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Abstract
Free vibration of orthotropic rectangular thin plates of constant thickness with two opposite edges clamped and one or two 
edges free is analyzed by generalized integral transform technique. Numerically stable eigenfunctions in exponential func-
tion forms of Euler–Bernoulli beams with appropriate boundary conditions are adopted for each direction of the plate. The 
governing fourth-order partial differential equation for the mode function of free vibration is transformed into a system of 
linear equations, by integral transform in both directions of the rectangular plate. The boundary conditions at free edges are 
satisfied exactly by considering the terms generated in the transformed equations by integration by parts, which are absent 
in the equations by traditional Rayleigh–Ritz method. The natural frequencies of free vibration of orthotropic rectangular 
thin plates obtained by the proposed integral transform solution are compared with available results in the literature and 
numerical solutions by finite element analysis, showing excellent agreement and high convergence rate.

Keywords  Rectangular thin plates · Orthotropic plates · Free vibration · Integral transform · Exact solutions · Natural 
frequency

1  Introduction

The present work addresses the free vibration of rectangular 
plate with one or two free edges, which has received con-
tinual attention in the literature [1–11]. It is well known that 
exact Levy’s solutions exist for free vibration of rectangular 
plates when there is a pair of simply supported opposite 
edges. The Rayleigh–Ritz method has been used widely to 
determine free vibration frequency for other combinations of 
boundary conditions. Leissa [1] presented a comprehensive 
study of free vibration of rectangular plates and pointed out 
that among 21 combinations of simply supported, clamped 

and free boundary conditions at the four edges of a rectan-
gular plate, exact solutions exist for six combinations with 
at least a pair of simply supported opposite edges (SSSS, 
SCSC, SCSS, SCSF, SSSF, SFSF), with the four letters indi-
cating the boundary conditions at the edges in counterclock-
wise order starting from the left edge. Among the remaining 
15 combinations of boundary conditions, three combina-
tions do not involve a free edge (CCCC, CCCS, CCSS). For 
these three cases, the Rayleigh–Ritz method based on cor-
responding beam functions for the pair of opposite bound-
ary conditions of the rectangular plate generates accurate 
results for the free vibration as the plate boundary conditions 
on all edges are exactly satisfied by the trial functions used 
in the Rayleigh–Ritz method. There are still 12 combina-
tions of boundary conditions that involve at least one free 
edge. For rectangular plates with at least a free edge, the 
Rayleigh–Ritz method based on beam functions can only 
generate approximate results for the natural frequencies of 
free vibration, as the beam functions do not satisfy the plate 
boundary conditions at a free edge.

The difficulty with rectangular plate with at least one free 
edge has received special attention in the literature. A num-
ber of methods have been applied to tackle the problem. 
Bhat and Liew et al. [2, 12] used a set of beam characteristic 
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orthogonal polynomials in the Rayleigh–Ritz method to 
obtain natural frequencies of rectangular plates. The orthog-
onal polynomials are generated by using a Gram–Schmidt 
process recursively from the first function that is constructed 
to satisfy all boundary conditions of the corresponding beam 
problem associated with the pair of opposite boundary con-
ditions of the plate problem. Dickson and Di Blasio [3] 
showed that the orthogonal polynomials approach generated 
excellent results, with simpler first functions compared with 
Bhat [2] who used order four or five polynomial for the first 
function. Mizusawa [4] used B-Spline functions in the Ray-
leigh–Ritz method for isotropic rectangular plates with free 
edges. Shu and Du [5] proposed a generalized approach to 
implement general boundary conditions in the GDQ method 
for free vibration analysis of rectangular plates. Rossi et al. 
[6] used an optimized Rayleigh–Ritz method and a pseudo-
Fourier expansion containing a number of optimization 
parameters. Kshirsagar and Bhaskar [7] showed that Levy 
solutions could be used in untruncated infinite series super-
position method (UISSM) for any combination of boundary 
conditions of rectangular plates. Khov et al. [8] presented an 
exact series method for static and dynamic analyses of ortho-
tropic plates with general boundary conditions, based on 
the expansion of the displacement function in a 2-D Fourier 
cosine series supplemented by several 1-D series. Eftekhari 
and Jafari [9, 10] proposed an alternative Ritz formulation 
for free vibration of rectangular plates with free edges, based 
on orthonormal trial functions [2, 3]. Integrations by parts 
are carried out in both edge directions to implement all gen-
eral equations on each edge. Xing and Liu [13] obtained 
exact solutions for free vibrations of orthotropic rectangular 
thin plates using separation of variables method and pre-
sented exact solutions of three configurations (G-G-C-C, 
S-G-C-C and C-C-C-G) for the first time (where G stands 
for guided boundary condition). Recently, Banerjee et al. 
[11] developed the dynamic stiffness matrix of a rectangular 
plate for general cases to solve the free vibration problem 
of rectangular plates. Liang et al. [14, 15] proposed a semi-
analytical method for the transient response of functionally 
graded material (FGM) rectangular plates under various 
boundary conditions, combining the state space method, 
differential quadrature method and numerical inversion of 
Laplace transform.

