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Abstract
A brief research status on high contact ratio gears (HCRG) is first conducted to obtain a basic understanding. Subsequently, 
a nonlinear dynamic model of HCRG with multiple clearances is established by the lumped mass method, in which time-
varying mesh stiffness (TVMS), static transmission error, gear backlash, and bearing radial clearance are taken into considera-
tion as well. The TVMS of HCRG is calculated based on an improved potential energy model and then fitted into a Fourier 
series form. After the dimensionless treatment, the system differential equations of motion are solved using Runge–Kutta 
numerical integration method. With the help of bifurcation diagrams, largest Lyapunov exponent charts, time-domain wave-
forms, FFT spectra, Poincaré maps, and phase diagrams, the influence of excitation frequency, gear backlash, mesh damping 
ratio, error fluctuation, and bearing radial clearance on the nonlinear dynamic characteristics of the system is investigated in 
detail. The results show that with the changes of these analysis parameters, the system exhibits different types of nonlinear 
behaviors and dynamic evolution mechanism, including period-one, multi-periodic, quasi-periodic, chaotic motions, and 
jump discontinuity phenomenon. Meanwhile, three typical routes to chaos, namely period-doubling bifurcation to chaos, 
quasi-period to chaos, and crisis to chaos, are also demonstrated. Additionally, it is found that the bearing radial clearance 
produces a weaker nonlinear coupling effect when compared to gear backlash. The research results can provide a certain 
theoretical support for the dynamic design and vibration control of the HCRG.

Keywords HCRG  · TVMS · Bifurcation · Chaos · Gear backlash · Bearing radial clearance

1 Introduction

High contact ratio gears (HCRG) are generally referred as a 
spur gear mesh with a contact ratio between two and three. 
This means there are at least two tooth pairs in contact at 
all times during the gear mesh, whereas conventional low 
contact ratio gears (LCRG) alternate between one and two 

pairs in contact [1]. HCRG have been received much con-
cern especially in the military application fields, because 
they have the advantages of higher power-to-weight ratio, 
higher load-carrying capacity, smoother running, and lower 
noise attributes, etc. [2, 3].

Though HCRG have many significant advantages, it 
would be expected that HCRG would be more sensitive to 
tooth spacing errors and tooth profile modifications because 
of the multiple tooth contacts. In the past few decades, most 
of research on HCRG has mainly been concentrated on tooth 
load sharing, stress analysis, and tooth profile modification. 
Staph [4] discussed the effects of gear parameters on several 
performance factors of HCRG and gave a method to tooth 
load sharing in HCRG. Cornell and Westervelt [1] developed 
a dynamic model for calculating the dynamic tooth loads 
and root stresses for HCRG. Based on the compliance equa-
tions of the loaded teeth, Rosen and Frint [2] presented an 
analytical method to calculate the HCRG tooth load sharing. 
Similar methods were also adopted by Elkholy [5], Tavakoli 
and Houser [6], and Mohanty [7]. Wang and Howard [8] 
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used finite element analysis (FEA) to calculate the load shar-
ing ratio, contact stress and the maximum tooth root stress 
of HCRG. Rameshkumar [3] studied the load sharing ratio, 
bending stress, contact stress, and deflection for LCRG/
HCRG in a tracked vehicle final drive with FEA. Recently, 
Sánchez et al. [9, 10] proposed a load distribution model 
based on the minimum elastic potential (MEP) criteria for 
the calculations of contact stress and tooth root stress for 
HCRG and helical gears. Subsequently, they again presented 
an enhanced model for the calculations of the meshing stiff-
ness and the loading sharing ratio for HCRG and LCRG 
considering the hertzian deflections [11]. Ye and Tsai [12] 
employed a loaded tooth contact analysis (LTCA) method to 
explore the contact characteristics of HCRG with and with-
out flank modification in consideration of tip corner contact 
and shaft misalignment.

The gear teeth under heavily loaded condition are prone 
to deflection, which will result in the increase in vibration 
and noise of the mechanical systems. Tooth profile modifica-
tion is regarded as one of the most effective ways to reduce 
the dynamic loads and vibrations of gear systems. Most of 
the literature on profile modification has been focused on 
the LCRG, but fewer contributions deal with the HCRG. 
Lee et al. [13] investigated the effects of linear profile modi-
fication and applied loading on the dynamic load and tooth 
root stress of HCRG. Whereafter, they examined and com-
pared both linear and parabolic tooth profile modification 
of HCRG under various loading conditions [14]. It has been 
found that parabolic profile modification prevails over linear 
profile modification for HCRG because of it lower sensitiv-
ity to manufacturing errors. Yildirim [15, 16] proposed a 
new type of double relief which can be viewed as a superpo-
sition of a short and a long relief combining the advantages 
of these two limiting profile modifications. The research 
revealed that the overall performance of such double relief is 
superior to that of conventional single slope relief. Wang and 
Howard [17], and Velex [18] further confirmed that double 
profile relief can improve the dynamic behavior of HCRG. 
Faggioni et al. [19] developed a Random-Simplex optimiza-
tion algorithm in search of the optimal profile modification 
to reduce gear vibration, using the peak to peak of the STE 
or the vibration level as the objective functions.

