3 presents the 
rule base for the diagnosis in high rotation and Table 4 in 
low rotation.

The following parameters were used for the inference 
system: and operator (Zadeh), then operator (minimum), 
aggregation operator (maximum) and defuzzification 
method (area center method). The output membership func-
tions were based on the entropies of the tables presented 
in the detection, however, adjustments were necessary. The 
configuration of the output pertinence functions allowed a 

Fig. 11   Entropies normalized to conditions without failure and levels of surface wear at each rotation. Source: Author
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Table 2   Statistical summary of 
entropies to conditions without 
failure and surface wear. 
Source: Author

SLR GMR

Mean Deviation CV (%) Mean Deviation CV (%)

60 Hz (supply line)
Without fail 0.5047 0.0043 0.85 0.0552 0.0057 10.41
Moderate wear 0.5712 0.0192 3.37 0.2348 0.0271 11.56
Severe wear 0.5879 0.0391 6.65 0.3634 0.0311 8.56
Excessive wear 0.6040 0.0193 3.19 0.5427 0.0564 10.40
60 Hz (frequency inverter)
Without fail 0.0941 0.0018 1.95 0.0392 0.0038 9.60
Moderate wear 0.1350 0.0081 6.00 0.2173 0.0285 13.11
Severe wear 0.1301 0.0033 2.52 0.3380 0.0225 6.66
Excessive wear 0.1630 0.0063 3.89 0.6070 0.1761 29.01
20 Hz (frequency inverter)
Without fail 0.1514 0.0139 9.21 0.1196 0.0171 14.31
Moderate wear 0.3718 0.0111 2.97 0.4453 0.0383 8.59
Severe wear 0.2792 0.0345 12.37 0.7374 0.0219 2.97
Excessive wear 0.3622 0.0149 4.12 0.9062 0.0530 5.85

Fig. 12   Pertinence functions 
and their respective linguistic 
terms: a SLR-H input variable 
and b GMR-H input variable. 
Source: Author

Fig. 13   Pertinence functions 
and their respective linguistic 
terms: a SLR-L input variable 
and b GMR-L input variable. 
Source: Author
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dimensionless scale (from 0 to 1) to output the defuzzifica-
tion, denouncing the condition of the gears. Figure 14 pre-
sents the pertinence functions of the output variables, DIH 
and DIL, with their respective linguistic terms.

4.1 � Broken tooth diagnosis

In the diagnosis stage, a new gear was installed. Three samples 
were obtained without fail and then three samples with broken 
tooth. The samples were obtained at 1 h intervals. Figure 15 
presents the behavior of the input wavelet entropies with the 
diagnosis of the conditions without failure and broken tooth.

In the diagnostic stage, the entropy values confirmed the 
analysis performed in the detection. The failure caused a 

Table 3   Rules base for diagnosis in high rotation (60  Hz). Source: 
Author

Table 4   Rules base for diagnosis at low rotation (20  Hz). Source: 
Author

Fig. 14   Pertinence functions 
of the output variables, DIH 
and DIL, and their respective 
linguistic terms. Source: Author

Fig. 15   Diagnosis of broken tooth: a supply line, b with inverter at 
60 Hz, c with inverter at 20 Hz. Source: Author
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small change in GMR. This change was enough to character-
ize the backlash effect caused by the broken tooth.

4.2 � Diagnosis of surface wear levels

A new set of gears was installed for the diagnostic stage. The 
results of the diagnosis with the levels of wear were obtained 

in a similar way to the procedure adopted in the detection 
stage. The measurement interval was 30 min during 20 h of 
operation of the set. It was possible to observe the growth of 
the failure during the measured time. This growth in entropy 
was associated with visual inspection of the severity of the 
failure. In Fig. 16, wavelet entropies are plotted as a function 
of wear development time.

Fig. 16   Diagnosis of the formation of surface wear: a supply line, b with inverter at 60 Hz, c with inverter at 20 Hz. Source: Author
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With 8 h of operation, it was possible to observe the 
first signs of moderate wear. After 13:30 h the first signs of 
severe wear. Excessive wear occurred after 17:30 h of opera-
tion. The results are in accordance with the values observed 
in the detection stage.

5 � Conclusions

According to the analysis of the experimental results, some 
significant conclusions were reached:

•	 The proposed strategy allows the combined diagnosis 
of broken teeth and wear levels in gearboxes. It is pos-
sible to differentiate the broken tooth failures from the 
other failures of the electromechanical set through the 
joint analysis of entropy in the SLR and GMR. In this 
research, it was possible to differentiate the broken tooth 
from the superficial wear in the GMR through different 
levels of entropy. When the backlash effects of the broken 
tooth are visible, there is a small change in entropy in the 
GMR. The noise caused by surface wear in the GMR has 
higher entropy levels than the backlash.

•	 The detection stage proved that it is possible to analyze 
failures in low rotation.

•	 The entropy of the wavelet details of the EPVA signals 
provided a low dispersion of most samples (maximum CV 
of 14.31%). The transient signs of excessive wear cause 
problems in data acquisition and greater dispersions in 
entropy (maximum CV of 29.01%).

•	 Entropy is a measure of information that can be analyzed 
using basic statistics such as the coefficient of variation 
(CV). In the strategy, the mean and standard deviation of 
the samples were used to define the pertinence functions 
of the fuzzy inference. This process is easier compared to 
training and machine learning strategies.

•	 The advantage of this strategy was to reduce the amount 
of data to be analyzed, since only the significantly altered 
frequency bands are evaluated. This is an important fea-
ture in a future implementation of the strategy through an 
embedded system.

•	 The fuzzy inference presented a coherent behavior of the 
severity of wear in relation to visual inspections, enabling 
a reliable diagnosis.

•	 It has been demonstrated that the fuzzy inference is capable 
of correctly classifying the gear condition even in case of 
noise.

As limitations, the decomposition of the package wavelet 
must be sized according to the acquisition rate, the sample 
size, the gear rotation, the loading conditions and the effects 
of the failures. Detail entropy will be assertive and statistically 

reliable if these parameters are correctly adjusted. This adjust-
ment can be laborious. The results produced in this work can 
be considered satisfactory. However, some improvements are 
suggested in order to make this strategy generalist: to extend 
the study to different sizes of induction motors, as well as to 
different gears varying dimensions and material; extend the 
study to other speeds and load conditions.
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