Recently, generalized integral transform technique 
(GITT) has been applied to obtain analytical solution of 
bending problem of orthotropic rectangular thin plate 
with two opposite edges clamped [16]. Among five sets 
of boundary conditions treated, three sets involve one or 
two free edges. The boundary conditions at free edges of 
the rectangular plate were treated exactly by carrying out 
integral transform of the boundary conditions along the 
free edge direction. Generalized integral transform tech-
nique is a hybrid analytical–numerical method that has 

been applied successfully in a wide range of flow and heat 
transfer problems [17–20], as well as in static and dynamic 
structural analyses [21–34]. In this work, the free vibra-
tion of orthotropic thin rectangular plates with a pair of 
opposite edges clamped and one or two free edges (CSCF, 
CCCF, CFCF) is studied analytically by using generalized 
integral transform technique. As the traditional expres-
sions for eigenfunctions of Euler–Bernoulli beams in 
combinations of hyperbolic functions and trigonometric 
functions are not suitable for numerical implementations 
involving high-order modes [35–38], numerically stable 
expressions for eigenfunctions of Euler–Bernoulli beams 
with corresponding boundary conditions, in exponential 
function forms, are adopted as base functions for integral 
transform. Additional terms due to the difference between 
the boundary conditions of beam and plate at free edges 
of the rectangular plate are represented exactly by inte-
gral transform. The governing equation and all bound-
ary conditions are integral-transformed into an infinite 
system of linear algebraic equations for the transformed 
coefficients. The infinite system of equations is truncated 
at a sufficiently high order to a finite size linear system of 
homogeneous equations. The eigenvalues and eigenvectors 
of the linear system are obtained by using a subroutine in 
Mathematica [39], thus yielding natural frequencies and 
mode functions of the free vibration of the rectangular 
plates. To our best knowledge, it is the first time that inte-
gral transform solutions for free vibration of orthotropic 
rectangular thin plates with free edges are obtained with 
numerically stable beam functions as base functions, large 
number of terms in series expansion and exact treatment 
of the boundary conditions at free edges. The calculated 
natural frequencies are compared with available results 
in the literature and a reference finite element solution, 
showing excellent convergence and agreement with the 
finite element solution.

2 � Mathematical formulation

Let us consider free vibration of an orthotropic rectangular 
thin plate with a pair of opposite edges clamped and one or 
two free edges (CSCF, CCCF, CFCF). The plate has length 
a, width b, constant thickness h and lies in the (x, y) plane 
when no deflection occurs, as presented in Fig. 1. The nota-
tion for the combination of boundary conditions follows that 
proposed by Leissa [1]. For example, CSCF stands for a 
rectangular plate with clamped, simply supported, clamped 
and free boundary conditions at x = 0, y = 0, x = a and 
y = b edges, respectively. The governing equation for the 
free vibration of the orthotropic rectangular thin plate can 
be written as follows:
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where w(x, y, t) is the dynamic transverse deflection, � 
is the mass density per unit area, and Dx and Dy are the 
flexural rigidities in the y and x directions, respectively. 
H = D1 + 2Dxy is the effective torsional rigidity, in which 
Dxy is called the torsional rigidity and D1 = �yDx = �xDy in 
terms of the Poisson’s ratios �x and �y . The flexural and tor-
sional rigidities of the plate are defined by

