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Abstract
It is known that the Proportional Integral and Derivative (PID) regulator with constant and symmetric positive definite 
gain matrices (Kp, Kv and Ki), in closed loop with robotic manipulators, guarantees semiglobal asymptotic stability of the 
equilibrium point. In this paper, a fresh approach for control of robots manipulators based on a class of PID regulators with 
variable gain matrices Kp and Kv, which guarantee global asymptotic stability, is proposed. This PID control scheme, pro-
posed with PD variable gains and fixed integral gains, improves the performance of the transient response and the handling 
of constraints, such as the limits of the actuator torques. Based on the authors experience, our proposal is the first scheme of 
a nonlinear PID regulator for robot manipulators whose PD gains are variable and its stability proof is global asymptotic in 
the sense of Lyapunov. The PD variable gains are directly dependent on the joint position errors and are fine tuned by fuzzy 
logic methodology. Good results were obtained on an experimental direct-drive robot arm of two degrees of freedom, when 
it was tested in order to verify the effectiveness of the new controller.

Keywords  PID control · Variable gains · Stability analysis · Robot control

1  Introduction

The industrial evidence shows that a classical PID controller 
is the most popular controller for robot manipulators because 
of its simplicity of operation and its trusted performance, 
particularly in situations that do not require to know the 
parameters of the robot dynamics for the control law [1]. 
However, when trying to have outstanding performance 
or facing up constraints of real manipulators for example, 
actuator capabilities, it is essential to have variable gains 
for these regulators [2] and [3]. There are several control 
techniques to select the proper gains for the robot control; for 
instance: adaptive control, fuzzy control and gain scheduling 

[4–7]. Notice that the stability analysis in closed loop for 
the PID control for robot manipulators is generally carried 
out for controllers PID with fixed gains. In the cases where 
to maintain an outstanding performance and hold global 
asymptotic stability for the control system is mandatory, 
the attribute of fixed gains is unsuitable for those working 
conditions. It is worth noting that in the field of research 
and development of manipulator robot control there are still 
many unsolved cases to be explored. A well known unsolved 
case is the absence of global asymptotic stability proof for 
the regulator type PID (with fixed gains) [8]. There are 
works that only prove local asymptotic stability [7–9], or 
in the best of the cases, semiglobal asymptotic stability [8, 
10], for control of robot manipulators with fixed PID gains. 
The principal works of PID regulators which motivated this 
paper have been presented in [11–14]. For the appropriate 
choice of the derivative and proportional gains in proposed 
nonlinear PID regulators, we have used a scheme of tuning 
based in fuzzy logic systems.

In order to remark the current importance of the PID con-
trollers, additional recent PID related works are described 
in the following. Loucif, F. et al. [15], in 2020, published 
a work about optimization of a nonlinear PID control for a 
manipulator robot inspired in whales. Such a work compared 
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with others two bio-inspired optimization algorithms: par-
ticle swarm and grey wolf algorithms. Yildiz, H., in 2020 
[16], published a comparative study between a robust non-
chattering sliding mode control for a line following robot 
and the conventional PID, also applied at the same robot. 
Hernández-Guzmán, V. M. et al., in 2018 [17], presented 
a global asymptotic stability proof applied to a PID posi-
tion regulator for robot manipulators actuated by permanent 
magnet synchronous motors. Izadbakhsh, A., in 2019 [18], 
presented a single-loop PID controller design for electri-
cal flexible-joint robots; based on the Lyapunov’s stability 
concepts, they proved the link position-tracking errors are 
asymptotically stable, and experimental implementations 
supported the proposed theoretical results. In 2018, Mishra, 
S. K. et al. [19], published a work about PID controllers with 
feed forward estimation used for fault tolerant control of a 
hydraulic system.

