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Abstract
Elastic–plastic analysis of thick homogenous sphere which was coated internally with functionally graded materials (FGMs) 
subjected to the temperature gradient and pressure under the assumption of axisymmetric deformation is presented in this 
paper. As a novel idea, the elastic material properties of the composite at the inner and external radius of the FGM sphere are 
calculated based on the Mori–Tanaka method and the yield stress is varied according to the rule of mixture. Hence, the effec-
tive material properties of FGM coating as the power function of the radius are calculated based on the Mori–Tanaka method. 
Analytical equations for radial and circumferential stresses, radial displacement, and temperature are obtained. According 
to the analytical solution, the results of the numerical solution were examined which shows good agreement between the 
simulation and analysis results. Effects of internal pressure and temperature gradient on radial stress, circumferential stress, 
and radial displacement are investigated. Results show that as internal pressure increases, the maximum circumferential 
stress moves from the inner towards the external radius. It is also turned out that for low-temperature quantities, the sign of 
both radial and circumferential stresses is changed somewhere in the wall thickness of the sphere.

Keywords  Spherical vessel · FGM coating · Elastic–plastic · Mori–Tanaka

List of symbols
a, b, c	� Internal, medial and external radius
Pa,Pc	� Internal and external pressures
Ta, Tc	� Internal and external temperatures
E	� Elastic modulus
v	� Poisson’s ratio
K	� Thermal conductivity
�	� Coefficient of expansion
Y 	� Yield stress
A	� Coefficient of yield strength function
A′	� Fraction coefficient of yield strength 

function
B	� Exponent of yield strength function
�	� Volume fraction of inclusion phase
�0	� Volume fraction of inclusion phase at the 

inner radius
�r, �� , �e	� Stress components

�r, �� , ��	� Strain components
�,�	� Lamé’s constants
u	� Radial displacement
x	� Weight percentage of SiC phase
n1, n2, n3, n4	� FGM exponential function powers
T(r)	� Temperature radial distribution function
�	� Heat expansion coefficient
�0	� FGM constant
E0, Y0,K0	� FGM fabrication constants
G, K̃	� Shear and bulk modules

Superscripts
FG,H	� FGM and homogenous parts
FG − E,H − E	� FGM and homogenous in elastic 

condition
FG − P	� FGM and homogenous in a plastic 

condition

Subscripts
e	� Effective propertiesTechnical Editor: Aurelio Araujo.

 *	 Amir Akbari 
	 Amir.akbari.1991@ut.ac.ir; a.ahari@ut.ac.ir

1	 Research Center for Advanced Light Alloys Technologies, 
School of Mechanical Engineering, University of Tehran, 
Tehran, Iran

http://orcid.org/0000-0001-8823-0617
http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-020-02780-x&domain=pdf


	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:79

1 3

79  Page 2 of 10

1  Introduction

The mechanical and thermal properties of functionally 
graded materials (FGMs) are variable, unlike the usual 
materials [1]. This characteristic is causal to use in appli-
cations like aerospace [2], aeronautical [3], medical [4], 
and sensors [5] industry. One of these most significant 
applications is pressure vessels. Because of specific ther-
mal and pressure conditions they should be designed 
carefully. In these vessels, inner pressure makes tensile 
circumferential stress and radial pressure stress that they 
cause to make large shear stress inside of the vessel. Under 
this condition, the vessel quickly will arrive to yield stress. 
The best way to improve this is to use FGMs [6]. Eslami 
et al. [7] have investigated on the analytical solution of 
elastic–plastic stress distribution in a nonhomogeneous 
anisotropic FGM spherical vessels. In their paper, assum-
ing axial symmetry, the material mechanical property 
variation was considered as an exponential function of the 
radius of the sphere. Chen and Lin [8] have studied elastic 
behaviours of block wall FGMs sphere and cylinder. They 
assumed exponential in the radial direction for mechanical 
behaviours.

