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Abstract
The application of pedicle screws in instrumentation of the spine is widely used in spine correction surgeries. High stresses 
can be developed in the region surrounding the screw, and it is important to understand how to minimize this stress in order 
to reduce risk of patient harm. Traditional studies have used FEM (finite element method) to evaluate the best position and 
orientation of the pedicle screws; however, such approach demands iterative simulations to find the minimum stress position. 
This work has used an optimization-based method, based on neural network and genetic algorithm, to test different pedicular 
screw positions. By performing simulations of different screw positions through finite element analysis and using the results 
to train an artificial neural network, a less computationally intensive method of determining stress was found. The mathemati-
cal model created was optimized through a genetic algorithm and used to find a trajectory that results in lower mechanical 
stress between the pedicle screw and the vertebra. The results of the ANN approach show a reduction of 5.25% in the von 
Mises stress when compared to the FEA. Regarding the optimal trajectory, the angles differences were 2° in sagittal plane 
and 1.4° in transverse plane, hence showing good results.

Keywords Pedicle screw · Finite elements · Neural network · Genetic algorithm

1 Introduction

Spinal correction surgery through pedicle screws is a com-
mon procedure in treating patients with spine deformities or 
fractures. However, complications can occur due to the loos-
ening of the screw after surgery [1]. In order to prevent this 
complication, different trajectories for insertion of the screw 
can be studied [2]. For proper evaluation of different trajec-
tories, it is important to understand how the system works 
from a mechanical point of view. Finite element methods 
have been widely used in this regard [3, 4], and they might 
be capable of correctly simulating the stress conditions in 
this kind of procedure. With this technique, it is possible to 
assess multiple trajectories for the screw insertion. How-
ever, the use of this technique for a wide variety of inser-
tion angles is time-consuming and eventually costly from a 

computational point of view. This creates the opportunity 
to explore different methods of evaluation of the maximum 
stress in the pedicular screw positioning. Artificial neural 
network (ANN) is one method that has been used to deter-
mine the mechanical structure of bones [5]. It has also been 
shown that this model can be trained to reproduce results 
from finite element analysis of pedicle screws [6].

Studies have compared different insertion angles of pedi-
cle screw instrumentation of the spine [2, 7–9]. The most 
common insertion angle, i.e., traditional trajectory, is fol-
lowing the transpedicular path. In the lower lumbar spine, a 
common value for the transpedicular angle is at a 22° to the 
sagittal plane and parallel to the superior end plate of the 
vertebra. This trajectory follows a transpedicular path [8]. 
Although it is possible to increase the anchorage of the sys-
tem by changing this trajectory [3, 8], this reduces the angle 
to the sagittal plane [7]. Other trajectories have also been 
tested, particularly the cortical trajectory [8]. In this case, 
for the lumbar vertebrae, the screw is inserted at a 22° angle 
to the transverse plane, pointing toward the cranial direction, 
and at a 6° angle to the sagittal plane, pointing outward. The 
objective was to maximize thread contact with cortical bone, 
resulting in greater bone-screw fixation.
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A typical method of evaluating pedicle screw fixation 
is the pullout strength test [4, 10, 11]. This test consists 
of fixing the vertebra and applying an axial force to the 
screw. The failure point is the load for which the screw is 
separated from its anchorage, often by tearing. This point 
can also be detected by a sharp drop in the force dur-
ing in vitro tests [3]. The load at failure is influenced by 
several factors, including but not limited to the studied 
vertebra, bone density, insertion angle, insertion technique 
and screw geometry. The force at failure is usually in the 
200 N to 800 N range [3, 4, 9–12].

As an alternative to in vitro tests, the stress values 
of pedicle screw instrumentation can be determined by 
finite element analysis (FEA). Due to the complexity of 
the vertebral bone structure, some simplifications are usu-
ally made. Mechanical properties of the bone are consid-
ered homogeneous and isotropic, with the only distinc-
tion being between trabecular and cortical bone [6, 13]. 
The cortical bone is considered as an outside layer with 
uniform thickness. For boundary conditions, the screw is 
considered fixed to the vertebra, with no relative motion 
between them. The vertebra is considered fully fixed in 
its lower surface [14, 15]. A typical mesh has element 
size varying from 0.4 to 1 mm [9]. Previous works have 
analyzed the validity of these parameters [16].