Many researchers have devoted themselves to the 
dynamic characteristics of low contact ratio spur and heli-
cal gears, and a great many useful results have been gained, 
such as periodic solution, sub-harmonic resonance, super-
harmonic resonance, periodic coexistence and chaos. There 
is a great amount of literature on gear dynamics and dynamic 
modeling of gear systems. Özgüven and Houser [20] first 
reviewed the linear dynamic models of geared systems com-
prehensively. Wang et al. [21] gave an overview of the non-
linear vibration of geared systems. Özgüven and Houser [22] 
used a single degree of freedom (SDOF) nonlinear model 

for the dynamic analysis of a gear pair, including the effects 
of TVMS, damping, gear errors, profile modifications and 
backlash. Based on this research, Özgüven [23] developed a 
six degrees of freedom (DOFs) model for the dynamic analy-
sis of a gear system including shaft and bearing dynamics, 
and studied the effect of lateral-torsional vibration coupling 
on the dynamics of gears. Kahraman and Singh [24–26] pro-
posed a series of studies for the influence of several factors 
on the frequency responses of nonlinear geared system based 
on the 1DOF and 3 DOFs models, such as time-variant mesh 
stiffness, gear backlash, bearing clearances, and external/
internal excitations. Their results have laid a solid founda-
tion for the work of the subsequent researchers. Blankenship 
et al. [27, 28] examined analytically and experimentally the 
nonlinear dynamic behavior of a mechanical oscillator with 
periodical time-varying parameters and clearance. Theodos-
siades et al. [29, 30] applied the piecewise-linear technique 
and multi-scale method to determine periodic steady-state 
motions and their stability properties. Al-shyyab and kaha-
rman [31, 32] presented a nonlinear dynamic model of a 
typical multi-mesh gear train to investigate period-one, 
sub-harmonic and chaotic motions by using multi-term Har-
monic Balance Method (HBM). Vaishya and Singh [33, 34] 
earlier developed a SDOF dynamic model considering slid-
ing friction between the teeth in contact. Velex and Sainsot 
[35] pointed out the potentially significant contribution of 
tooth friction to translational vibrations of pinions and gears, 
especially in the case of HCRG. He et al. [36, 37] proposed 
a new multi-degree of freedom (MDOF) spur gear model 
including realistic time-varying stiffness and sliding friction, 
and emphatically analyzed the effect of sliding friction on 
the system dynamic responses. Huang et al. [38] conducted 
the effects of rough surfaces on the dynamic performances of 
HCRG, in which the STE is described by the fractal theory.

In conclusion, few studies have been done on the dynamic 
characteristics of HCRG, especially in nonlinear dynamics. 
Nevertheless, the modeling theories and analytical methods 
about LCRG can apply equally to HCRG. Based on this idea, 
a MDOF nonlinear dynamic model for HCRG is established 
including the TVMS, STE, gear backlash and bearing radial 
clearance. The TVMS for HCRG is calculated based on an 
improved energy model, which considers the misalignment 
of root circle and base circle, and the realistic transition 
curve. The bifurcation and chaotic characteristics of HCRG 
are studied systematically and comprehensively using the 
numerical integral method. The results can provide the theo-
retical support for the design and vibration control of HCRG.

The structure of this study is organized as follows: the 
nonlinear dynamic model and equations of motion of the 
system are presented in Sect. 2, where the TVMS of HCRG 
is given. In Sect. 3, the equations of motion of the system are 
solved by the numerical integral method, and then the bifur-
cation and chaotic characteristics under different control 
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parameters are examined. Finally, some brief conclusions 
are given in Sect. 4.

2  Nonlinear dynamic modeling of HCRG 

The nonlinear dynamic model of HCRG with multiple clear-
ances is shown in Fig. 1 [25]. The gear pair is modeled as 
two disks connected by mesh stiffness, mesh damping, back-
lash and transmission error along the line of action (LOA). 
The gears are supported by two flexible rolling element 
bearings. Neglecting the effects of the friction between the 
teeth, only the lateral vibrations in the LOA direction and 
the torsional vibrations of two gears are considered. In this 
model, Ti (i = 1: pinion; 2: gear) are the constant external 
torques applied on pinion and gear, respectively; mi , Ii and 
Ri indicate the masses, moments of inertial and base radi-
uses of two gears, respectively; Fbi are the bearing radial 
preloads; kbi and cbi are the equivalent bearing stiffness and 
damping; km is the mesh stiffness of gear pair; cm is the gear 
mesh damping; 2 bn is the gear backlash; b1 and b2 are half 
the bearing radial clearances; e(t) represents the STE; The 
essential motions of the system can be described by four 
degrees of freedom, namely, two torsional motions �1 and 
�2 , and tow translational motions y1 and y2.