At the same way, in order to remark the current impor-
tance concerning fuzzy control for robotic system, we can 
mention the following recent works: In 2020, Jokar, H. et al. 
[20], published a paper about an adaptive fuzzy global fast 
terminal sliding mode control of an over-actuated flying 
robot, some simulations were carried out to validate its per-
formance. Taran, B. et al., in 2020 [21], published a paper 
called “Designing an optimal fuzzy sliding mode control 
for a two-link robot"; in that work, a fuzzy sliding mode 
control based on multi-objective genetic algorithm for the 
path control of a two-link robot was proposed. Some basic 
fuzzy self-tuning controllers for robot manipulators were 
presented in Llama, M. et al. 2001 [22], Meza, J- L. et al. 
2009 [23]. A seminal book in fuzzy systems and control is 
that of Wang, L. 1997 [24].

The main contribution in this work is the proposal of 
a novel global asymptotic stable PID regulator with PD 
variable gains, selftuned via fuzzy techniques, for robot 
manipulators. The closed-loop system, in this way, is glob-
ally asymptotically stable. With the goal of comparing the 
performance of the proposed regulator, two different tuning 
techniques for the PD variable gains, in addition to the fuzzy 
self-tuning technique, have been introduced. Experimental 
comparisons among them confirm better performance than 
the fixed gains scheme. The additional PD tuning techniques 
are based on piecewise linear functions and exponential 
functions dependent of the position errors.

The next sections are distributed as follow: In Sect. 2, 
the dynamics of the robot and its important properties are 
shown. Sect. 3 presents the nonlinear PID control law with 
variable gains. Sects. 4 and 5 present global asymptotic sta-
bility analysis of the PID control with variable PD gains. 
In  Sect. 6, the reader will find the real-time experimental 
testing results. Last but not the least, in Sect. 7 the final 
conclusion will be explained.

2 � Robot dynamics model

In order to be ready for stability analysis, we recall the gen-
eral equation that describes the dynamics of an n-degrees of 
freedom rigid robot manipulator [25] and [26].

In this paper, � is the applied torques vector of dimension 
n , q is the joint displacements vector of dimension n , the 
joint velocities q̇ is a vector of dimension n , q̈ is the vector 
of dimension n of joint accelerations, M(q) is the symmetric 
positive definite manipulator inertia matrix of dimension 
n x n , C(q, q̇) is the matrix of dimension n x n of centrip-
etal and Coriolis torques, g(q) is the gravitational torques 
vector of dimension n obtained as the gradient of the robot 
potential energy U(q) . It has been assumed that all the links 
are joined together by revolute joints. Significant properties, 
definitions, lemmas, theorems and assumptions about the 
robot dynamics are given next:

Property 1  Kelly et al. [26] The matrix C(q, q̇) and the time 
derivative M(q) of the inertia matrix satisfy:

Property 2  Kelly et al. [26] For robots having only revolute 
joints, the vector g(q) is Lipschitz; that is, there exists a con-
stant kg > 0 such that ‖g(x) − g(y)‖ ≤ kg‖x − y‖, a particu-
lar boundedness [27] is:

Property 3  Kelly et al. [26] There exists a positive constant 
kc such that for all x, y, z ∈ ℝ

n satisfies:

Theorem 1  Kelly et al. [26], Khalil [28] (Theorem of mean 
value). Suppose the continuous vectorial function 
f ∶ ℝ

n
→ ℝ

m . If fi(z1, z2,… , zn) has continuous partial 
derivatives for i = 1, ...,m , then for each pair of vectors 
x, y ∈ ℝ

n and each w ∈ ℝ
n there exists � ∈ ℝ

n such that 
[f (x) − f (y)]Tw = wT �f (z)

�z

|

|

|z=�
(x − y) , where � is a vector on 

the line segment that joins the vectors x and y.

Theorem 2  Kelly et al. [26] Let f ∶ ℝ
n
→ ℝ be a continuous 

differentiable function with continuous partial derivatives 
up to at least second order. Assume that: f (0) = 0 ∈ ℝ and 
�f

�x
(�) = � ∈ ℝ

n . If the Hessian matrix (�∕�x)[�f (x)∕�x] is 
positive definite for all x ∈ ℝ

n , then f (x) is a globally posi-
tive definite function.