(1)Dx

�4w

�x4
+ 2H

�4w

�x2�y2
+ Dy

�4w

�y4
+ �

�2w

�2t
= 0,

(2)

Dx =
Exh

3

12(1 − �x�y)
, Dy =

Eyh
3

12(1 − �x�y)
, Dxy =

Gh3

12
,

where Ex and Ey are the Young’s moduli for the principal 
directions, respectively, and G is the shear modulus.

The following dimensionless variables and parameters are 
defined: 

 where w0 is a reference deflection.
The governing equation (1) is cast in the following 

dimensionless form (dropping the superposed asterisks for 
simplicity):

We consider that a pair of left and right edges is clamped, 
with the following dimensionless boundary conditions: 

 For the boundary conditions at the bottom and top edges, 
the following three sets of dimensionless boundary condi-
tions are considered:

(a) Simply supported and free (CSCF): 

(b) Clamped and free (CCCF):

(c) Free and free (CFCF): 

(3a-d)w∗ =
w

w0

, x∗ =
x

a
, y∗ =

y

b
, t∗ =

t

a2
√
�∕Dx

,

(3e-h)� =
b

a
, � =

H

Dx

, � =
Dy

Dx

, � =
Dxy

Dx

,

(4)
�4w

�x4
+

2�

�2
�4w

�x2�y2
+

�

�4
�4w

�y4
+

�2w

�2t
= 0.

(5a-b)w = 0 and
�w

�x
= 0, at x = 0 and 1.

(6a-b)w = 0 and
�2w

�y2
= 0, at y = 0,

(6c)
1

�2
�2w

�y2
+ �x

�2w

�x2
= 0, at y = 1,

(6d)
�

�2
�3w

�y3
+ (� + 2�)

�3w

�x2�y
= 0, at y = 1;

(7a-b)w = 0 and
�w

�y
= 0, at y = 0,

(7c)
1

�2
�2w

�y2
+ �x

�2w

�x2
= 0, at y = 1,

(7d)
�

�2
�3w

�y3
+ (� + 2�)

�3w

�x2�y
= 0, at y = 1;

(8a-b)
1

�2
�2w

�y2
+ �x

�2w

�x2
= 0, at y = 0 and 1,

(a)

(b)

(c)

Fig. 1   Orthotropic thin rectangular plates with a CSCF, b CCCF and 
c CFCF boundary conditions
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Assuming a sinusoidal time response for free vibration,

the governing equation for the mode function becomes

to be solved with the same boundary conditions.

3 � Generalized integral transform solutions

The governing equation (10) combined with boundary con-
ditions (5) with (6), (7) or (8), respectively, for CSCF, CCCF 
and CFCF is solved by employing the generalized integral 
transform technique (GITT). The integral transform kernels 
are based on the appropriate auxiliary eigenvalue problems, 
namely the fourth-order Sturm–Liouville equation with a 
complete and orthogonal base. The governing equation is 
integral-transformed in each coordinate direction through 
the multiplication of respective eigenfunctions together with 
the integration in its domain. It should be noted that the 
integration by parts combined with transformed free bound-
ary terms of plate is employed in the generated terms of the 
transformed governing equation to incorporate the plate free 
boundary condition as it is not satisfied by the beam func-
tions. Finally, the truncated transformed equations form a 
system of homogeneous linear algebraic equations, which is 
solved through a standard eigensystem algorithm to obtain 
the eigenvalues and eigenvectors.

3.1 � Auxiliary eigenvalue problems

The auxiliary eigenvalue problem in the ‘x’ coordinate is the 
same for all three problems above, as follows: 

 and the eigenfunctions Xi(x) and eigenvalues �i of problem 
(11) are given in the Appendix.