2.1  Equations of motion of the system

According to Newtonian laws of motion, the system dif-
ferential equations of motion can be expressed as follows:

where � is called the relative displacement between pinion 
and gear along the LOA, which is defined as the difference 
between the dynamic transmission error (DTE) and the STE 
e(t).

The STE e(t) is a kind of displacement excitation due 
to gear manufacturing error, which is usually indicated by 
first-order harmonic function.

where e0 is the mean value, ea indicates the fluctuation 
amplitude, � represents the initial phase, and �m is the mesh-
ing frequency of gear pair, �m = �1z1 = �2z2.

fm(�) is the nonlinear displacement function of gear 
backlash, which can be expressed as:

Similarly, the nonlinear displacement function of the 
bearing radial clearance fbi

(
yi
)
 , which can be written as 

follows:

Equation (1) can be further simplified into the following 
three-DOF equations in terms of the variable δ.

where me is the equivalent mass of gear pair, 
me = I1I2∕(I1R

2

2
+ I2R

2

1
) ; Fm is the average force transmitted 

by the gear pair, Fm = T1∕R1 = T2∕R2 ; cm = 2m

√
k0 ⋅ me , 

k0 is the average mesh stiffness and m is the mesh damping 
ratio.

For the convenience of analysis, the differential equa-
tions (6) should be dimensionless. Introducing nominal 
dimension bc and dimensionless time � = �nt , where 
�n =

√
k0∕me  is the natural frequency of gear pair, the 

(1)

⎧⎪⎨⎪⎩

m1ÿ1 + cb1ẏ1 + kb1fb1
�
y1
�
+ cm�̇� + kmfm(𝛿) = −Fb1

m2ÿ2 + cb2ẏ2 + kb2fb2
�
y2
�
− cm�̇� − kmfm(𝛿) = Fb2

I1�̈�1 + R1cm�̇� + R1kmfm(𝛿) = T1
I2�̈�2 + R2cm�̇� + R2kmfm(𝛿) = −T2

(2)� = R1�1 − R2�2 + y1 − y2 − e(t)

(3)e(t) = e0 + ea sin
(
�mt + �

)

(4)fm(𝛿) =

⎧⎪⎨⎪⎩

𝛿 − bn
�
𝛿 > bn

�
0

��𝛿� ≤ bn
�

𝛿 + bn (𝛿 < −bn)

(5)fbi
�
yi
�
=

⎧⎪⎨⎪⎩

yi − bi
�
yi > bi

�
0

���yi�� ≤ bi
�

yi + bi (yi < −bi)

, i = 1, 2

(6)

⎧⎪⎨⎪⎩

m1ÿ1 + cb1ẏ1 + kb1fb1
�
y1
�
+ cm�̇� + kmfm(𝛿) = −Fb1

m2ÿ2 + cb2ẏ2 + kb2fb2
�
y2
�
− cm�̇� − kmfm(𝛿) = Fb2

me

�
𝛿 − ÿ1 + ÿ2

�
+ cm�̇� + kmfm(𝛿) = Fm − meë(t)

Fig. 1  Nonlinear dynamic model with multiple clearances
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dimensionless displacement, velocity and acceleration can 
be expressed as, respectively.

Substituting Eqs. (7) into (6) yields the following dimen-
sionless equations expressed in matrix form.

where  �ii = cbi∕
(
2mi�n

)
 ,  �i3 = cm∕

(
2mi�n

)
(i = 1, 2) , 

�33 = cm∕
(
2me�n

)
 ,  kii = kbi∕

(
mi�

2
n

)
 , 

ki3 = km∕
(
mi�

2
n

)
(i = 1, 2)  ,  k33 = km∕

(
me�

2
n

)
 , 

F̄m = Fm∕(me𝜔
2
n
bc)  ,  F̄bi = Fbi∕(mi𝜔

2
n
bc)(i = 1, 2)  , 

F̄eh = Fe𝛺
2 sin (𝛺𝜏) , Fe = ea∕bc , � = �m∕�n.

The dimensionless nonlinear displacement functions 
for backlash and bearing radial clearance are re-written as, 
respectively.