(1)M(q)q̈ + C(q, q̇)q̇ + g(q) = �

q̇
T

⌊

1

2
Ṁ(q) − C(q, q̇)

⌋

q̇ = 0 ∀ q, q̇ ∈ ℝ
n

and Ṁ(q) = C(q, q̇) + C(q, q̇)T .

kgi ≥
∑n

j=1
max

|

|

|

�gi(q)∕�
(

qj
)

|

|

|

with i = 1,… ,N.

‖C(x,y)z‖ ≤ kc‖y‖‖z‖.
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Lemma 1  Llama et al. [22] Let matrix Kx(x) ∶ ℝ
n
→ ℝ

n×n 
be a diagonal matrix with entries ki(xi) having the follow-
ing structure: Kx(x) = diag

[

kx1
(

x1
)

kx2
(

x2
)

⋯ kxn
(

xn
) ]

 , 
and assume that there exist constant entries kli and kui  
where kui > kli > 0 such that kui ≥ kxi

(

xi
) ≥ kli for all kxi

(

xi
)

  
with xi ∈ ℝ and i = 1, ..., n , then 1

2
k
ui
|

|

x
i
|

|

2 ≥ ∫ x

0
�
i
k
x
i

(

�
i

)

d�
i≥ 1

2
k
li
|

|

x
i
|

|

2
.

Definition 1  Kelly [29] Let F(m, �, x) with 1 ≥ m ≥ 0 , 𝜀 > 0 
and x ∈ ℝ

n denote the set of all continuously differentiable 
increasing functions: ���(x) =

[

sat
(

x1
)

sat
(

x2
)

… sat
(

xn
) ]T  , 

such that: |x| ≥ sat(x) > m|x| ∀ x ∈ ℝ ∶ |x| < 𝜀 , � ≥ |sat(x)|

> m𝜀 ∀ x ∈ ℝ ∶ |x| ≥ 𝜀 , 1 ≥ d(sat(x))∕dx > 0 ∀ x ∈ ℝ . A particular 
case of this class of saturating functions is sat(x) = tanh(x).

Definition 2  Hernandez et al. [27] Let A be a n × n matrix 
with ai,j representing its elements at row i and column j . The 
matrix A is said to be strictly diagonally dominant if:

Definition 3  Hernandez et al. [27] If A is a n × n symmetric 
and strictly diagonally dominant matrix and if ai,i > 0 for all 
i = 1, 2,… , n , then A is positive definite.

Lemma 2  Orrante et al. [13] If A ∈ ℝ
n x n fulfills Definitions 

2 and 3, and ���(x) fulfills Definition 1, then:

Assumption 1  There exist positive constant matrices Ku , Kl 
such that Lemma 1 can be applied. That is:

|

|

|

ai,j
|

|

|

>

n
∑

i=1,j≠i
|

|

|

ai,j
|

|

|

, i = 1, 2,… , n.

��� (x)T Ax > 0 ∀ x ∈ ℝ
n with x ≠ 0 ∈ ℝ

n .

(2)1

2
q̃T Kuq̃ ≥ �

q̃

0

�T K
(

�k
)

d �k ∶=

n
∑

i=1
�

q̃i

0

𝜉iki
(

𝜉i
)

d𝜉i ≥ 1

2
q̃T Klq̃ ≥ ���(q̃)T

(

Kl

2

)

���(q̃)

(3)and
1

2
���(q̃)TKu���(q̃) ≥ �

q̃

0

���(�)TK(�)d� ∶=

n
∑

i=1
�

q̃i

0

𝜉iki
(

𝜉i
)

d𝜉i ≥ 1

2
���(q̃)TKl���(q̃)

where Ku , Kl are n × n constant positive definite diago-
nal matrices whose entries are kui , kli , respectively, with 
i = 1, 2,⋯ , n.\

3 � The proposed control law

The PID regulator is a famous set point control strategy for 
manipulators that makes sure asymptotic stability for fixed 
symmetric positive definite gain matrices. To improve the 
performance of the closed-loop system, it may be advisable 
to have variable gains [11]. In this paper, a novel PID type 
controller is presented whose major attribute is that stability 
is held notwithstanding the gain parameters depend on the 
positions of the robot. In [13, 29 and 30], a class of nonlinear 
PID global regulators with fixed gains was introduced and 
studied. In the current work, we have extended, the previous 
regulator with the end of suitably varying the proportional 
and derivative gains in function of the positions. This leads 
to the following proposed control law:

where Kp(q̃) , Kv(q̃) and Ki are positive definite diagonal n × n 
matrices, whose entries are denoted by kpi

(

q̃i
)

 , kvi
(

q̃i
)

 and kii , 
respectively, 𝛼 > 0 and q̃ = qd −q denotes the position error 
vector with qd being the instant desired position.

