
Vol.:(0123456789)1 3

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:20 
https://doi.org/10.1007/s40430-020-02719-2

TECHNICAL PAPER

Influence of hole quality on fatigue life of drilled CFRP 
with the different ply orientation angle

Burak Yenigun1   · Erol Kilickap2 

Received: 14 March 2020 / Accepted: 9 November 2020 / Published online: 2 January 2021 
© The Brazilian Society of Mechanical Sciences and Engineering 2021

Abstract 
In this study, the effect of drilling quality on fatigue life of UD, 0/90, and ± 45 fiber angle carbon fiber reinforced plastics 
(CFRP) was investigated. CFRPs were drilled using WC, HSS, and Brad Spur tool types that have different geometries and 
materials at different feed rates of 0.05, 0.10, and 0.15 mm/rev, and at the different spindle speeds of 1000, 3000 and 5000 
rev/min. Thrust forces were measured during the drilling of CFRPs, and surface roughnesses, deformation factors, and 
maximum tensile forces were measured after drilling operations. Thrust force, surface roughness, and deformation factor 
were evaluated in terms of drilling quality. The drilling parameters that cause the best, average, and worst drilling quality 
were determined. Then, fatigue behaviors of CFRPs drilled in these drilling parameters were investigated. Fatigue tests 
were carried out at %75, %80, %85, and %90 load ratios based on the lowest tensile force of the drilled samples. As a result 
of the study, it was determined that the thrust force, the deformation factor, and the surface roughness increased as the feed 
rate increased. However, the thrust force, the deformation factor, and the surface roughness decreased as the spindle speed 
increased. Besides, the best drilling quality was obtained from the drilling operation performed using WC tool type, at a 
spindle speed of 5000 rev/min and a feed rate of 0.05 mm/rev. The worst drilling quality was obtained from the drilling 
operation performed using Brad Spur tool type, at a spindle speed of 1000 rev/min and a feed rate of 0.15 mm/rev. With the 
decreasing drilling quality, a significant decrease occurred in the tensile force and fatigue life of CFRPs. The tensile load 
and fatigue life of CFRPs drilled in optimum drilling parameters were obtained higher. In the case of selecting the correct 
drilling parameters, it was observed that the reduction in fatigue life of CFRPs could be prevented ratios of %22–49.
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1  Introduction

Carbon fiber reinforced plastic composites (CFRPs) are 
used in numerous fields due to their high mechanical prop-
erties [1, 2]. The usage of CFRP in engineering appli-
cations has increased in many industries in the last two 
decades. Although CFRPs are produced very close to final 
shape, they might need machining in some cases [3]. That 
matrices and reinforcement elements possess different 
mechanical properties, especially since carbon fibers have 
abrasive characteristics, aggravates machining of CFRPs 
[4, 5]. The method, mostly used in machining CFRPs, is 
drilling [6]. Since CFRPs are anisotropic, fiber breakages, 
deformations, and micro-cracks occur in the drilling of 
these materials [7–11]. As a result, the strength of the 
material and fatigue life decreases. [12–17]. For example, 
because of these problems, nearly %60 of the materials 
produced for the aircraft industry become useless [18, 19].

Since damages occurring on the material have an impor-
tant role in the quality of the product, there is an increas-
ing interest in these kinds of materials to prevent damages 
or keep them at a low level in the drilling. Researchers 
realized drilling processes with the use of various drill-
ing methods using different cooling types at different feed 
rates and spindle speeds of composite materials by utiliz-
ing tools with different geometries and materials. In drill-
ing processes, various types of tool types such as Brad 
Spur and core drill, step drill, dagger drill, and specially 
produced tools were used. Researchers mostly preferred 
HSS, WC, and PCD tools and coating types of these tools, 
such as AlTiN, TiCN, and TIN. It was observed that drill-
ing processes of composites were performed between vast 
spindle speed as 100–40,000 rev/min and very vast feed 
rate as 0.005–1.0 mm/rev. Gasses like pressured air, CO2, 
and N were used as fluid coolants the part from the MSS 
system. As an alternative to conventional drilling methods, 
various unconventional drilling methods such as ultrasonic 
vibration-assisted drilling, laser-assisted drilling, water jet 
drilling, electro-erosion drilling, and core drilling were 
used for the drilling of CFRP.