2.2  Calculation of time‑varying mesh stiffness

As is well known, TVMS changes periodically with the num-
ber of meshing teeth pair and the position of contact point. It 
is shown that TVMS is one of the main sources exciting the 
vibration of the gear system. There are many methods to cal-
culate the TVMS, involving analytical method, finite element 
method (FEM), analytical-FE approach, and photo-elasticity 
technique. Considering the misalignment of gear root circle 
and base circle, and the accurate transition curve, Ma et al. 
[39] presented an improved mesh stiffness model, as shown 
in Fig. 2. Based the ANSYS software, Wang [7] developed 
an approach to predict the TVMS by establishing the con-
tact elements. Wan et al. [40] also presented an improved 
TVMS algorithm by judging the relationship between the 

(7)

𝛿 = ubc, �̇� = u̇𝜔nbc, 𝛿 = ü𝜔2

n
bc, yi = ȳibc,

ẏi = ̇̄yi𝜔nbc, ÿi = ̈̄yi𝜔
2

n
bc, (i = 1, 2)

(8)

⎡
⎢⎢⎣

1 0 0

0 1 0

−1 1 1

⎤
⎥⎥⎦

⎧
⎪⎨⎪⎩

̈̄y1
̈̄y2
ü

⎫
⎪⎬⎪⎭
+ 2

⎡
⎢⎢⎣

𝜁11 0 𝜁13
0 𝜁22 −𝜁23
0 0 𝜁33

⎤
⎥⎥⎦

⎧
⎪⎨⎪⎩

̇̄y1
̇̄y2
u̇

⎫
⎪⎬⎪⎭

+

⎡
⎢⎢⎣

k11 0 k13
0 k22 −k23
0 0 k33

⎤
⎥⎥⎦

⎧
⎪⎨⎪⎩

f̄b1(ȳ1)

f̄b2(ȳ2)

fm(u)

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

−F̄b1

F̄b2

F̄m + F̄eh

⎫
⎪⎬⎪⎭

(9)fm(u) =

⎧⎪⎨⎪⎩

u − b (u > +b)

0 (�u� ≤ b)

u + b (u < −b)

; b = bn∕bc

(10)

f̄bi
�
ȳi
�
=

⎧⎪⎨⎪⎩

ȳi − b̄i
�
ȳi > b̄i

�
0

���ȳi�� ≤ b̄i
�

ȳi + b̄i (ȳi < −b̄i)

; b̄i = bi∕bc, i = 1, 2

teeth number and 42. Saxena et al. [41] proposed an analyti-
cal method to calculate the TVMS of the spur gear for differ-
ent spall shapes, size and location considering sliding friction. 
Karma1 and Agarwal [42] calculated the mesh stiffness of 
high contact ratio spur gear and load sharing using the energy 
method. Raghuwanshi and Parey [43] measured the mesh stiff-
ness of cracked spur gear using photo-elasticity technique. 
However, in these researches, the gear tooth is mostly modeled 
as a non-uniform cantilever beam on the base circle. In fact, 
the root circle and base circle are misaligned, which would 
affect the accuracy of TVMS.

To calculate the mesh stiffness conveniently and effectively, 
the improved potential energy method in [39] is adopted to 
calculate the TVMS of HCRG. Based on the elastic mechan-
ics and beam theory, the bending stiffness kb , shear stiffness ks 
and axial compressive stiffness ka can be obtained as follows:

The Hertzian contact stiffness kh and fillet-foundation stiff-
ness kf can be given by

(11)

1

kb
= ∫

�

�

2

[
cos �

(
y� − y1

)
− x� sin �

]2
EIy1

dy1

d�
d�

+ ∫
�

�c

[
cos �

(
y� − y2

)
− x� sin �

]2
EIy2

dy2

d�
d�

(12)
1

ks
= ∫

�

�

2

1.2 cos2 �

GAy1

dy1

d�
d� + ∫

�

�c

1.2 cos2 �

GAy2

dy2

d�
d�

(13)
1

ka
= ∫

�

�

2

sin
2 �

EAy1

dy1

d�
d� + ∫

�

�c

sin
2 �

EAy2

dy2

d�
d�

(14)1

kh
=

4
(
1 − �2

)
�EL

Fig. 2  Geometric model of the tooth profile [39]
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Note that the detailed definitions of the symbols in 
Eqs. (11–15) can be found in Refs. [39, 44].

When a gear pair are meshing, the total potential energy 
U stored in a meshing tooth pair is the summation of Hert-
zian energy Uh , bending energy Ub , shear energy Us , axial 
compressive energy Ua and fillet-foundation deformation 
energy Uf of each tooth, which can be expressed as:

where ks represents the total mesh stiffness of a pair of 
contact teeth, subscripts 1 and 2 represent pinion and gear, 
respectively.

Accordingly, the single-tooth-pair mesh stiffness can 
be give as:

For multiple tooth pairs, the total mesh stiffness is par-
allel combination of the mesh stiffnesses of all tooth pairs 
in contact, which can be written as:

where N indicates the number of meshing tooth pair at the 
same time, N = 2 or 3 for HCRG.