(8c-d)

�

�2
�3w

�y3
+ (� + 2�)

�3w

�x2�y
= 0, at y = 0 and 1.

(9)w(x, y, t) = W(x, y)���t,

(10)
�4W

�x4
+

2�

�2
�4W

�x2�y2
+

�

�4
�4W

�y4
− �2W = 0,

(11a)
d
4Xi(x)

dx4
= 𝜇4

i
Xi(x) and 0 < x < 1,

(11b-c)Xi(0) =
dXi(0)

dx
= 0,

(11d-e)Xi(1) =
dXi(1)

dx
= 0,

For the three sets of homogeneous boundary conditions, the 
auxiliary eigenvalue problem in the ‘y’ coordinate is defined 
by the same governing equation:

and different boundary conditions as follows:
(a) CSCF boundary conditions ( k = 1):

(b) CCCF boundary conditions ( k = 2):

(c) CFCF boundary conditions ( k = 3):

 where Ykj(y) and �kj are the eigenfunctions and eigenvalues 
of problem (12) with boundary conditions (13), (14) or (15), 
and presented in the Appendix for SF, CF and FF boundary 
conditions, respectively.

3.2 � Orthogonality property

The normalized eigenfunctions Xi(x) and Ykj(y) satisfy the 
following orthogonality property:

and

(12)
d
4Ykj(y)

dy4
= 𝜙4

kj
Ykj(y), 0 < y < 1,

and k = 1, 2, 3,

(13a-b)Y1j(0) =
d
2Y1j(0)

dy2
= 0,

(13c-d)
d
2Y1j(1)

dy2
=

d
3Y1j(1)

dy3
= 0;

(14a-b)Y2j(0) =
dY2j(0)

dy
= 0,

(14c-d)
d
2Y2j(1)

dy2
=

d
3Y2j(1)

dy3
= 0;

(15a-b)
d
2Y3j(0)

dy2
=

d
3Y3j(0)

dy3
= 0,

(15c-d)
d
2Y3j(1)

dy2
=

d
3Y3j(1)

dy3
= 0,

(16)∫
1

0

Xi(x)Xm(x)dx = �im,

and i,m = 1, 2, 3,… ,

(17)∫
1

0

Ykj(y)Ykn(y)dy = �jn,

k = 1, 2, 3 and j, n = 1, 2, 3,… ,
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with � being the Kronecker delta function.

3.3 � Generalized integral transform pairs

Based on the eigenvalue problems, the following gener-
alized integral transform pairs are defined, first in the x 
direction and second in the y direction: 

 where Ykn(y) represents Y1n(y) , Y2n(y) and Y3n(y) for 
the boundary conditions of CSCF, CCCF and CFCF, 
respectively.

3.4 � Transformed governing equations

The dimensionless governing equation (10) is integral-
transformed first in the ‘x’ direction of the plate, being 
operated by ∫ 1

0
Xi(x)_dx , with application of the inverse 

formula in Eq. (18):

For each set of the CSCF, CCCF and CFCF boundary con-
ditions, Eq. (19) is then operated by ∫ 1

0
Yki(y)_dy , with the 

inverse formulas in Eq. (18) applied:

Integration by parts on the third term in Eq. (20) is carried 
out:

(18a)W̃m(y) = ∫
1

0

W(x, y)Xm(x)dx, transform,

(18b)W(x, y) =

∞∑

m=1

Xm(x)W̃m(y), inverse,

(18c)W̄mn = ∫
1

0

W̃m(y)Ykn(y)dy, transform,

(18d)
W̃m(y) =

∞∑

n=1

Ykn(y)W̄mn, inverse,

and m, n = 1, 2, 3,…

(19)
𝜇4

i
W̃i(y) +

2𝛼

𝜉2

∞∑

m=1

Fim

𝜕2W̃m(y)

𝜕y2
+

𝛽

𝜉4

𝜕4W̃i(y)

𝜕y4

− 𝜆2W̃i(y) = 0, and i = 1, 2, 3,…

(20)

𝜇4

i
W̄ij +

2𝛼

𝜉2

∞∑

m=1

∞∑

n=1

FijmnW̄mn

+
𝛽

𝜉4 ∫
1

0

𝜕4W̃i(y)

𝜕y4
Ykj(y)dy − 𝜆2W̄ij = 0,

k = 1, 2, 3 and i, j = 1, 2, 3,…

Applying the generalized integral transform process on the 
plate free boundary conditions (6, 7 and 8), with the inverse 
formulas in Eq. (18) applied, we obtain

 where the coefficient Fim = ∫ 1

0
XiX

��

m
dx.