The closed-loop system is obtained by substituting the 
control law (4) into the robot dynamics (1), see Fig. 1. The 
closed-loop equation can be written as

(4)� = Kp(q̃)q̃ − Kv(q̃)q̇ + Ki ∫
t

0

[

𝛼���(q̃(𝜎)) − q̇
]

d𝜎

(5)d

dt

⎡

⎢

⎢

⎣

q̃

q̇

w

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−q

M(q)−1[−C(q, q̇)q̇ − g(q) + g(qd) + Kp(q̃)q̃ − Kv(q̃)q̇ + Kiw]

𝛼���(q̃) − q̇

⎤

⎥

⎥

⎦
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where w is defined as:

and we have that (5) becomes an autonomous nonlinear dif-
ferential equation whose origin 

[

q̃T q̇T wT
]T

= 0 ∈ ℝ
3n is 

the unique equilibrium point.

4 � Analysis of global asymptotic stability

In this segment, it is proven that the proposed control law (4) 
leads to a globally asymptotically stable closed-loop system, 
with proportional and derivative variable gain matrices. This 
stability analysis has been motivated by the works of [11, 
13, 23, 29] and [30].

4.1 � Lyapunov function candidate

In order to study the stability of the equilibrium point (5), 
the following Lyapunov function candidate is proposed:

Note that under Assumption 1, the function in (6) can be 
lower bounded as:

w = ∫
t

0

[

𝛼���(q̃(𝜎)) − q̇
]

d𝜎 − K−1
i
g
(

qd
)

(6)

V(q̃, q̇,w) = ∫
q̃

0

�T Kp(�)d� + 𝛼 ∫
q̃

0

���(�)T Kv(�)d�

+ U(q) − U
(

qd

)

+ g
(

qd

)T
q̃ +

1

2
q̇
T M(q)q̇

− 𝛼��� (q̃)T M(q)q̇ + w
T Kiw.

Now, we will give sufficient conditions to make 
VL(q̃, q̇,w) be a positive definite function. The sum 
o f  1

2
q̃
T
Kplq̃ + U(q) − U

(

qd
)

+ g
(

qd
)T

q̃  i s  p o s i -
tive definite if kpli > kgi , according to Theorem  2 
and Definition 2 and 3, [14]. Due to Ki > 0 , we have 
1

2
wTKiw is positive definite. By reordering the terms 

1

2
q̇
T
M(q)q̇ − 𝛼��� (q̃)T M(q)q̇ =

1

2

[

q̇ − 𝛼���(q̃)
]T

M(q) =
[

q̇ − 𝛼���(q̃)
]

−
𝛼2

2
��� (q̃)T M(q)���(q̃) , and taking into 

account the term 𝛼
2
��� (q̃)T Kvl ���(q̃) , it is possible to rewrite:

those last terms are positive definite if �
m

{

K
vl

}

−

𝛼𝜆
M
{M(q)} > 0 . Then, the positiveness conditions are:

In sum, the Lyapunov function candidate (10) is a  
globally positive definite function V(q̃, q̇,w) > 0 ∀

[

q̃ q̇ w
]T

≠ 0 ∈ ℝ
n , under the conditions (8).

(7)

V(q̃, q̇,w) ≥ VL(q̃, q̇,w) ∶

=
1

2
q̃
T Kplq̃ +

𝛼

2
���(q̃)TKvl���(q̃)

+ U(q) − U
(

qd

)

+ g
(

qd

)T
q̃

+
1

2
q̇
T M(q)q̇ − 𝛼��� (q̃)T M(q)q̇ + w

T Kiw.