(15)

1

kf
=

cos2 �

EL

{
L∗
(
uf

Sf

)2

+M∗

(
uf

Sf

)
+ P∗

(
1 + Q∗ tan2 �

)}

(16)

U =
F2

2ks
= Uh + Ub1 + Us1 + Ua1 + Uf1 + Ub2 + Us2 + Ua2 + Uf2

=
F2

2

(
1

kh
+

1

kb1
+

1

ks1
+

1

ka1
+

1

kf1
+

1

kb2
+

1

ks2
+

1

ka2
+

1

kf2

)

(17)

ks = 1∕

(
1

kh
+

1

kb1
+

1

ks1
+

1

ka1
+

1

kf1
+

1

kb2
+

1

ks2
+

1

ka2
+

1

kf2

)

(18)km(t) =

N∑
i=1

(
1

kh
+

1

kb1,i
+

1

ks1,i
+

1

ka1,i
+

1

kf1,i
+

1

kb2,i
+

1

ks2,i
+

1

ka2,i
+

1

kf2,i

)−1

The basic parameters of HCRG for this study are 
listed in Table 1. Based on the improved potential energy 
method, the TVMS of HCRG throughout a whole meshing 
period can be obtain. For the convenience of calculation, 
the TVMS is expanded into an eighth-order Fourier series 
form about �1(◦) (see Fig. 3).

where k0 is the average value of stiffness; kaj and kbj are 

the coefficients of harmonic terms, as listed in Table 2. 
�� = 2�z1∕360 , z1 is the tooth number of pinion.

By changing the coordinate, the TVMS km
(
�1
)
 can be 

converted into another form about time t to facilitate the 
subsequent calculation.

(19)km
(
�1
)
= k0 +

8∑
j=1

[
kaj cos

(
j���1

)
+ kbj sin

(
j���1

)]

Table 1  Basic parameters of HCRG 

Parameter/property Pinion Gear

Number of teeth 29 31
Module (mm) 3.0
Pressure angle (°) 20
Addendum coefficient 1.3
Face width (mm) 25
Center distance (mm) 89.7
Contact ratio 2.10
Mass (kg) 1.031 1.212
Modification coefficient (x1/x2) – 0.1 0
Moment of inertia (kg mm2) 1053 1416
Hub bore radius (mm) 25 25

0 5 10 15 20 25 30
5

5.5

6

6.5

7

7.5

θ1(o)

k m
 (1

08 N
/m

)

km vs. θ1 curve-fitted

Fig. 3  Fitting curve of TVMS of HCRG 

Table 2  Coefficients of 
harmonic terms of mesh 
stiffness (N/m)

Har-
monic 
term

kaj kbj

1 1.391e7 5.061e6
2 2.506e7 1.65e7
3 1.935e7 2.255e7
4 1.089e7 2.393e7
5 3.084e6 2.127e7
6 − 2.221e6 1.589e7
7 − 4.255e6 9.514e6
8 − 3.228e6 3.858e6
k0 5.589e8
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where �m is the above-mentioned meshing frequency of gear 
pair.

3  Numerical simulation and discussion

Due to the existence of time-varying stiffness, gear backlash, 
and bearing radial clearance, the gear system is a complex 
system with strong nonlinearity and time variation. In order 
to understand comprehensively the dynamic features of 
HCRG, excitation frequency Ω, mesh damping ratio ξm, gear 
backlash b, error fluctuation Fe, and bearing radial clear-
ances b̄1, b̄2 are selected as bifurcation parameters to study 
the influence on the system responses. The system equa-
tions of motion are solved by the 4th–5th order Runge–Kutta 
numerical integration method, and its nonlinear dynamic 
characteristics are systematically analyzed through the 
bifurcation diagrams, LLE charts, time-domain waveforms, 
FFT spectra, Poincaré maps and phase diagrams. The main 
geometric parameters of HCRG are seen in Table 1, and the 
invariant parameters of this simulation are listed as follows: 
input power P = 200 kW, nominal dimension bc = 10 μm, 
equivalent bearing stiffness kb1 = kb2 = 3.5e8 N/m, bearing 
damping cb1 = 1.90e3 N s/m, cb2 = 2.06e3 N s/m; the initial 
values of control parameters are set as: error fluctuation 
ea = 5 μm, gear backlash bn = 40 μm, bearing radial clear-
ances bi = 10 μm, and mesh damping ratio ζm= 0.04.

3.1  Effects of excitation frequency Ω

Excitation frequency Ω reflects the rotational speed of pin-
ion or gear, and is one of the key parameters that affect the 