You et al. [9] have investigated the fabrication of a 
3-layer homogenous-FGM-homogenous vessel. They 
derive a method for achieving constant circumferential 
stress in fully FGM vessels. Parvizi et al. [10] surveyed 
the elastic–plastic behaviour of FGM cylindrical vessels. 
They studied the effect of pressure and temperature gra-
dient on elastic–plastic behaviour by considering Al-SiC 
as FGM. Elastic–plastic behaviour of thick-walled FGM 
spherical vessels has been investigated by Sadeghian and 
Toussi [11]. They assumed full elastic–plastic and Von 
Mises criterion for behaviour. They also studied the effect 
of the fabrication of FGM on temperature and stress dis-
tribution. Atashipour et al. [12] have studied the elas-
tic–plastic behaviour of thick-walled spherical vessels with 
FGM coat. They assumed linear and nonlinear behaviour 
for FGMs. Yang et al. [13] used FGMs for increasing the 
adhesion between copper and tungsten layers. In their 
research, they have simulated the variance of stresses for 
FGM coatings by assuming constant heat flux during with 
finite element analysis for achieving optimal coefficient. 
Wang et al. [14] have presented thermo-elastic analysis 
of FGM cylindrical vessels with hemispherical caps. The 
study of piezoelectric-coated spheres has been established 
by Atashipour and Sburlati [15]. In their research, they 
have investigated stress and electrical potential distribu-
tion in a radial direction on spheres with piezoelectric 
coating. They have compared FGM spheres with a piezo-
electric coat with homogenous spheres and concluded that 
using of FGMs can reduce stress. Kind of FGM coat effect 

on thick-walled FGM coat sphere yield at internal pressure 
and temperature gradient has been studied by Dehnavi and 
Parvizi [16]. In another paper, they [17] used a new mate-
rial tailoring method to solve FGM spherical and cylindri-
cal vessels.

More recently, Hashemi et al. [18] presented an optimum 
design of an FGM cylindrical and spherical vessels by using 
the material tailoring equation. They had investigated how 
the whole thickness of vessels could participate to contribute 
to the load bearing.

As observed in the literature review, few researches pre-
sent the effect of pressure and temperature gradient in FGM 
spherical pressure vessels. The present work attempts to 
solve this problem, that is, to provide an analytical solution 
of pressure and temperature gradient for spherical pressure 
vessels that inside of the vessel covered with FGMs. The 
analytical solution was compared with the finite elements 
method (FEM) solution. The elastic property of FGM in 
inner and external radius was modelled by the Mori–Tanaka 
method. Also, properties change based on exponential func-
tion in a radius direction. Also, internal pressure and temper-
ature gradient effective are investigated on the elastic–plastic 
behaviour of FG-homogenous thick spherical vessels.

2 � FGM behaviour modelling

Figure 1 is the profile of the spherical vessel with an FGM 
coating. The superscript symbols H and FG refer to the 
homogeneous part and the functional calibrated material 
coating, respectively. EH, �H,KH and YH denote elastic 

Fig. 1   2D schematic of the FG spherical vessel
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modulus, thermal expansion, heat transfer coefficient and the 
yield stress of the homogeneous component, respectively. 
The mechanical and thermal properties of the FGM shell are 
assumed to be changed only along the radius direction, and 
it varies continuously through the radial direction according 
to the exponential function, which is as follows:

Considering the spherical coordinate, r is the radial coor-
dinate. Superscript n1, n2, n3 and n4 are the scaling indices, 
and E0, �0,K0 and Y0 are the constants of gradation relations.

3 � Equations of the problem

In order to solve the problem, the heat transfer equation and 
then equilibrium equation are solved in the radial direction. 
As a contract, the H-E, FG-P, FG-E superscripts are related 
to the homogeneous elastic part, the FG plastic part and 
the FG elastic part, respectively. Furthermore, according to 
axisymmetric conditions, only the equilibrium equation in 
the radial direction is used in this, and circumferential dis-
placement, shear strain and stress are zero.