1

2
q̇
T
M(q)q̇ − 𝛼��� (q̃)T M(q)q̇

+
𝛼

2
��� (q̃)T K

vl
���(q̃)

≥ 1

2

�

q̇ − 𝛼���(q̃)
�T

M(q)
�

q̇ − 𝛼���(q̃)
�

+
𝛼

2
[𝜆

m

�

K
vl

�

− 𝛼𝜆
M
{M(q)}] ‖���(q̃)‖2,

(8)kpli > kgi and
𝜆m

{

Kvl

}

𝜆M{M(q)}
≥ 𝛼

Fig. 1   Block diagram of the 
closed-loop system
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4.2 � Time derivative of the Lyapunov function 
candidate

The time derivative of the Lyapunov function candidate (6) 
along the trajectories of the closed-loop Eq. (5) leads to

where we have used the Leibnitz’s rule for differentiation 
of integrals and Property 1. By substituting the closed-
loop value of q̈ (5) in (9), we have the following simplified 
expression:

Due to Kv > 0 hence − q̇T Kv(q̃)q̇ is negative definite. 
Next, we provide upper bounds on the following terms:

and by means of Theorem 1, we have:

Using the Definitions 2 and 3, and Lemma 1, it is possible 
to establish that [12]

this also allows us to establish that, if

(9)V̇(q̃, q̇,w) = q̃T Kp(q̃) ̇̃q + g (q)T q̇ + g
(

qd
)T ̇̃q+

1

2
q̇T Ṁ(q)q̇ − 𝛼�ȧt (q̃)T M(q)q̇ + q̇M(q)q̈

− 𝛼��� (q̃)T Ṁ(q)q − 𝛼��� (q̃)T M(q)q̈ + wT Kiẇ + 𝛼��� (q̃)T Kv(q̃) ̇̃q,

(10)
V̇(q̃, q̇,w) = − q̇

T Kv(q̃)q̇ − 𝛼𝐬𝐚̇𝐭 (q̃)T M(q)q̇ − 𝛼𝐬𝐚𝐭 (q̃)T CT (q, q̇)q̇

− 𝛼𝐬𝐚𝐭 (q̃)T Kp(q̃)q̃ − 𝛼𝐬𝐚𝐭 (q̃)T g(qd) + 𝛼𝐬𝐚𝐭 (q̃)T g(q).

− 𝛼𝐬𝐚̇𝐭 (q̃)T M(q)q̇ ≤ 𝛼𝜆M{M(q)} ‖q̇‖2, −𝛼𝐬𝐚𝐭 (q̃)T CT (q, q̇)q̇ ≤ 𝛼kc
√

n𝜁 ‖q̇‖2,

−
1

2
q̇T Kv(q̃)q̇ ≤ −

1

2
𝜆m

�

Kv(q̃)
�

‖q̇‖2 ,

−𝛼��� (q̃)T
[

g(qd) − g(q)
]

= −𝛼��� (q̃)T
𝜕g(z)

𝜕z

|

|

|

|z=�

q̃ .

−𝛼��� (q̃)T
[

Kp +
𝜕g(z)

𝜕z

|

|

|

|z=�

]

q̃ < 0∀q̃ ≠ 0 ∈ ℝ
n If kpli > kgi;

(11)
1

2
𝜆m

�

Kv(q̃)
�

𝜆M{M(q)} + kc
√

n𝜁
> 𝛼 and kpli > kgi,

then V̇(q̃, q̇,w) is a globally negative semidefinite function. 
By using the fact that the Lyapunov function candidate (6) is 
radially unbounded and globally positive definite, and its time 
derivative is a globally negative semidefinite function, we can 
conclude that the equilibrium of the closed-loop system (5) is 

stable. Finally, by invoking the Lasalle’s invariance principle, 
the conclusion is that the equilibrium of the closed-loop sys-
tem is globally asymptotically stable for the regulation case.

5 � PD‑gains tuning.