The artificial neural network (ANN) is a technique 
used to estimate relationships between variables [13]. An 
ANN is composed of multiple layers, each subdivided into 
neurons. Between the neurons of each layer, a weight is 
applied by multiplication with the neuron value. Each neu-
ron has also threshold for activation. An activation func-
tion is used to introduce nonlinearity to the model [17]. 
This model has been used to emboss the mechanical stress 
in the bone and biomechanical systems such as pedicle 
screw fixation [5, 6, 13, 18].

Currently, studies have shown benefits of applying 
optimization in biomechanical situations [19, 20]. For 
this, it is important that adequate mathematical models 
are applied, as it may require a high computational cost. 
Mathematical optimization is a group of models used to 
find a desired point in an input function, usually the maxi-
mum or minimum point. In this group, a notable model is 
the genetic algorithm [19]. Inspired by natural evolution, 
it uses randomization of the input values to search for the 
extreme point of a given function, called the fitness func-
tion. Each solution found is called a chromosome, and its 
parameters the genes. At each iteration of the algorithm, 
called generation, the chromosomes are randomly com-
bined according to their fitness in order to produce a new 
generation for analysis. This process is named reproduc-
tion. Typical combinations are mutation, in which one of 
the genes is randomly altered, and crossover, where genes 
of two different chromosomes are changed [21, 22].

This paper presents a study based on finite element analy-
sis to assess the resulting stress in the vertebra given dif-
ferent pedicle screw positionings. The stress is measured 
simulating a pullout strength test on an isolated L4 vertebra. 
Specific angles were defined to train an ANN to predict the 
screw stresses in the different trajectories. Afterward, an 
optimization algorithm, i.e., genetic algorithm, was used to 
minimize the maximum von Mises stress in the vertebra. The 
next section presents the materials and methods used in this 
work, followed by the results and discussions.

2  Materials and methods

This work chose the L4 vertebra as a pilot test to verify the 
applicability of the suggested method (Fig. 1). This vertebra 
was selected due to the image quality obtained from CT 
(Computer Tomography) scan, and it was converted to the 
STL file format from a public medical library (DICOM). 
Figure 1 shows the CAD solid model, which afterward was 
exported to the Abaqus® FEA tool.

The screw (Fig. 2) was modeled using SolidWorks® 
2018, based on a generic geometry representation of a pedi-
cle screw with triple start. The dimensional specifications of 
the screw are: major diameter 7 mm, minor diameter 3 mm, 
pitch 3 mm, 60° thread angle and 37 mm length. The screw 
head is represented as a cube to simplify the model.

The baseline trajectory was chosen as parallel to the trans-
verse plane (Fig. 3 right), and at a 15° angle to the sagittal 

Fig. 1  L4 vertebra CAD model

Fig. 2  Modeled pedicle screw
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plane (Fig. 3 left), which corresponds to the traditional tra-
jectory. Fifty different positions were created based on the 
combination of two angles (α and β) considering increments 
of 5°. The first angle (α) varies from 5° to 40°, and the sec-
ond (β) from − 15° to 20° (Fig. 4). This range was based 
on the vertebra geometry, with the limits set according to 
the values in which the screw penetrates the vertebra wall. 
Within these limits, the screw thread stays inside the bone 
structure.

The finite element analysis was made using Abaqus® 
FEA tool. The vertebra was meshed (Fig. 5) using tetra-
hedral elements of quadratic order (C3D10) in the analysis 
region (close to the screw), and of linear order (C3D4) in 
the noninteresting regions. The cortical bone layer was mod-
eled using a skin of linear triangular shell elements (S3) 

Fig. 3  Initial screw trajectory 
and positive angle directions

Fig. 4  Limiting angles of the 
screw trajectory

Fig. 5  Model mesh in traditional trajectory
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with 1 mm thickness. The screw was meshed with tetrahe-
dral quadratic elements (C3D10). The average length of the 
elements was 1 mm, and the total number of elements was 
around 300 000 (varying for each specific trajectory).