3.1 � Temperature field

The heat transfer equation in the radial direction in spherical 
coordinates is equal to [7]:

and the boundary conditions in this case are:

By solving Eq. (2), for the homogeneous part and FGM, 
the temperature in these two parts is obtained as follows:

After applying the boundary conditions, C1,C2,C3andC4 
are obtained as follows:

(1)
EFG(r) = E0r

n1 �FG(r) = �0r
n3

YFG(r) = Y0r
n2 KFG(r) = K0r

n4

(2)
1

r2
d

dr

(
r2K

dT

dr

)
= 0

(3)
TFG(a) = Ta, T

H(c) = Tc, T
FG(b) = TH(b),

KH dT
H

dr
|r=b = K0b

n4
dTFG

dr
|r=b

(4)
TFG(r) = C1r

−n4−1 + C2

TH(r) = C3r
−1 + C4

3.2 � Elastic solution on a sphere with FGM

The equilibrium equation for an element in spherical coor-
dinates is as follows [19]:

where �r and �� are radial and peripheral stresses, respec-
tively. The equation between strain and radial displacement 
is as follows:

The equation between stress and strain is as follows [19]:

where � and � are Lamé’s constants and are defined as 
follows:

Thus, after combining Eqs. (6–9), an ordinary differential 
equation of the second order is obtained in terms of radial 
displacement as follows:

The general solution of Eq. (10) can be written as:

S1 and S2 are integral constants and are determined by 
applying boundary conditions. The particular solutions of 
Eq. (12) are assumed as:

(5)

C1 = K
H
c
(
Ta − Tc

)
∕D

C2 = Ta

[
K0

(
n4 + 1

)
(c − b)bn4 − K

H
c
]
b
−n4−1∕D + cTcK

H
a
−n4−1∕D

C3 = cK0

(
n4 + 1

)(
Ta − Tc

)
∕D

C4 =
[
K0b

n4
(
n4 + 1

)(
cTc − bTa

)
− cTcK

H
]
b
−n4−1∕D + cTcK

H
a
−n4−1∕D

D =
[
K0b

n4
(
n4 + 1

)
(c − b) − cK

H
]
b
−n4−1 + K

H
a
−n4−1

(6)
d�r

dr
+ 2

�r − ��

r
= 0

(7)�r =
du

dr
, �� = �� =

u

r

(8)
�r = �

(
�r + 2��

)
+ 2��r − (3� + 2�)�T

�� = �
(
�r + 2��

)
+ 2��r� − (3� + 2�)�T

(9)� =
vE

(1 + v)(1 − 2v)
,� =

E

2(1 + v)

(10)

d2uFG−E

dr2
+

n1 + 2

r

duFG−E

dr
+

2v
(
n1 + 1

)
− 2

r2(1 − v)
uFG−E

=
�0(v + 1)

(1 − v)
×
[(
n1 + n3 − n4 − 1

)
C1r

−n4+n3−2 +
(
n1 + n3

)
C2r

n3−1
]

(11)

uFG−E
g

= S1r
�1 + S2r

�2

�1,2 =
−(n1 + 1) ±

√
n2
1
+

2n1(1−5v)+9(1−v)

1−v

2
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Using Eq. (7), find the radial and circumferential strains 
as follows:

Radial and circumferential stresses are also obtained by 
placing strains in Eq. (7):

3.3 � Elastic solution on a sphere with homogeneous 
material

As before, the equation of displacement in the homogeneous 
sphere can be obtained as follows:

The general solution as follows:

Similar to the previous section, the radial and circumfer-
ential stresses and strains in the homogeneous section are 
obtained as follows:

(12)

uFG−E
p

= Z1r
n3+1 + Z2r

n3−n4

Z1 =
(1 + v)�0

(
n1 + n3

)
C2

(1 − v)
[
n2
3
+
(
3 + n1

)
n3
]
+ n1(1 + v)

Z2 =
(1 + v)�0

(
n1 + n3 − n4 − 1

)
C1

(1 − v)
[(
n3 − n4

)(
n3 − n4 + n1 + 2

)]
+ 2v

(
1 + n1

)
− 2

(13)