Most of the researchers reported that the most critical 
drilling parameter affecting drilling quality is tool type and 
feed rate [20–24], and when feed rate increases, drilling 
quality decreases [8, 21, 25–30]. Some researchers [25, 
28, 30, 31] stated that as spindle speed increases, drill-
ing quality decreases, whereas some other researchers [8, 
22, 29, 32] reported that as spindle speed increases, drill-
ing quality increases as well. Likewise, some researchers 
[33–36] observed that the quality of drilling increases with 
decreasing tool angle, while some researchers [8, 37–39] 
observed that the quality of drilling increases with increas-
ing tool angle. Lin et al. [1] investigated fatigue behaviors 

of drilled holes and molded-in holes woven glass fiber 
reinforced composites with 0/90 and ± 45 fiber angles. 
They determined that fatigue life decreased as tool diam-
eter increased, and the molded-in hole composites had 
longer fatigue life compared to drilled composite. Persson 
et al. [40] examined the effect of damages that occurred 
during drilling on material strength and fatigue life. They 
explained that the minimum strength and fatigue life were 
obtained in drilling processes carried out with more worn 
cutting tools. Besides, the highest resistance and fatigue 
life were obtained in drilling processes carried out with 
the KTH method. Both material strength and fatigue life 
were obtained lower compared to fresh tools in drill-
ing processes carried out with used tools. Paoletti [41] 
investigated the effect of drilling parameters and defor-
mation on the fatigue life of CRFPs. He determined that 
with the decrease in cutting speed, thrust force, torque, 
and deformation decreased. Besides, he established that 
a low amount of deformation and smaller micro-cracks 
on the surface of the hole increased the fatigue life of the 
samples. Saleem [42] conducted the drilling operations 
of various CRFPs with fiber angles at different param-
eters with water jet and conventional drilling methods. At 
the end of his study, he reported that %15 more damage 
occurred with the sample drilled using the traditional drill-
ing method compared to drilling performed by water jet 
that fatigue life and tensile force of CFRP was obtained 
lower. Furthermore, he noticed that CRFPs with fiber 
angle 45° tended to be damaged more. Montesano et al. 
[2] investigated the effects of drilled CRFPs by conven-
tional methods and water jet on fatigue performance. They 
reported that they obtained higher surface roughness with 
drilling processes conducted by water jet, and fatigue per-
formance was better compared to conventional drilling. 
That surface roughness was not alone an indicator of sur-
face quality. Therefore, the effect of deformation on the 
fatigue life of CFRP should be examined.

When previous studies are considered, it was observed 
that there were a few studies about the effects of the drilling 
quality on the fatigue life of CFRPs. In the reviews, it was 
established that few parameters were investigated. In drilling 
CFRPs, no comprehensive study investigating the effect of 
drilling parameters, fiber angle, and tool material on drilling 
quality and the effect of drilling quality on fatigue life could 
be found. In this study, both the effect of drilling parameters, 
such as spindle speed, feed rate, and tool type material and 
geometry on thrust force, deformation factor, and surface 
roughness, and the effect of these parameters on tensile force 
and fatigue life of CFRPs were experimentally investigated.
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Table 1   Material properties of CFRPs

UD 0/90  ± 45

Materials Carbon Polyester Carbon Polyester Carbon Polyester

Volume 
rate (%)

55 45 55 45 55 45

Density 
(g/cm3)

1.50

Tensile 
strength 
(Mpa)