(a) CSCF boundary conditions ( k = 1):
Equation (21) is simplified by applying the boundary condi-

tions (6a-b) and (13):

A system of linear algebraic equations is obtained by intro-
ducing Eqs. (23 and 22) into the transformed governing 
equation (20):

(b) CCCF boundary conditions ( k = 2):
Similarly, Eq. (21) is simplified by applying boundary con-

ditions (7a-b) and (14):

(21)

∫
1

0

𝜕4W̃i(y)

𝜕y4
Ykj(y)dy =

[

Ykj(y)
𝜕3W̃i(y)

𝜕y3

]1

0

−

[

Y
�

kj
(y)

𝜕2W̃i(y)

𝜕y2

]1

0

+

[

Y
��

kj
(y)

𝜕W̃i(y)

𝜕y

]1

0

−
[
Y

���

kj
(y)W̃i(y)

]1

0
+ W̄ij𝜙

4

kj
, and k = 1, 2, 3.

(22a)
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𝜕y2
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W̄mnYkn(y)Fim,

(22b)
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�
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(y)Fim,

(23)
∫

1
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𝜕4W̃i(y)

𝜕y4
Y1j(y)dy =

|||
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|||
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−
||||
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Y

�
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𝜕y2

||||
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+ W̄ij𝜙
4

1j
.

(24)

𝜇4

i
W̄ij +

2𝛼

𝜉2

∞∑

m=1
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n=1

FijmnW̄mn

+
𝛽𝜈x

𝜉2
Y

�

1j
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∞∑

m=1
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n=1

Y1n(1)FimW̄mn

−
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Y1j(1)
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Y
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(1)FimW̄mn

+
𝛽

𝜉4
𝜙4
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W̄ij − 𝜆2W̄ij = 0.

(25)
∫

1

0
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A system of algebraic equations is obtained by introducing 
Eqs. (25 and 22) into the transformed governing equation 
(20):

(c) CFCF boundary conditions ( k = 3):
Finally, Eq. (21) is simplified by applying boundary con-

dition (15):

A similar system of linear algebraic equations is obtained by 
introducing Eqs. (27 and 22) into the transformed governing 
equation (20):

The coefficients are defined by the following integrals: 

 which can be calculated analytically from integral formulas 
[16, 40].

(26)

𝜇4

i
W̄ij +

2𝛼

𝜉2

∞∑

m=1

∞∑

n=1

FijmnW̄mn

+
𝛽𝜈x

𝜉2
Y

�

2j
(1)

∞∑

m=1

∞∑

n=1

Y2n(1)FimW̄mn

−
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𝜉2
Y2j(1)

∞∑
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∞∑

n=1

Y
�
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(1)FimW̄mn

+
𝛽

𝜉4
𝜙4

2j
W̄ij − 𝜆2W̄ij = 0.

(27)
∫

1

0

𝜕4W̃i(y)

𝜕y4
Y3j(y)dy =

[

Y3j(y)
𝜕3W̃i(y)

𝜕y3

]1

0

−

[

Y
�

3j
(y)

𝜕2W̃i(y)

𝜕y2

]1

0

+ W̄ij𝜙
4

3j
.