�FG−E
r

= S1�1r
�1−1 + S2�2r

�2−1 + Z1
(
n3 + 1

)
rn3 + Z2

(
n3 − n4

)
rn3−n4−1

�FG−E
�

= S1r
�1−1 + S2r

�2−1 + Z1r
n3 + Z2r

n3−n4−1

(14)

�FG−E
r

=
−E

0

(1 + v)(1 − 2v)
×
{
S
1
r
�
1
+n

1
−1
[
(v − 1)�

1
− 2v

]

+S
2
r
�
2
+n

1
−1 ×

[
(v − 1)�

2
− 2v

]

+rn3+n1 ×
[
Z
1
n
3
(v − 1) − (v + 1) + C

2
�
0
(1 + v)

]

+rn3−n4+n1−1
[
Z
2
((n

3
− n

4
)(v − 1) − 2v)

]
+ C

1
�
0
(1 + v)

}

(15)

�FG−E
�

=
E
0

(1 + v)(1 − 2v)

{
S
1
r
�
1
+n

1
−1
(
�
1
v + 1

)

+S
2
r
�
2
+n

1
−1
(
�
2
v + 1

)

+rn3+n1
[
Z
1

(
v
(
n
3
+ 1

)
+ 1

)
− C

2
�
0
(1 + v)

]

+rn3−n4+n1−1
[
Z
2
(v(n

3
− n

4
) + 1) − C

1
�
0
(1 + v)

]}

(16)d2uH−E

dr2
+

2

r

duH−E

dt
−

2

r2
uH−E =

−�H(v + 1)C3

(1 − v)r2

(17)uH−E = S3r +
S4

r2
+

�H(v + 1)C3

2(1 − v)

(18)
�H−E
r

= S3 −
2S4

r3

�H−E
�

= S3 +
S4

r3
+

�H(v + 1)C3

2r(1 − v)

S3 and S4 are integral constants and are determined by 
applying boundary conditions.

3.4 � Plastic solution on a sphere with FGM

As the pressure or temperature increases, the deformation 
reaches the plastic area. To start the submission in this 
study, the criterion of submission of Tresca has been used, 
although in a sphere, due to �� = �� , the two criteria of 
Tresca and Von Mises are the same. Given that circumfer-
ential stress in a sphere is usually greater than radial stress, 
the following equation is obtained [11]:

Assuming the elastic–plastic behaviour is complete and 
by placing Eq. (20) in Eq. (6), the radial and circumfer-
ential stresses in the plastic state are obtained as follows:

S5 is integral constants and are determined by applying 
boundary conditions. Assuming very small deformations, 
the elastic–plastic strain is obtained as follows [19]:

According to the principle of incompressibility in plas-
tic deformation, i.e.�P

r
+ �P

�
+ �P

�
= 0 , it can be written:

By placing the stresses of Eq. (21) in the above equa-
tion, the following result is obtained:

(19)

�H−E
r

=
EH

(1 + v)(1 − 2v)
[S

3
(1 + v) −

2S
4
(1 − 2v)

r3

+
v�H(v + 1)C

3

r(1 − v)
− (1 − v)�H

(
C
3

r
+ C

4

)
]

�H−E
�

=
EH

(1 + v)(1 − 2v)
[S

3
(1 + v) +

S
4
(1 − 2v)

r3

+
�H(v + 1)C

3

2r(1 − v)
− (1 − v)�H

(
C
3

r
+ C

4

)
]

(20)�� − �r = Y

(21)

d�r

dr
= 2

Y0r
n2

r

�FG−p
r

=
2rn2Y0

n2
+ S5

�
FG−p

�
=

(
2 + n2

)
rn2Y0

n2
+ S5

(22)
�r =

1

E

(
�r − 2v��

)
+ �P

r
+ �T

�� =
1

E

(
−v�r + (1 − v)��

)
+ �P

�
+ �T

(23)�r + 2�� =
du

dr
+

2u

r
=

(1 − 2v)

E

(
�r + 2��

)
+ 3�T
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where 

S6 is integral constants and are determined by applying 
boundary conditions (Fig. 2).