(20)km(t) = k0 +

8∑
j=1

[
kaj cos

(
j�mt

)
+ kbj sin

(
j�mt

)] dynamic behaviors of the mechanical transmission system. 
Figure 4a presents the bifurcation diagram of the relative 
torsional displacement u with the change of excitation 
frequency Ω. The corresponding LLE chart is shown in 
Fig. 4b. It can be seen from the bifurcation diagram and the 
LLE chart in Fig. 4 that there exist kinds of motion forms 
within the different ranges of values of the excitation fre-
quency, such as period-1, period-2, multi-period, and chaotic 
motions. When Ω ∈ [0.2, 1.046], the system is in period-1 
motion state and the LEEs are negative values. In the fre-
quency range of Ω ∈ [1.047, 1.282], the system undergoes 
a series of transitions among quasi-periodic, multi-period 
and chaotic motions and there appears zero, positive and 
negative values in the LEE chart, which will be subse-
quently discussed in detail. When Ω ∈ [1.283, 1.685], the 
system response changes from period-1 motion to period-2 
motion and the corresponding LEEs show negative. When 
Ω ∈ [1.686, 2.32], the system enters into chaotic region by 
crisis way, when the LEEs hold positive. Eventually, the 
system response converges to period-1 motion by inverse 
period-doubling bifurcation and the corresponding LEEs 
change from positive to negative. Moreover, the phenom-
enon of frequency hopping occurs at the point of Ω = 0.906, 
where the LEE is − 0.008686.

Figure 5 shows the partial enlarged view and the corre-
sponding LEE chart at the range of Ω ∈ [1.0, 1.3]. It is quite 
clear that the system exhibits complex nonlinear behav-
iors. In order to reveal the evolution process of the system 
responses more clearly, the phase diagrams and Poincaré 
maps under different excitation frequencies are listed in 
Fig. 6. When Ω is less than 1.047, the system is in period-1 
motion state and the corresponding LEEs show negative, as 
seen in Figs. 6a and 5b. As Ω is increased to 1.055, the sys-
tem turns into quasi-periodic motion from period-1 motion 
by Hopf bifurcation. As displayed in Fig. 6b, the phase dia-
gram shows a closed curve band with a certain thickness 

Fig. 4  Bifurcation diagram and largest Lyapunov exponent chart with the change of Ω 
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and Poincaré map is a closed smooth curve. Besides, the 
LEE is equal to zero in Fig. 5b. All these characteristics 
reveal that the system is in quasi-periodic motion state. 
As Ω is further increased, the thickness of phase diagram 
gradually becomes larger and the Poincaré maps show some 
twisted-closed curves, which mean that chaotic motion is 
about to occur, as can be observed from Fig. 6d, f, h, where 
the LEEs are 0. When Ω increases to 1.163, the system 
enters into chaotic region until Ω value is equal to 1.263, 
as can be identified from Fig. 6j, k, where the LEEs are 
0.00391 and 0.01079. As Ω is changed from 1.264 to 1.282, 
it can be inferred from Fig. 6l, n that the system returns 
to quasi-periodic motion, where the LEEs are 0. Finally, 
the system leaves quasi-periodic motion, and then comes 
into period-1 motion by crisis way, as shown in Fig. 6o. In 
addition, from Fig. 6c, e, g, i, m, there also exist several 
transient multi-period motion windows between these quasi-
periodic regions, which are period-7, period-18, period-11, 
period-15 and period-19 motions. The corresponding LEEs 
are − 0.001638, − 0.006928, − 0.002968, − 0.005638 and 
− 0.005116, respectively.

From the above analysis, when the excitation frequency 
of the system is in the intervals of Ω ∈ [0.2, 1.046], [1.283, 
1.685] and [2.32, 3.0], the HCRG manifests as simple 
period-1 or period-2 motions, which are the better working 
areas of the system. This will contributes to improve the 
system stability, reduce the vibration and avoid the chaos.

3.2  Effects of gear backlash b

Considering these factors like gear lubrication, tooth elastic 
deformation, thermal expansion and so on, a certain amount 
of gear backlash must be reserved between the non-working 
tooth profiles. However, the existence of gear backlash can 
result in the teeth separation and impact. Thus, it is vital 

to explore the effects of gear backlash on the dynamic 
behaviors of the system and to select a proper gear back-
lash. Here, gear backlash b is used as a control parameter 
and the remaining parameters are kept unchanged. Excita-
tion frequency is taken as Ω = 1.08, 1.283, 1.685, 1.70. The 
bifurcation diagrams of the system with the change of gear 
backlash are shown in Fig. 7.

It can be seen from Fig.  7 that, when the remaining 
parameters are invariant and the excitation frequency takes 
different values, the system behaves as some simple periodic 
properties under smaller gear backlashes, e.g., period-1 and 
period-2 motions, which are favor of the system stability. 
With the increase in gear backlash b, the bifurcation fea-
tures of the system obviously change. For example, when 
Ω = 1.283, as shown in Fig. 7b, the system goes through 
the following switching process: period-1 motion → quasi-
periodic motion → period-8 motion → period-4 motion → 
transient quasi-periodic motion → period-1 motion, as can 
be identified by Figs. 8, 9, 10, 11, 12 and 13. As Ω increases, 
the range of periodic motion of the system is gradually nar-
rowing and that of chaotic motion is increasing in Fig. 7c, 
d, which are adverse to the system stability. The response 
analyses under the other excitation frequencies are similar 
to Fig. 7b, so they are not repeated here.