(28)

𝜇4

i
W̄ij +

2𝛼

𝜉2

∞∑

m=1

∞∑

n=1

FijmnW̄mn

+
𝛽𝜈x

𝜉2
(Y

�

3j
(1)

∞∑

m=1

∞∑

n=1

Y3n(1)FimW̄mn

− Y
�

3j
(0)

∞∑

m=1

∞∑

n=1

Yn(0)FimW̄mn)

−
𝛼 + 2𝜂

𝜉2
(Y3j(1)

∞∑

m=1

∞∑

n=1

Y
�

3n
(1)FimW̄mn

− Y3j(0)

∞∑

m=1

∞∑

n=1

Y
�

n
(0)FimW̄mn)

+
𝛽

𝜉4
𝜙4

3j
W̄ij − 𝜆2W̄ij = 0.

(29a)Fijmn = ∫
1

0

XiX
��

m
dx∫

1

0

YjY
��

n
dy,

(29b)Fim = ∫
1

0

XiX
��

m
dx,

3.5 � Solution of the transformed equations

The infinite systems of linear algebraic equations are trun-
cated to a sufficiently large finite order NW in both direc-
tions, for computational purposes. The truncated equations 
(24), (26) and (28) can be written in matrix form as follows:

which forms a standard eigenvalue system. The eigenvalues 
and eigenvectors of the system (30) can be readily obtained 
by using the Mathematica package [39]. The ith mode func-
tion W (i)(x, y) corresponding to dimensionless frequency �(i) 
can be thus constructed by using the inverse defined by Eq. 
(18):

where W̄ (i)
mn

 are the components of the ith eigenvector �(i).

4 � Results and discussion

4.1 � Convergence behavior of the solution

Firstly, the convergence behaviors of the first five natural 
frequencies for the isotropic square plate free vibration 
with boundary conditions CSCF, CCCF and CFCF are 
studied by using the GITT approach. The GITT solutions 
in Eqs. (24, 26 and 28) are examined up to truncation 
terms NW = 80, in comparison with Leissa solutions 
[1] and finite element solutions, as shown in Table 1. 
Three-dimensional linear-elastic finite element analy-
sis is performed by using the Abaqus/Standard 6.14-3 
package [41]. To apply the classical thin plate theory 
in the finite element model, the plate thickness is taken 
as 1/100th of the edge length of the square plate. The 
plate is discretized by using 100 S4R elements in both 
x and y directions. The physical parameters for the iso-
tropic square plate are selected as � = 7800  kg  m−3 , 
E = 210 GPa, � = 0.3 . Table 1 shows that the first five 
natural frequencies of free vibration of the three cases 
considered converge to the third significant digit. The 
natural frequencies obtained by the converged GITT solu-
tions (NW = 80) agree very well with the reference finite 
element solutions, to at least third significant digit. There 
are only small differences at the fourth significant digits. 
Meanwhile, the natural frequencies obtained by Leissa 
[1] differ from both our GITT solutions and the reference 
finite element solutions at the third significant digit. As it 

(30)(� − �2�)� = 0,

(31)
W (i)(x, y) =

∞∑

m=1

∞∑

n=1

Xm(x)Ykn(y)W̄
(i)
mn
,

and k = 1, 2, 3,
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is known that the Rayleigh–Ritz method generates upper 
bound solutions from the exact solutions and the natural 
frequencies calculated by the present method have smaller 
values than Leissa’s results, it can be concluded that the 
integral transform solutions are more accurate than the 
Rayleigh–Ritz solutions when there is at least a free edge.

4.2 � Natural frequencies of the orthotropic plates

The first six natural frequencies of the orthotropic rectan-
gular thin plates with boundary conditions CSCF, CCCF 
and CFCF obtained by GITT are presented in Table 2. The 
convergence of the GITT solutions is examined up to trun-
cation term NW = 80, for the aspect ratio a/b = 0.4, 2/3, 
1.0, 1.5 and 2.5. To demonstrate the validity and accuracy 

Table 1   Convergence of 
the natural frequencies 
( � = �a2

√
�∕D ) for the 

isotropic square plates with 
boundary conditions CSCF, 
CCCF and CFCF

Boundary 
conditions

Mode GITT Leissa [1] FEM [41]