620.5 684.3 91.4

Table 2   Drilling parameters

Parameter Level

Tool type WC HSS Brad Spur

Spindle speed (rev/min) 1000 3000 5000
Feed rate (mm/rev) 0.05 0.10 0.15
Diameter (mm) 6 6 6

2 � Experimental work

2.1 � Materials

CFRPs used in the experiments were produced 
using vacuum infusion methods with dimensions 
500  mm × 500  mm × 6  mm with angles of UD, 0/90, 
and ± 45 by Innoma Co. Trade Ltd. Afterward, for 
the experiments, they were cut in dimensions of 
150 mm × 36 mm × 6 mm according to ASTM D5766–2002 
standards. CFRPs consisted of 11 layers to obtain a 6 mm 
thickness. In Table 1, the properties of CFRPs used in this 
study are given.

Drilling processes of UD, 0/90, and ± 45 CFRPs were 
performed in Brother Brand SPEEDIO S500 × 1 model 
CNC vertical machining center, using WC, HSS and Brad 
Spur tools at spindle speeds of 1000, 3000, and 5000 rev/
min and feed rates of 0.05, 0.10, and 0.15 mm/rev. Drilling 
parameters have been determined according to the litera-
ture and so as not to cause tool wear. Drilling parameters 
are given in Table 2.

The graphical abstract of the experimental study is 
shown in Graphic abstract. Initially, the drilling of UD, 
0/90, and ± 45 CFRPs was performed. Thrust forces 
occurring during drilling were measured using a Kistler 
brand 9257B three-axis dynamometer and multichannel 
amplifier.

The surface roughnesses of CFRPs were measured at 
0.25 mm sampling length and five sampling numbers, with 
the use of Timesurf T200 brand surface roughness measur-
ing device. From the points on the surface of each hole that 
coincide with 0°, 90°, 180°, and 270°, surface roughness 

values were taken three times; thus, average surface rough-
ness was measured.

MedPro Microscopy brand MM800TRF model optic 
microscope was used to determine the deformations occur-
ring after drilling of CFRPs. The deformations occurring 
at the entrance and exit of the hole in the drilling process 
of CFRPs were determined with the use of Fd = Dmax/D 
formula, where Fd, Dmax, and D are deformation fac-
tor, the diameter of the damaged area, and hole diameter, 
respectively.

The tensile forces of CFRPs were carried out at a speed 
of 1 mm/min tensile speed in concordance with ASTM 
3039 with the use of a Shimadzu AG–X universal test 
machine, which possesses 250 kN load capacity. For each 
parameter, the tensile experiments were repeated three 
times.

Fatigue load ratios were chosen as %90, %85, %80, 
and %75 of the minimum tensile force for each UD, 0/90, 
and ± 45 CFRPs. Fatigue tests were repeated three times at 
each load level. Fatigue load levels are given in Table 3. 
Besides, thermal images of CFRPs were taken at certain 
revolution numbers with the using of Testo 881-2 brand ther-
mal camera to observe temperature and damage progression 
occurring during fatigue of CFRPs.

3 � Results and discussion

Drilling of UD, 0/90, and ± 45 CFRPs was carried out with-
out using any cooling liquid at CNC vertical machine at 
different feed rates of 0.05, 0.10, and 0.15 mm/rev, and at 
the different spindle speeds of 1000, 3000, and 5000 rev/
min the using WC, HSS, and Brad Spur tools. Thrust forces, 
surface roughness, deformation factors, tensile forces, and 
fatigue life of CFRPs were determined separately. Also, the 
relations between these data and cutting tool types, spindle 
speed, and feed rate were examined.

3.1 � Effect of drilling parameters on thrust force, 
surface roughness and deformation factor

The thrust force results belonging to drilling processes car-
ried out using WC, HSS, and Bard Spur tools different feed 
rates of 0.05, 0.10, and 0.15 mm/rev, and at the different 
spindle speeds of 1000, 3000, and 5000 rev/min, UD, 0/90, 
and ± 45 of CFRPs are shown in Fig. 1.