The vertebra was considered fixed in the lower surface 
(Fig. 6, right). The screw mesh was merged with the ver-
tebra, simulating a fully fixed join between both. A force 
of 400 N was applied in the axial direction of the screw 
(Fig. 6, left), simulating a pullout strength test. This force 
was defined for being close to the force of failure in a typi-
cal pullout strength test [10]. The von Mises stresses were 
evaluated in the cortical portion of the bone surrounding the 
screw [12, 23].

The bone material properties were modeled according to 
[14], and the screw properties were considered to be TiAl4V, 
according to [4], as shown in Table 1.

A neural network was trained using the results of the sim-
ulations. The 50 individual positions were randomly split 
into two sets: a training set, with 44 positions, and a test set, 
with six positions. The neural network was modeled using 
TensorFlow [24]. A grid search varying all parameters was 
used to choose the ideal architecture. The input layer con-
tains two neurons, one for each angle that defines the screw 
position, as shown in Fig. 3. A single hidden layer with ten 
neurons was used.

The output layer has one neuron corresponding to the 
maximum von Mises stress in the trabecular bone region. 
The activation function chosen for the hidden layer was the 
rectified linear function. A penalty term in the loss function 
of the ANN of 0.1 and dropout of 0.5 were used to prevent 
overfitting. The RMSProp optimizer was used, with a learn-
ing rate of 5.10–4. To train the model, an early stop call-
back was employed, using 10% of the data as validation and 
patience of 1000 epochs. The batch size was 16. The mean 
squared error (MSE) was chosen as loss function.

In order to find the best screw position, a genetic algo-
rithm was used and modeled using the software Distributed 
Evolutionary Algorithms in Python (DEAP) [25]. The math-
ematical model can be written as:

Subject to:

MVS represents the maximum von Mises stress value 
in the vertebra. The α and β angles vary in a continuous 
distribution. In this model, the α angle varies in relation 
to the initial (15°) angle. A − 10° angle in this model cor-
responds to a 5° absolute angle (Fig. 4a), and a 25° angle 
to a 40° angle (Fig. 4b). This change in reference was done 
due to modeling convenience. The genetic algorithm was 
parametrized as a minimization problem, with population 
size 300, 40 generations, crossover probability of 50% and 
mutation probability of 20%. The trained neural network was 
used to predict the stress in each chromosome. To keep the 
results within the modeled angle range, a penalty of 100 was 
applied to chromosomes outside the range.

The final trajectory obtained was reevaluated using FEA 
analysis. This step was added to verify the validity of the 
result, since the nature of the ANN generates an error in the 
stress value.

Minimize MVS(�, �)

−10◦ ≤ � ≤ 25◦

−15◦ ≤ � ≤ 20◦

Fig. 6  Force applied (left) and 
vertebra fixation (right)

Table 1  Material properties of the vertebra and screw

Material Young’s modu-
lus [MPa]

Yield stress 
[MPa]

Poisson’s ratio

Cortical bone 12,000 173 0.3
Trabecular bone 100 3.4 0.2
Ti6Al4V 114,000 795 0.3
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3  Results and discussions

The ANN achieved a mean squared error (MSE) value of 
0.71 in the validation set, which was used as early stop con-
dition, and of 0.91 in the testing set, which were the points 
excluded for training. The mean absolute error (MAE) was 
of 0.81 in validation and 0.92 in testing. Using the entire 
dataset, the MSE was 0.27, and the MAE 0.42. This error is 
12% of the yield stress of trabecular bone, being compatible 
with the usual range met for in vitro tests [10].