The following boundary conditions apply to any condi-
tion, including elastic and plastic, in the internal radius, 
the regular season of the veneer and the homogeneous part 
and the external radius of the sphere, respectively:

Also, on the border between elastic and plastic of coat-
ing area, the following boundary conditions apply:

(24)

duFG−P

dr
+

2u
FG−P

r
=

2(1 − 2v)
(
3 + n

2

)
Y
0

n
2
E
0

r
n
2
−n

1

+
3(1 − 2v)S

5

E
0

r
−n

1 + 3�
0
C
2
r
n
3

+ 3�
0
C
1
r
n
3
−n

4
−1

(25)

u
FG−P =

s
6

r2
+

3�
0
C
1

n
3
− n

4
+ 2

r
n
3
−n

4 +
3�

0
C
2

n
3
+ 3

r
n
3
+1

+
2(1 − 2v)

(
3 + n

2

)
Y
0

n
2
E
0
(n

2
− n

1
+ 3)

r
n
2
−n

1
+1
3S

5
(1 − 2v)

E
0

(
3 − n

1

) r1−n1

(26)

�FG

r
(a) = −Pa

�FG

r
(b) = �h

r
(b)

uFG(b) = uH(b)

�H

r
(c) = −Pc

(27)

�FG−E
r

(
rp
)
= �FG−P

r

(
rp
)

�FG−E
�

(
rp
)
= �FG−P

�

(
rp
)

uFG−E
(
rp
)
= uFG−P

(
rp
)

According to the relations (26–27), the integral con-
stants of A–B as well as the radius of the r plastic area 
can be obtained which have been solved numerically using 
MATLAB software.

4 � Properties of homogeneous material 
and coating

Since the sudden change of properties in the common joint 
of the coating and the homogeneous part causes a discon-
tinuity in the circumferential stress, this discontinuity in 
the stress can cause the coating to separate from the homo-
geneous part. This study assumes that the materials in the 
coating are graded in such a way that in the common joint 
between the FGM and the homogeneous part, both materi-
als have the same properties and are equal to the properties 
of the homogeneous material. With this assumption, the 
coefficients n1, n2, n3, n4 and the constants K0, �0,E0 , Y0 are 
obtained as follows:

And

In the above equations, subtitle a is related to the property 
of matter in a radius a.

In this research, Al-SiC composite has been used as a mate-
rial of homogeneous material and functional calibrated coat-
ing. It is assumed that in the homogeneous part, the distribu-
tion of SiC particles is constant and equal to 10%.

In the FGMs, three types of coating are considered. In the 
first type of coating, the percentage of SiC in the radius is 
considered to be a as 0% (a-Al-0%SiC), in the second case it 
is 10% (a-Al-10% SiC), and in the third case, it is 20% (a-Al-
20%SiC). Then, considering that the mechanical properties 
in the internal radius and the middle radius b (in the middle 
radius of the material must be homogeneous) are clear, using 
relations (28) and (29), the way of the grading in the coating 
is specified. It is clear that in the second case of the coating, 
the percentage of SiC in the coating is constant and equal to 
10%, and therefore the whole sphere is made of homogeneous 
material. Mori–Tanaka’s method is a method for obtaining 

(28)

n1 = ln

(
Ea

EH

)
∕ ln

(
a

b

)

n2 = ln

(
Ya

YH

)
∕ ln

(
a

b

)

n3 = ln

( �a

�H

)
∕ ln

(
a

b

)

n4 = ln

(
Ka

KH

)
∕ ln

(
a

b

)

(29)
E0 = Ea∕a

n1 Y0 = Ya∕a
n2

�0 = �a∕a
n3 K0 = Ka∕a

n4

Fig. 2   Partial yield in an FGM coating
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the effective properties of two-phase composites. Assuming 
the particles are spherical, the effective volumetric modulus 
Ke and the effective shear modulus Ge for the Al-x%SiC com-
posite are defined as follows (x percentage volumetric phase 
SiC) [20]:

In the above relations,G,K̃ are the shear modulus and the 
volumetric modulus of each phase, respectively. x is also the 
volume percentage of the SiC phase and the effective elastic 
modulus is equal to:

The effective heat transfer coefficient and the effective ther-
mal expansion coefficient based on the Mori–Tanaka method 
are:

The following weight percentage rule is used to obtain the 
yield strength:

Table 1 shows the properties of Al and SiC, and Table 2 
shows the effective properties of Al-10% SiC (homogene-
ous part material) calculated using Eqs. (31–33). Since 
SiC particles are ceramic and behave brittle, as an approxi-
mation, tensile strength is considered for these particles 
instead of yield strength.

Using Eqs.  (31–33) to obtain effective properties 
in a radius for three types of coatings and also using 
Eqs.  (27–28), how to grade in coatings is specified. 
Table 3 shows the constants and exponents for grading 
of three coatings types, taking into account a = 1 m and 
b = 1.2 m of FGM. It should be noted that in all examples 
of this study, the Poisson ratio for the homogeneous and 
function graded part is considered to be 0.3.

(30)

K̃e =
x
(
3K̃Al + 4GAl

)(
K̃SiC − K̃Al

)

3K̃Al + 4Gm + 3(1 − x)
(
K̃SiC − K̃Al

) + K̃Al

Ge = 5xGAl

(
3K̃Al + 4GAl

)(
GSiC − GAl

)
∕
[
5GAl(3KAl

+6(1 − x)
(
GSiC − GAl

)(
K̃Al + 2GAl

)]
+ GAl

(31)Ee = 9GeK̃e∕
(
Ge + 3K̃e

)

(32)

Ke =
x(KSiC − KAl)KAl

KAl + (1 − x)(KSiC − KAl)
+ KAl

�e =

(
KAl − Ke

)
KSiC

(
�SiC − �Al

)
(
KAl − KSiC

)
Ke

+ �Al

(33)Ye = (YSiC − YAl)x + YAl

5 � Results and discussion

5.1 � Comparison of results with FEM

To compare the results obtained using the presented equa-
tions, a simulation of the FEM of the model has been 
performed. Abaqus finite element software is used for 
this purpose. Figure 3 shows the finite symmetric finite 
element model (three-dimensional view) of the problem 
in this software. Due to the symmetry conditions in the 
direction of the two axes and to save on calculations, the 
problem is modelled in two dimensions and symmetric 
with a 90-degree segment. Because there is no standard 
model in this software to define the behaviour of an FGM, 
using a Python code, the FGM is divided into 40 parts 
along the radius and the properties of each part are based 
on Eq. (1) and the middle radius of each part allocated. 
The models for spherical vessels consist of 4500 CAX4T 
elements for static analysis. Also, by making the mesh 
smaller, the independence of the answer on the size of the 
mesh has been investigated. In this case, a = 1 m, b = 1.2 m 
and c = 1.4 m are considered. Properties for the homoge-
neous part are selected according to Table 1. Also, the 
properties for coating are selected according to a-Al-0% 
SiC (Table 3). Loading conditions are also considered as 
follows:

As shown in Fig. 4, the results of the finite element and 
analytical solution presented in this study are well consist-
ent. The presence of fluctuations in the finite element results 
in the FG section is a function of the step-by-step property 
change in this section. Figure 4a shows the environmental 
stress along with the thickness of the sphere. With the right 
choice of how the coating is graded, this stress is joined in 
the common season of the coating and the homogeneous 
part. Radial stress in the thickness direction of the sphere 
wall is also shown in Fig. 4b. In this figure, the fracture point 
in the diagram is the boundary between the elastic and the 
plastic area in the FGM cover.