For UD, 0/90, and ± 45 CFRPs, cutting tool cannot find 
sufficient time to cut fiber since the chip removal amount 
in one revolution of cutting tool increases with increas-
ing feed rate. In this case, a cutting tool cannot cut the 
fiber entirely, and it exposes the fiber to bending or rup-
ture. This case causes the thrust force to increase. With 
the increase in spindle speed, it was noticed that thrust 
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forces as well decreased. The reason for this is that a tool 
revolving at high spindle speed leads to an easy cut of 
fiber. While minimum thrust forces were obtained in drill-
ing processes carried out using WC tool, maximum thrust 
forces were obtained in drilling processes carried out using 
Brad spur tool (Fig. 2).

When the effects of fiber orientation angles on thrust 
force were studied, different types of tools in drilling CFRPs 
with varying angles of fiber resulted in better. However, it 

is not possible to generalize this case for three tool types. 
Minimum thrust force in drilling processes carried out using 
WC tool was obtained in ± 45-CFRPs drilling, while maxi-
mum thrust forces occurred in the drilling of UD-CFRPs. 
While maximum thrust force in drilling processes carried 
out using HSS tool happened in the drilling of UD-CFRPs, 
minimum thrust forces occurred in the drilling of 0/90-
CFRPs. On the other hand, in drilling processes carried 
out using Brad Spur tool, maximum thrust forces occurred 

Fig. 1   Effect of drilling parameters on thrust force

Table 3   Fatigue load level for CFRPs

Materials Drilling parameter Thrust force (N) Deforma-
tion factor

Surface 
roughness 
(μm)

Tensile load (kN) Load level

Spindle speed 
(rev/min)

Feed rate 
(mm/rev)

%90 %85 %80 %75

UD WC 5000 0.05 62.8 1.15 1.47 99 72 68 64 60
HSS 3000 0.10 761 1.33 3.51 90.2 72 68 64 60
BS 1000 0.15 978 1.43 5.35 80 72 68 64 60

0/90 WC 5000 0.05 59 1.22 1.27 101.4 73.8 69.7 65.6 61.5
HSS 3000 0.10 682 1.36 3.24 92 73.8 69.7 65.6 61.5
BS 1000 0.15 1049 1.49 5.67 82 73.8 69.7 65.6 61.5

 ± 45 WC 5000 0.05 57.4 1.16 1.15 14.02 9.36 8.84 8.32 7.80
HSS 3000 0.10 742.2 1.35 3.08 12.02 9.36 8.84 8.32 7.80
BS 1000 0.15 1141.6 1.45 5.56 10.40 9.36 8.84 8.32 7.80
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with ± 45-CFRPs, different from other tools, minimum thrust 
forces were obtained in drilling processes carried out with 
UD-CFRPs. This case is thought to be related to tool geom-
etries. When cutting edge is at the positions of 0° and 180°, 
deformations occur, when the positions are 90° and 270°, 
the separation layers arise, and when the positions are at 
multiples of 45°, fiber breakages happen. Also, when cut-
ting edge is at the positions of 0° and 180°, Fx is minimum, 
and Fy is maximum, and at positions of 90° and 270°, Fx 
becomes maximum and Fy becomes minimum [43]. Thrust 
force profiles occurring at a revolution during drilling using 

WC, HSS, and Brad Spur tools at a feed rate of 1000 rev/
min and 0.05 mm/rev UD, 0/90, and ± 45-CFRPs are shown 
in Fig. 3. While establishing the position of the tool, firstly, 
Fx, and Fy thrust forces were investigated. After the points, 
where Fx and Fy thrust forces were minimum, were estab-
lished, other positionings were performed.