The above analysis shows that the HCRG keeps periodic 
motion under smaller gear backlash and the system runs 
smoothly. Therefore, in the design process of HCRG, while 
ensuring good lubrication of gears, a proper gear backlash 
should be selected, which is of great significance to reduce 
the vibration and noise of gear transmission system.

3.3  Effects of mesh damping ratio ζm

To obtain the effects of mesh damping ratio ζm on the system 
nonlinear dynamics and to adjust the system structure, mesh 
damping ratio ζm is used as the analysis parameter and the 

Fig. 5  Partial enlarged view and largest Lyapunov exponent at the range of Ω ∈ [1.0, 1.3]
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Fig. 6  Evolution process of the system responses at the range of Ω ∈ [1.0, 1.3]
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other parameters are kept invariant. Excitation frequency is 
taken as Ω = 1.08, 1.283, 1.685, 1.70. Figure 14 shows the 
bifurcation diagrams of the system with the change of ζm in 
this range of ζm ∈ [0.03, 0.17].

It can be seen from the bifurcation diagrams in Fig. 14 
that, when the remaining parameters are invariant and 
the excitation frequency takes various values, the system 
shows different bifurcation behaviors with the decrease of 

Fig. 7  Bifurcation diagrams with the change of b under different excitation frequencies

Fig. 8  Dynamic response curves at b = 0.3. a Time-domain waveform, b phase diagram and Poincaré map and c FFT spectrum
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ζm. As shown in Fig. 14a, b, the system directly changes 
from period-1 motion to quasi-periodic motion by Hopf 
bifurcation. From Fig. 14c, d, the system first bifurcates 
into period-2 motion from period-1 motion and then enters 
into chaotic motion by crisis. For instance, when Ω = 1.08, 
with the reduction of ζm, the system first undergoes the 
transition from period-1 motion to quasi-periodic motion, 
then enters into period-7 motion region, and finally returns 

to quasi-periodic motion, as can be identified from Fig. 15. 
From the overall bifurcation diagrams, the system even-
tually converges to period-1 motion under higher mesh 
damping ratio. Therefore, the higher mesh damping ratio 
will contribute to enhance the system stability and avoid 
the chaotic motion. The response analyses of the other 
bifurcation diagrams are similar, so they are not repeated 
here.

Fig. 9  Dynamic response curves at b = 0.6. a Time-domain waveform, b phase diagram and Poincaré map and c FFT spectrum

Fig. 10  Dynamic response curves at b = 0.75. a Time-domain waveform, b phase diagram and Poincaré map and c FFT spectrum

Fig. 11  Dynamic response curves at b = 0.82. a Time-domain waveform, b phase diagram and Poincaré map and c FFT spectrum
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Fig. 12  Dynamic response curves at b = 0.87. a Time-domain waveform, b phase diagram and Poincaré map and c FFT spectrum

Fig. 13  Dynamic response curves at b = 4.0. a Time-domain waveform, b phase diagram and Poincaré map and c FFT spectrum

Fig. 14  Bifurcation diagrams 
with the change of ζm under dif-
ferent excitation frequencies



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:98

1 3

98 Page 12 of 16

3.4  Effects of error fluctuation Fe

Owing to multi-tooth meshing all the time, HCRG is very 
sensitive to tooth profile errors. Therefore, it is necessary to 
investigate the influence of error fluctuation on the nonlinear 
behavior of the system. Figure 16 presents the bifurcation 
diagrams of the system using error fluctuation Fe as a vary-
ing parameter under different excitation frequencies Ω = 1.5, 
1.6, 1.7, 2.0. As can be seen from the bifurcation figures in 
Fig. 16, with the increase in error fluctuation, the system 
bifurcates into period-2 motion from period-1 motion and 
then suddenly enters into chaotic motion region. Further-
more, the region of the simple periodic motion is gradually 
decreasing with increasing the excitation frequency.

Meanwhile, Fig. 17 shows the changes of the system 
response with the excitation frequency under different error 
fluctuation values. It can be clearly seen form the bifurcation 
diagrams in Fig. 17 that the error fluctuation has a significant 
effects on the nonlinear behaviors of HCRG. When the error 
fluctuation Fe = 0, namely, the gears have perfect involute 
profiles, the dynamic response curve is continuous and no 
bifurcation phenomenon occurs, as shown in Fig. 17a. As Fe 
is further increased, the system gradually presents complex 
nonlinear behaviors, involving jump discontinuity, quasi-
periodic response, bifurcation, chaotic response, etc. The 

nonlinear analysis for Fig. 17c has been done in Sect. 3.1. 
Comparing Fig. 17c with Fig. 17d, it can be found that, 
with the increase of Fe, the total range of chaotic window is 
gradually enlarging and the vibration amplitudes obviously 
increase, which are not good for the system stability. Fig-
ure 18 presents the amplitude-frequency spectra under four 
different error fluctuation values when Ω = 0.5 (namely, the 
same rotating speed). It can be seen that the dimensionless 
amplitudes at the fundamental frequency positions Ω = 0.5 
are increasing with the increase of Fe. Accordingly, special 
attention should be paid to the manufacturing and processing 
of HCRG to attain the highest quality gears possible, so that 
the influence of tooth random errors can be minimized. The 
response analysis of the system about Fe = 0.8 is similar to 
that of Fe = 0.5, so it is not repeated again here.