5.2 � The effect of internal pressure

Figure 5 shows the effect of internal pressure on the distribu-
tion of radial stress, circumferential stress, the dimensionless 

Pa = 50MPa ,Pc = 0, Ta = −30◦C,Tc = 0◦C

Table 1   Properties of Al [21] and SiC [10]

Material/Prop. E
H (GPa) Y

H (MPa) �H (1/ °C) K
H (W/m °C)

Al 72.4 124 20 × 10−5 138
SiC 476 310 5.12 × 10−5 41

Table 2   Properties of Al-10%SiC

Material/Prop. E
H (GPa) Y

H (MPa) �H (1/ °C) K
H (W/m °C)

Al-10%SiC 84.02 142.6 1.85 × 10−5 111.6
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of yield 
(
�� − �r

)
∕Y  and radial displacement. The internal, 

middle and external radius of the sphere are chosen to be 
equal to a = 1m , b = 1.2m, and c = 1.4m , respectively. The 
material properties for the homogeneous part are selected 
according to Table 2, and the coating properties are selected 
according to a-Al-0% SiC (Table 3). The external pressure 
of the sphere is equal to Pc = 0, and the internal and external 
temperatures are considered to be Ta = − 30 °C and Tc = 0 °C, 
respectively, as shown in Fig. 5a. The radial stress in the 
internal radius of the sphere is equal to the internal pressure, 
and by moving towards the external radius, its value reaches 
the external pressure, i.e. zero (Fig. 5a). Circumferential 
stresses for different internal pressures are shown in Fig. 4b. 
As can be seen, in FGM coating and homogenous part area 
stresses are continuum due to material properties equality. 
Stress continuity can reduce the delamination of FGM layer 
risk. For each amount of internal pressure, circumferential 
stress is positive and the magnitude of this stress increases 
from FGM internal boundary condition to a maximum and 
after that, it decreases continuously to external boundary 
condition. In these curves, the external point between elas-
tic and plastic area borders is in the FGM coating side. As 
shown in Fig. 5b, the maximum circumferential stress moved 
to external diameter, while internal pressure increased. The 
dimensionless yield criterion is shown in Fig. 5c, while this 
parameter equal to 1 states that there is plastic deformation. 
By yield from inside in boundary condition considering, the 
plastic area radius in each amount of pressure is confirmed 

until the last point that the dimensionless yield criterion 
is equal to 1. As was shown, at 39 MPa pressure plastic 
area radius is almost zero and at 79 MPa all part of the coat 
yielded. The dimensionless radial displacement is shown in 
Fig. 5d. The radial displacement increased as an increase in 
internal pressure as expected.

5.3 � Effect of temperature gradient

In this section the effect of temperature gradient in elas-
tic–plastic behaviour of spheres with FGM coat by consid-
ering a sphere with the same dimensions and behaviours of 

Table 3   Grading index and 
constants for three FGM coating

Internal diameter 
material/Properties

E
0
 (GPa) Y

0
 (MPa) �

0
 (1/ °C) K

0
 (W/m °C) n

1
n
2

n
3

n
4

a-Al356.2-0% SiC 72.4 124 2.0 × 10−5 138 0.81 0.76 − 0.42 − 1.16
a-Al356.2-10% SiC 84.02 142.6 1.85 × 10−5 111.6 0 0 0 0
a-Al356.2-20% SiC 97.63 161.2 1.7 × 10−5 93.67 − 0.82 − 0.67 0.46 0.96

Fig. 3   Axisymmetric finite element model (FGM coating has been 
divided into 40 part in the radial direction)

Fig. 4   Comparison between analytical and FEM results: a radial 
stress and b circumferential stress
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the last part. Pc = 0, Pa = 40 MPa and Tc = 0 °C is assumed 
in this instance.