This section is devoted to describe the most convenient way 
of varying the PD gains in function of the position errors, 

which allows us to avoid saturations in the actuator tor-
ques (when the errors are large) and to have small errors 
in the steady state (by increasing the proportional gains in 
this stage). The transitory response is also governed by the 
derivative gains in function of the position errors. The inclu-
sion of the particular integral action, proposed in this work, 
leads to globally effects; that is, the asymptotic stability of 
the equilibrium (convergence of the errors toward zero) is 
reached globally (the initial conditions can be arbitrarily 
large). The integral gain does not require, in our analysis, to 
be variable, is enough be a fixed gain. A future study, about 
the effects of also adapting the integral gain in function of 
the position error, will be considered due to the possible 
effects in the performance of the position response.

For the case of variable gains by self-tuning PD matrix 
functions techniques, three techniques are implemented: 

Fig. 2   General shapes of tuning 
for Kp and Kv : a fuzzy functions, 
b piecewise-linear functions and 
c exponential functions
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fuzzy self-tuning, piecewise-linear self-tuning and exponen-
tial self-tuning. Fig. 2 shows the different slope shapes for 
the implemented functions for the programmed tuning of the 
PD variable gains, in a general aspect. A general description 
for each of the proposed techniques is shown in the follow-
ing subsections.

5.1 � Fuzzy self‑tuning PD functions technique

The Fuzzy Logic Tuner (FLT) proposed for obtaining the 
slope shape of the PD variable gains is based in [22]. With 
the intention of reducing the computation of the real-time 
controller and obtaining the desired mapping shape, simple 
strategies of design were selected; these are: Mamdani’s rule 
base, trapezoidal input membership functions, singleton out-
put membership functions, singleton fuzzification, product 
inference and the centroid defuzzification method. Fig. 3 
shows a block diagram of the FLT.

The input membership functions are triangular and nor-
malized, and the output membership functions are singleton 
type, see Fig. 4. The fuzzy logic rule base is:

The maximum defuzzifier chooses the output k 
as the point in V (crisp set of all possible outputs) at 
which achieves its maximum value [24]. Define the set 
hgt(Bl) =

{

k ∈ K|�Bl = sup�Bl (k)
}

 that is, hgt(Bl) is the set 
of all points in K at which �Bl achieves its maximum value. 
The maximum defuzzifier defines k∗ as an arbitrary element 
in hgt(Bl) , that is, k∗ = any point in hgt(Bl). If hgt(Bl) con-
tains a single point, then k∗ is uniquely defined.

The parameters for the fuzzy self-tuning are four, a pair 
for each joint. Tables 1 and 2 show the parameters of the 
fuzzy self-tuning of the PD variable gains.

IF q̃ is Al THEN K is Bl

5.2 � Piecewise‑linear PD functions technique

For this case, the gains of the nonlinear PID regulator 
with PD variable gains are tuned by a piecewise-linear 
function technique, determined by the following relation: 
kp1 = 7000 − 6.73 ⋅ 105|

|

q̃1
|

|

 ,  kp2 = 700 − 1.4 ⋅ 104|
|

q̃2
|

|

 , 
kv1 = 398 − 7.87 ⋅ 103|

|

q̃1
|

|

 , kv2 = 40.3 − 3.8 ⋅ 103|
|

q̃2
|

|

 . The 
units of the gains for Kp and Kv are [N m / rad], [N m seg / 
rad], respectively, and q̃ is in [rad].

In order to satisfy the stability conditions given in (11) 
is necessary to add low boundaries to Kp and Kv . The low 
boundaries are Kp = diag{43.7, 4.1} , Kv = diag{34, 4.3}.

5.3 � Exponential PD functions technique

The exponential tuning scheme is based on exponential func-
tions of position errors, as follow:  Kp = diag