Surface roughness is a concept related to geometric tol-
erance. It makes it possible to characterize the hole surface 
[44, 45]. Drilling performance plays an important role in 
surface quality in drilling of CFRPs. A good surface qual-
ity improves fatigue life, tensile strength, and friction life 

Fig. 2   Thrust force profiles

Fig. 3   Effect of drilling parameters on surface roughness
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significantly. One of the properties determining surface 
quality is surface roughness. Surface roughness is affected 
by machining parameters. The surface roughness results 
of drilling processes carried out using WC, HSS, and Brad 
Spur tools different feed rates of 0.05, 0.10, and 0.15 mm/
rev and at the different spindle speeds of 1000, 3000, and 
5000 rev/min, UD, 0/90, and ± 45-CFRPs are shown in 
Fig. 3.

Similar to the thrust force results, surface roughness 
increased at increasing rates; however, it decreased in 
increasing spindle speeds. This reveals that there is a lin-
ear relation between thrust force and surface roughness. 
In drilling processes carried out using WC and HSS tools, 
maximum surface roughness occurred in drilling processes 
performed by UD-CFRPs. In contrast, minimum surface 
roughness happened in the drilling of ± 45-CFRPs. On the 
other hand, in drilling processes carried out using Brad Spur 
tool, while maximum surface roughnesses were obtained 
with 0/90-CFRPs, minimum surface roughnesses were 
obtained with UD-CFRPs.

Deformation, also known as layer separation and fiber 
breakage, is the most common type of damage observed in 
the drilling of composites. The deformation is caused due 
to the feed force of tool type or tensile strength occurring 
during chip removal. Deformation factors of drilling at a 

spindle speed of 1000 rev/min and feed rate of 0.05, 0.10, 
and 0.15 mm/rev using WC, HSS, and Brad Spur tools UD, 
0/90, and ± 45 CFRPs are shown in Fig. 4.

The deformation factor increased at the same increasing 
feed rates of the previous results, whereas the deformation 
factor in increasing spindle speeds decreased. While the 
minimum deformation factor was obtained in the drilling 
processes carried out using WC tool, the maximum defor-
mation factor was obtained using Brad Spur tool. Minimum 
deformation factors for all three cutting tools were obtained 
in the drilling of UD-CFRPs, while maximum deformation 
factors were obtained in the drilling of 0/90-CFRPs.

3.2 � Effect of deformation on tensile load 
and Fatigue life

The tensile loads of drilled UD, 0/90, and ± 45 CFRPs at a 
spindle speed of 1000 rev/min and feed rates of 0.05, 0.10, 
and 0.15 mm/rev using WC, HSS, and Brad Spur tools are 
shown in Fig. 5.

Thrust force, surface roughness, and deformation factor 
increased with an increase in feed rate, and consequently, the 
tensile forces decreased. The deformation factor decreased 
with the increase in spindle speed; hence, tensile loads were 
higher. It was observed that tensile forces of CFRPs drilled 

Fig. 4   Effect of drilling parameters on deformation factor
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using WC tool were higher, while tensile forces of CFRPs 
drilled using Brad Spur were lower. Besides, while small 
tensile loads were obtained in ± 45-CFRPs, the highest ten-
sile loads were obtained in 0/90-CFRPs.

Due to the anisotropic structure of composites, the crack 
propagation method is not preferred in the determination of 
fatigue life. Therefore, the fatigue life of composites is calcu-
lated by means of estimated stress and transformation meth-
ods. Besides, fatigue behavior in materials can be obtained 
with the investigation of transformation energy. Hysteresis 
rake angle (Δσ/ΔƐ) can be defined as the rigidity indicator 
of material. In Fig. 6, a hysteresis conversion is shown.