Figure 7 shows the maximum von Mises stress as pre-
dicted by the neural network and according to the FEA 
results. Each point in the graph represents one trajectory. 
As expected from the MAE result, the predicted stress values 
are close to the simulated values. The maximum absolute 
error was 1.17 MPa (relative error 18%, from 6.48 MPA in 
CAE to 5.31 MPA in ANN). The maximum relative error 
is 25% (absolute error 0.86 MPa, from 3.43 MPa in CAE to 
4.29 MPa in ANN). The von Mises stresses values obtained 
from the ANN tend to be closer to the average value of stress 

obtained with the FEA model, showing less spread between 
minima and maxima. As expected for the applied 400 N 
pullout force, the stresses were around or above the yield 
stress of 3.4 MPa, which indicates that the chosen criterion 
is consistent with experimental results [3, 4, 9–12].

For the case studied, the optimized trajectory with min-
imum stress was found at the position with 37° from the 
sagittal plane (α) and 1.4° from the transverse plane (β), 
as shown in Fig. 8. In this position, the predicted stress is 
4.29 MPa. The FEA simulation of the optimized trajectory 
(as determined by the genetic algorithm) results in a stress 
value of 3.25 MPa. The error from the ANN was 32.0% in 
this case.

In the initial FEA analysis, before the optimization, the 
lowest stress found was 3.43 MPa, at α 35° and β 0°. This 
position is close to the optimal one found by the genetic 
algorithm, with a difference of 2° in α and 1.4° in β. The 
optimal position presented a stress value 5.25% lower than 
the value obtained by FEA calculations, showing that the 
optimization was possible.

Based on this experiment, it may be noted the combina-
tion of an ANN and a genetic algorithm can help in the defi-
nition of an optimized screw position. However, the results 
showed that ANN cannot be used to fully characterize the 
stress state at a particular position, since the error can push 
the stress past the yield point. Thus, it is needed to be used 
in combination with another method of stress determination, 
such as FEA. Even considering the error found in the ANN 
method, the obtained stress results were consistent with the 
FEA analysis for each trajectory. This indicates that even 
though the results from the proposed method can optimize 
the screw trajectory, they cannot be used for a precise stress 
assessment.

The stress distribution around the failure point for the 
trajectory with minimal maximum stress in the initial FEA 
analysis (before optimization) is shown in Fig. 9 (α 35°, β 
0°). Figure 10 shows the equivalent point for the optimized 
trajectory (α 37°, β 1.4°). In both cases, failure occurs near 
the screw thread, as expected, as these points act as stress Fig. 7  Maximum von Mises [MPa] stress in trabecular bone region

Fig. 8  Trajectory with minimal 
stress
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increasers due to geometry and difference of material in 
the contact point of screw and bone. Also, these points are 
located around the pedicle area, the thinnest region that the 
screw is inserted. However, the distribution of von Mises 
stresses was more uniform in the position defined by the 
optimized model than the position of initial model.

Finally, the numerical results achieved by this research 
will be different for other vertebrae and spine regions 
due to differences in geometry and anatomy. Also, verte-
brae geometry varies from person to person. This issue is 
amplified when dealing with different spine pathologies, 
since the nature of each deformity would bring different 
constraints to a model. Obtaining the vertebra model for 
a specific patient and performing a study of the specific 
problems regarding orthopedics and traumatology may 
help the population with the ANN model, providing a way 
of bridging this gap. The surgery itself is another point 
that should be considered. The method can cause varia-
tions in the structural integrity of the vertebra and spine, 
and this deviation should be considered before the final 
trajectory is chosen. These issues offer different opportuni-
ties for further works supporting the development of the 
proposed method for a more general application through-
out the spine.

4  Conclusions

The use of an ANN combined with a genetic algorithm 
was effective in finding a screw position with lowered 
stress. However, the error in the ANN result is generally 
high, showing that it cannot be used alone to determine 
the stress in a given trajectory.

The optimized trajectory is one with increased contact 
with cortical bone when compared to the traditional trajec-
tory, which passes through the pedicle center. The same 
happens with a cortical trajectory, increased proximity to 
cortical bone reduces the maximum stress and helps dis-
tribute the stress over the contact area.

Further works might use additional von Mises stress 
values in ANN training aiming to evaluate the sensitivity 
of the proposed model.
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