{

fp1(q̃1), fp2(q̃2)
}

 
[ N m / r a d ] ,  Kv = diag

{

fv1(q̃1), fv2(q̃2)
}

  , 
w h e r e  fp1( q̃1 ) = 43.7 + 3000.7 e( − 46.197

|
q̃1 | )   , 

fp2( q̃2 ) = 4.1 + 700.1 e( − 46.332
|
q̃2 | )   , 

Fuzzification
Rule base

and inference Defuzzification
q

Fig. 3   Block diagram for the Fuzzy Logic Tuner

Fig. 4   Input and output mem-
bership functions, respectively

Table 1   Parameters of the fuzzy tuner of the joint 1

Joint 1 (shoulder)

q̃
1
[rad] kp1 [N m/rad] q̃

1
[rad] kv1 [N m s/rad]

p0 = 0.0 k1 = 7000.7 p0 = 0.0 k1 = 398
p1 = 0.034 k2 = 1800.7 p1 = 0.03 k2 = 290
p2 = 0.34 k3 = 62.7 p2 = 0.34 k3 = 84
p3 = 3.2 k4 = 43.7 p3 = 4.01 k4 = 35.2

Table 2   Parameters of the fuzzy tuner of the joint 2

Joint 2 (elbow)

q̃
2
[rad] kp2 [N m/rad] q̃

2
[rad] kv2 [N m s/rad]

p0 = 0.0 k1 = 700.1 p0 = 0.0 k1 = 25.3
p1 = 0.03 k2 = 100.1 p1 = 0.005 k2 = 12.3
p2 = 0.27 k3 = 4.1 p2 = 0.27 k3 = 4.3
p3 = 3.2 k4 = 4.1 p3 = 4.01 k4 = 4.3
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fv1( q̃1 ) = 34 + 60.1 e( − 32.37
|
q̃1 | )   , 

fv2( q̃2 ) = 4.3 + 20.3 e( − 57.66
|
q̃2 | ).

6 � Real‑time experimental testing

The testbed manipulator arm (see Fig. 5) is a prototype built 
at CICESE Research Center, Mexico and located at Instituto 
Tecnológico de La Laguna, México [31].

Eq. (1) with the CICESE Robot parameters results:

Fig. 5   Photograph and sche-
matic diagram of the CICESE 
Robot

Table 3   Physical parameters of the CICESE Robot

Description-parameter Notation-
symbol

Value Units

Mass of link 1 m1 23.902
[

kg
]

Mass of link 2 m2 3.88
[

kg
]

Inertial rel. to center of mass (link1) I1 2.366 [

kg m2
]

Inertial rel. to center of mass (link2) I2 0.093 [

kg m2
]

Length of link 1 l1 0.45 [m]

Length of link 2 l2 0.45 [m]

Distance to center of mass (link 1) lC1 0.091 [m]

Distance to center of mass (link 2) lC2 0.048 [m]

Maximum torque of motor (link 1) �1 150 [N m]

Maximum torque of motor (link 2) �2 15 [N m]

Gravity acceleration g 9.81
[

m
/

s2
]

Fig. 6   Position q
1
 of joint 1

Fig. 7   Position q
2
 of joint 2
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Fig. 8   Applied torque �
1

Fig. 9   Applied torque �
2

Fig. 10   Plot of kp
1
 proportional gain

Fig. 11   Plot of kp
2
 proportional gain

Fig. 12   Plot of kv
1
 derivative gain

Fig. 13   Plot of kv
2
 derivative gain
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where the physical values of the parameters are shown in 
Table 3. The structure of the elements of the dynamics of the 
manipulator satisfies the important Properties 1 to 3 men-
tioned in Sect. 2 (see, e.g., [22, 23]).

The control law with constant gains used in the experi-
ments for comparison purposes is given by

Comparison experiments among the PID regulator with 
constant gains (12), and the proposed PID regulators, given 
by (4), with PD variable gains, have been carried out.

In both cases, constant and variable PD gains, the 
parameters � and ki ’s were maintained unaltered, the values 
assigned for � is 1.5 and for ki1 = 100 [Nm/s-rad]; ki2 = 10 

M(q)

���������������������������������������������������������������������������������������������������������������������������������
[

m1l
2
c1
+ m2

[

l2
1
+ l2

c2
+ 2l1lc2 cos

(

q2
)]

+ I1 + I2 m2

[

l2
c2
+ l1lc2 cos

(

q2
)]

+ I2
m2

[

l2
c2
+ l1lc2 cos

(

q2
)]

+ I2 m2l
2
c2
+ I2

]

q̈

+

C(q,q̇)