3.5  Effects of bearing radial clearance b̄1, b̄2

The bearing radial clearance is also one of the main factors 
that cause the nonlinear behaviors of the geared systems. 
Therefore, it is also very important to study the influence of 
bearing radial clearance on the system nonlinear dynamics 
and to select a suitable bearing clearance. Figure 19 shows 
the bifurcation diagrams of the system using the bearing 
radial clearance as a bifurcation parameter when Ω takes 

Fig. 15  Evolution process of the 
system responses at Ω = 1.08
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Fig. 16  Bifurcation diagrams 
with the change of Fe under dif-
ferent excitation frequencies

Fig. 17  Effects of error fluctua-
tion on bifurcation and chaos 
characteristics
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different values 0.906, 1.08, 1.283 and 1.685, and the other 
parameters remain invariant.

It can be clearly found from the bifurcation diagrams 
in Fig. 19 that the bearing radial clearance has a much 
weaker effect on the system nonlinear behavior when com-
pared with gear backlash. When the bearing radial clear-
ance is in the region of b̄1, b̄2 ∈ [0, 3], the system is in a 
same motion state in most regions. When Ω = 0.906, the 
system is always in period-1 motion state, as shown in 
Fig. 19a. When Ω = 1.08, the system is in quasi-periodic 
state at a small scope of b̄1, b̄2 ∈ [0, 0.14], and then enters a 
larger region with a stable period-7 motion, as can be seen 
from Fig. 19b. When Ω = 1.283, as illustrated in Fig. 19c, 
the system performs quasi-periodic motion at a very nar-
row range of b̄1, b̄2 ∈ [0, 0.03], then rapidly comes into 
stable period-1 motion region. When Ω = 1.685, the sys-
tem maintains stable period-2 motion all the time, though 
the bifurcation diagram shows some burrs, as displayed in 
Fig. 19d. The common phenomenon of the weak coupling 
effect about bearing radial clearance is further validated 
by different parameter combinations.

The above analysis shows that the bearing radial clear-
ance only produce weak and ignorable coupling effects on 
the nonlinear features of the system. From the point of view 
of convenient modeling, the effect of nonlinearity of bear-
ing radial clearance may be neglected in this study. How-
ever, to satisfy bearing lubrication and prevent the inter-
ference between raceway and rolling elements, the bearing 
radial clearance should be reasonably chosen according to 
the recommended scopes of the corresponding standard.

4  Conclusions

This paper establishes a nonlinear dynamic model for 
HCRG, which contains several nonlinear factors, such as 
TVMS, STE, gear backlash and bearing radial clearance. 
Based on the improved potential energy model, the TVMS 
of HCRG is calculated and then fitted into a Fourier series 
form. The system equations of motion are normalized and 
then solved using the 4th–5th order Runge–Kutta numerical 
integration method. The influence of excitation frequency, 

Fig. 18  Amplitude–frequency spectra at Ω = 0.5
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gear backlash, mesh damping ratio, error fluctuation, and 
bearing radial clearance on the nonlinear dynamic charac-
teristics of the system is comprehensively analyzed by the 
bifurcation diagrams, time-domain waveforms, FFT spec-
tra, Poincaré maps, phase diagrams as well as LLE charts.

The main conclusions can be summarized as follows:

1. The HCRG exhibits rich bifurcation and chaotic char-
acteristics under the influence of multiple factors. With 
the change of excitation frequency, the system shows 
complex motion states, including simple periodic, multi-
periodic, quasi-periodic and chaotic motions and so on. 
It is found that there are three typical routes to chaos in 
the response, i.e., period-doubling bifurcation to chaos, 
quasi-period to chaos and crisis to chaos.

2. The smaller gear backlash and larger mesh damping 
ratio will contribute to improve the system stability and 
reduce the vibration and noise, which is of great signifi-
cance for guiding the dynamic design of the HCRG.

3. The bearing radial clearance has a weaker influence 
on the system nonlinear behaviors and no bifurcation 
behavior could be observed under this bifurcation 
parameter.

4. The error fluctuation has significant effects on the non-
linear behaviors of the HCRG. With the increase in error 
fluctuation, the system responses become more and more 
complicated and the range of periodic motion decreases 
step by step, which goes against the system stability. 
Therefore, the HCRG with high degree of accuracy will 
help to avoid chaos and enhance the system stability.
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Fig. 19  Bifurcation diagrams with the change of b̄1, b̄2 under different excitation frequencies
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