NW = 10 NW = 20 NW = 40 NW = 80

CSCF 1 23.4397 23.4132 23.3940 23.3822 23.460 23.3743
2 35.6001 35.5915 35.5814 35.5735 35.612 35.5716
3 63.0683 62.9955 62.9422 62.9090 63.126 62.9180
4 66.7777 66.7725 66.7692 66.7656 66.808 66.7819
5 77.4812 77.4499 77.4160 77.3914 77.502 77.4049

CCCF 1 23.9975 23.9687 23.9473 23.9339 24.020 23.9239
2 40.0281 40.0211 40.0125 40.0054 40.039 40.0004
3 63.4286 63.3510 63.2941 63.2583 63.493 63.2639
4 76.7258 76.7194 76.7167 76.7137 76.761 76.7425
5 80.6862 80.6570 80.6241 80.5992 80.713 80.6019

CFCF 1 22.2412 22.2097 22.1895 22.1780 22.272 22.1719
2 26.5096 26.4748 26.4451 26.4256 26.529 26.4064
3 43.6422 43.6335 43.6196 43.6075 43.664 43.5929
4 61.3837 61.2976 61.2409 61.2075 61.466 61.2201
5 67.4865 67.3797 67.2918 67.2346 67.549 67.2086

Table 2   Natural frequencies ( � = �a2
√
�∕D

x
 ) for the orthotropic rectangular plates with boundary conditions CSCF, CCCF and CFCF 

(NW = 80)

Boundary 
conditions

Mode a/b = 0.4 a/b = 2/3 a/b = 1.0 a/b = 1.5 a/b = 2.5

GITT FEM [41] GITT FEM [41] GITT FEM [41] GITT FEM [41] GITT FEM [41]

CSCF 1 35.3492 35.3475 27.7538 27.7553 24.8771 24.8828 23.4976 23.5010 22.7732 22.7773
2 81.2212 81.2518 69.2144 69.2530 50.9550 50.9655 34.5920 34.5988 26.5353 26.5406
3 143.380 143.531 88.6143 88.6377 65.0708 65.1117 62.0838 62.0910 35.4645 35.4666
4 210.895 211.060 129.252 129.416 94.8118 94.8602 63.1742 63.2165 50.7995 50.8045
5 223.892 224.344 135.107 135.165 116.294 116.335 76.4143 76.4563 62.1983 62.2418
6 260.009 260.184 200.120 200.292 124.606 124.776 104.721 104.755 66.9305 66.9750

CCCF 1 59.3274 59.3260 33.6733 33.6735 26.6832 26.6853 24.0250 24.0279 22.8811 22.8848
2 98.3073 98.3300 73.2241 73.2571 61.5696 61.5763 38.4572 38.4595 27.4814 27.4841
3 156.723 156.856 115.412 115.456 66.2592 66.2980 63.5157 63.5574 37.8688 37.8717
4 234.695 235.118 132.238 132.399 103.239 103.267 70.7424 70.7546 54.9533 54.9601
5 290.551 290.932 157.997 158.046 125.465 125.635 79.2484 79.2835 62.2685 62.3115
6 332.489 333.502 210.947 211.418 137.871 137.945 111.498 111.533 67.5744 67.6149

CFCF 1 22.2626 22.2666 22.2938 22.2977 22.3150 22.3194 22.3329 22.3370 22.3492 22.3532
2 58.3177 58.3088 39.6678 39.6648 31.3269 31.3259 26.7056 26.7056 23.9921 23.9934
3 61.3693 61.4126 61.4695 61.5127 61.5341 61.5776 42.3963 42.3959 29.5564 29.5565
4 120.389 120.562 88.5540 88.5768 67.1428 67.1448 61.5807 61.6243 40.3053 40.3060
5 122.470 122.483 120.576 120.751 74.6976 74.7248 67.6779 67.7109 57.3157 57.3206
6 197.303 197.417 122.672 122.693 115.646 115.672 74.3261 74.3325 61.6191 61.6629
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of the proposed GITT approach, three-dimensional linear-
elastic finite element analysis is performed in the Abaqus/
Standard 6.14-3 package [41]. In x and y directions, 100 
and 100b∕a S4R elements are used, respectively. The physi-
cal parameters for the orthotropic rectangular plate are 
selected as � = 7800 kg m−3 , Ex = 200 GPa, Ey = 800 GPa, 
�x = 0.075 , �y = 0.3 and Gxy = 174 GPa. It can be seen in 
Table 2 that similar to the cases for the isotropic rectangular 
plate, the integral transform solutions agree very well with 
the reference finite element solutions, for the first six natural 
frequencies for orthotropic plates with different aspect ratios 
and three sets of boundary conditions with one or two free 
edges.