�������������������������������������������������������������������������������
[

−m2l1lc2 sin
(

q2
)

q̇2 −m2l1lc2 sin
(

q2
)[

q̇1 + q̇2
]

m2l1lc2 sin
(

q2
)

q̇1 0

]

q̇ +

g(q)

�������������������������������������������������������������������������������
[ [

m1lc1 + m2l1
]

g sin
(

q1
)

+ m2lc2g sin
(

q1 + q2
)

m2lc2g sin
(

q1 + q2
)

]

= �

(12)� = Kpq̃ − Kvq̇ + Ki ∫
t

0

[

𝛼���(q̃(𝜎)) − q̇
]

d𝜎

[Nm/s-rad]. For the case with constant gains, the values 
were assigned: kp1 = 58.7 [Nm/rad], kp2 = 4.1 [Nm/rad], 
kv1 = 34.0 [Nm-s/rad]; kv2 = 4.3 [Nm-s/rad], where the sub-
scripts 1 and 2 have been used to distinguish the shoulder 
and the elbow joint, respectively.

The experimental results show the usefulness of the regu-
lator proposed with three different techniques of self-tuning 
PD gains. The experimental results are shown in Figs. 6, 
7, 8, 9, 10, 11,12 13. They show the actual joint positions 
and applied torques for the proposed control schemes: fuzzy 
self-tuning PD control, the piecewise-linear self-tuning PD 
control, the exponential self-tuning PD control and the clas-
sical PID control with constant gains. From Figs. 6 and 7, 
we can observe that the position transient responses for the 
fuzzy PD self-tuning are faster than the others to reach the 
set point.

Furthermore, the position errors in steady state (after 4 s 
of the transient response) are smaller in the fuzzy self-tuning 
PD functions techniques; see Table 4 and Fig. 14. The plots 
of positions are in degree scales for better appreciation of 
the joint motions. Applied torques �1 and �2 are shown in 
Fig. 8 and Fig. 9; these figures show the evolution of the 
applied torques; they remain within the torque actuator lim-
its �1 max = 150 Nm and �2 max = 15 Nm.

The improvement in the responses of the fuzzy self-tun-
ing PD control is mainly caused by the capability of varying 
the variable PD gains in accordance with the position errors. 

Figures 10, 11, 12, 13 show the evolution of proportional 
and derivative gains for all proposed regulators.

The regulators with self-tuning PD gains gives high gains, 
into the permitted boundaries, when the position errors are 
small and small gains when the position errors are big, 
avoiding so the actuators torques reach their saturation zone.

7 � Conclusions

In this paper, we have proposed a class of new nonlinear PID 
global regulators with variable gain matrices Kp and Kv; 
besides, we have proposed three schemes for tuning of the 
PD gains of such a class of PID regulators, via: piecewise-
linear functions, exponential functions and fuzzy selftuned 
functions. Moreover, a global asymptotic stability proof, 

Table 4   Index of steady state errors [deg]

Self-tuning PD 
functions tech-
niques

4 s to 10 s 14 s to 20 s 24 s to 30 s 34 to 40 s

Constant 0.0044 0.0106 0.0424 0.059
Fuzzy 0.0046 0.0041 0.0024 0.0019
Exponential 0.000906 0.000906 0.0028 0.026
Piecewise-linear 0.0066 0.0104 0.0447 0.0546

Fig. 14   Plot of index of steady state errors
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via Lyapunov theory, for the proposed nonlinear PID global 
regulator with self-tuning PD gains for robot manipulator 
is presented. Experiments in real time on a two-degree-of-
freedom robot arm are made to point out the functionality 
of the proposed controller.

The experimental results showed that the regulator with 
fixed gains nonlinear PID is not able to achieve the desired 
functionality. In order to get good results, it is recommend-
able to have variable gains in the regulator. The experiments 
show that the reference is reached in a less time, when it is 
used, the proposed nonlinear PID controller with fuzzy self-
tuning PD gains, than when it is used the fixed gains regula-
tor and the other PD gains tuning systems. A next stage is to 
try with the trajectory tracking problem.
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