Radial stress distribution for a different amount of inter-
nal temperature of Ta is shown in Fig. 6a. For the internal 
temperature of − 40 °C radial stress is compressive in entire 
sphere thickness based on this figure. The temperature reduc-
tion causes that the radial stress near the internal radius still 
remains compressive, while the radial stress of external areas 
in the homogenous part converts to tensional. This point shows 
that the stresses caused by temperature have more effect on 
the external radius in lower temperatures. The distribution 
of circumferential stress in the sphere thickness is shown in 
Fig. 6b. Unlike the previous part that circumferential stress 
changed with the increase in pressure, in this instance stress 
increased initially in a constant ramp line and then decreased 
to an external radius in each temperature. This constant ramp 
line regards the plastic radial stress, and since this stress is 
independent of temperature, this mentioned line is constant in 
each temperature. The maximum stress is in the plastic area 
radius that increases with the reduction of temperature. The 
other point for circumferential stress is that circumferential 
stress changes its direction in homogenous part for below 40◦ 

C temperatures and the location of this change is almost con-
stant. The dimensionless yield criterion is shown in Fig. 6c. It 
is obvious that the magnitude of radial stress will be greater 
than circumferential stress with the reduction of temperature 
in the near external radius area. The radial displacement for 
a different amount of temperature is shown in Fig. 6d. The 
sphere tends to shrink and negative displacement with decreas-
ing temperature as expected. At higher temperatures, there is 
positive displacement because the effect of pressure is more 
than temperature. Also, at very low temperatures due to the 
effect of pressure in a thin area near the internal radius, there 
is a positive displacement.

5.4 � The effect of the coating type

For a sphere with the same dimensions as the last part and 3 
kinds of the coat as Fig. 3 and pressure and temperature condi-
tion as follows:

Pa = 60MPa, Pc = 0MPa, Ta = −70 ◦C, Tc = 0◦C

Fig. 5   a Radial stress, b circumferential stress, c the dimensionless parameter of yield and d the radial dimensionless displacement for the vari-
ant amount of internal temperatures (Pc = 0, Ta = − 30 °C and Tc = 0 °C)
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The dimensionless yield criterion is shown in Fig. 7. As 
mentioned before, in a sphere with a-Al-20%SiC coat all 
of the spheres are homogenous. Also in a-Al-0%SiC and 
a-Al-20%SiC the FGM coat is softer and harder than the 
homogenous part, respectively. According to the picture, it 
is obvious that the plastic area radius in the sphere with the 
soft coat is smaller, and in the sphere with the hard coat, this 
mentioned radius is bigger than the elastic area radius in the 
homogenous sphere. It is also clear that the dimensionless 
yield criteria for 3 kinds of the coat are verge together by the 
approach to the external radius. Due to this point, it turns 
out that the kind of applying FGM coat can effect stresses 
that develop on the sphere, so with choosing the right kind 
of FGM coat it is possible to reach an optimized design for 
vessels under pressure and temperature gradient.

6 � Conclusion

The issue of a spherical pressure vessel with a coating of 
functional graduated materials was investigated in this 
study. In this case, analytical equations were obtained for the 

Fig. 6   a Radial stress, b circumferential stress, c the dimensionless parameter of yield and d the radial dimensionless displacement for the vari-
ant amount of internal temperatures (Pa = 40 MPa, Pc = 0 °C and Tc = 0 °C)

Fig. 7   The dimensionless parameter for three types of coatings
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elastic–plastic deformation in the sphere’s wall under pres-
sure and temperature gradient. In this study, it was assumed 
that the temperature and pressure conditions were such that 
the yield would start from the internal radius of the sphere 
and expand in the vector towards the external radius, while 
the homogeneous part remained elastic. To prevent the dis-
continuity of the stress at the common boundary between 
the homogeneous part and the functional graduated coat-
ing, it was considered that the coating is graduated in such 
a way that in the common boundary area, its properties are 
the same as the properties of the homogeneous part. The 
effect of internal pressure, temperature gradient, as well as 
the type of coating on the sphere’s elastic–plastic behaviour, 
was also investigated. The obtained results showed that in 
large internal pressures, radial stresses are compressive and 
circumferential stresses are tensile, and as the internal pres-
sure increases, the plastic region moves from the internal 
to the external radius. By lowering the internal temperature 
of the sphere, in the area close to the internal radius, the 
radial stresses are the compressive and, in the area, close 
to the external radius is the tensile. The opposite is true 
for circumferential stress. Also, with the lowering of the 
temperature, the yield of the sphere was beginning from the 
external radius.
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