5 � Conclusions

Free vibration of orthotropic rectangular thin plates with a 
pair of opposite edges clamped and one or two edges free is 
analyzed by using generalized integral transform technique. 
Numerically stable expressions for the eigenfunctions of 
Euler–Bernoulli beams are adopted as base functions along 
each direction with corresponding boundary conditions, 
thus overcoming the numerical difficulties with traditional 
expressions for the eigenfunctions in combinations of hyper-
bolic and trigonometric functions and allowing expansions 
to arbitrarily higher orders. More accurate natural frequen-
cies have been obtained in comparison with the classical 
Leissa solutions obtained by Ritz–Rayleigh method. Exam-
ples show that the GITT solutions agree with reference finite 
element solutions to at least third significant digits for both 
examples, isotropic square plates and orthotropic rectangular 
plates with different aspect ratios. It is concluded that by 
including additional terms generated by integration by parts 
due to the difference between the plate and beam boundary 
conditions at a free edge, the integral transform solutions 
recover the loss of accuracy suffered by using the beam 
functions in the Rayleigh–Ritz methods when there is a free 
edge in a rectangular plate, and thus yield accurate natural 
frequencies of free vibration of orthotropic thin rectangular 
plates with one or two free edges.
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Appendix

(a) CC (clamped edges):

The eigenfunctions Xi(x) for a pair of clamped edges in 
the ‘x’ direction are given by solving problem (11) analyti-
cally [35–37]:

The transcendental equations for the eigenvalues �i are given 
by

(b) SF (simply supported and free edges):
The eigenfunctions Y1j(y) for a pair of simply supported 

and free edges in the ‘y’ direction are given by solving 
problem (12 and 13) analytically [35–37]:

The transcendental equations for the eigenvalues �1j are 
given by

(c) CF (clamped and free edges):
The eigenfunctions Y2j(y) for a pair of clamped and free 

edges in the ‘y’ direction are given by solving problem (12 
and 14) analytically [35–37]:

The transcendental equations for the eigenvalues �2j are 
given by

(d) FF (free and free edges):
The eigenfunctions Y3j(y) for a pair of two free edges 

in the ‘y’ direction are given by solving problems (12 and 
15) given by [35–37]

(32)
Xi(x) = (−1)i cos(�ix) − sin(�ix) cot

(�i

2

)(−1)i

−
(−1)ie−�ix

1 − (−1)ie−�i

+
e−�i(1−x)

1 − (−1)ie−�i

.

(33)(−1)i tan
(�i

2

)
=

1 − e−�i

1 + e−�i

and i = 1, 2, 3,…

(34)

Y11(y) =
√
3y and

Y1j(y) =
√
2

�

sin(�1jy) −
e−�1j sin(�1j)

1 − e−2�1j

e−�1jy

+
e−�1j(1−y) sin(�1j)

1 − e−2�1j

�

.

(35)
�11 = 0,

tan(�1j) =
1 − e−2�1j

1 + e−2�1j

and j = 2, 3, 4,…

(36)

Y2j(y) = cos(�2jy) −
1 + (−1)je−�2j

1 − (−1)je−�2j

sin(�2jy)

−
1

1 − (−1)je−�2j

e−�2jy +
(−1)j

1 − (−1)je−�2j

e−�2j(1−y).

(37)cos(�2j) =
−2e−�2j

1 + e−2�2j

and j = 1, 2, 3,…
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The transcendental equations for the eigenvalues �3j are 
given by
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