As a result of previous experiments, the best hole quality 
was obtained in CFRPs drilled using WC tool at the spin-
dle speed of 5000 rev/min and at the feed rate of 0.05 mm/
min; however, the worst hole quality was obtained in CFRPs 
using Brad Spur tool at the spindle speed of 1000 rev/min 
and at the feed rate of 0.15 mm/min. Besides, as an interme-
diate value, the feed rate using HSS tool at the spindle speed 
of 3000 rev/min and the feed rate of 0.10 mm/min was cho-
sen. Fatigue lives are shown in connection with load levels 
UD, 0/90, and ± 45 CFRPs drilled in different parameters in 
Figs. 7, 8, and 9, respectively.

Since thrust forces, deformation factors, and surface 
roughnesses of CFRPs drilled using WC tool were obtained 

better, in other words, due to a higher drilling quality, their 
fatigue life was established to be the longest, while the 
fatigue life of CFRPs drilled using Brad Spur tool was deter-
mined to be shorter. It was observed that average fatigue 
life loss could be prevented for -CFRPs with regard to load 
ratio by %39–%50; and for 0/90-CFRPs by %22–%60; 
and for ± 45-CFRPs by %24–%43. Hysteresis rake angles 
belonging to fatigue test of UD-CFRPs at the level of %75 
and of ± 45-CFRPs at the level of %90 are shown in Figs. 10, 
11, and 12, respectively.

Fig. 5   Effect of drilling parameters on tensile force

Fig. 6   Hysteresis cycle
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Fig. 7   Fatigue life of UD-CFRP

Fig. 8   Fatigue life of 0/90-CFRP

When the figures are examined, it can be seen that the 
hysteresis rake angle decreased while the hysteresis area 
increased with the increase in the revolution. As the number 
of revolutions increased, the hysteresis area increased, and 
the hysteresis rake angle decreased because fiber ruptures 

and matrix cracks occurred. At the same number of revo-
lutions, lower hysteresis areas but higher hysteresis rake 
angles were obtained with CFRPs drilled using WC tool, 
while CFRPs drilled using Brad Spur tool, larger hysteresis 
area but lower hysteresis rake angles were obtained. This 
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Fig. 9   The fatigue life of ± 45-CFRP

Fig. 10   Hysteresis cycle of UD-CFRP

was caused because the quality of CFRPs drilled using WC 
tool was higher; namely, it was more rigid.

On the other hand, in Tables 4 and 5, thermal images of 
%90 load level revolutions of 0/90 and ± 45 CFRPs drilled 
using WC, HSS, and Brad Spur tools are given. It was 
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Fig. 11   Hysteresis cycle of 0/90-CFRP

Fig. 12   Hysteresis cycle of ± 45-CFRP
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observed that the temperatures of CFRPs drilled using WC 
tool turned out to rise later than CFRPs drilled using HSS 
and Brad spur tools. While the samples drilled using WC 
tool damaged quite then, the ones drilled using Brad Spur 
tool damaged earlier.

4 � Conclusions and suggestions

In this study, in the drilling of UD, 0/90, and ± 45 CFRPs, 
the effects of drilling parameters such as spindle speed, 
feed rate, and tool type on thrust force, deformation fac-
tor, and surface roughness were investigated. Also, tensile 
load and fatigue life of CFRPs drilled at different drilling 
parameters were studied experimentally. For this purpose, 
CFRPs were exposed to drilling processes different feed 
rates of 0.05, 0.10, and 0.15 mm/rev, and at the differ-
ent spindle speeds of 1000, 3000, and 5000 rev/min using 
WC, HSS, and Brad Spur (HSS) tools. During drilling 

processes, initially thrust forces and later deformation fac-
tors and surface roughnesses were found. The data, which 
were obtained after tensile experiments of CFRPs, were 
conducted, were examined, and then drilling parameters, 
where tensile loads were obtained as low, medium, and 
high, were determined, and after this, drilling processes 
in these CFRPs were repeated at these drilling parameters. 
Fatigue tests of CFRPs were conducted at load levels of 
%75, %80, %85, and %90, respectively.

•	 While minimum thrust forces and surface roughnesses 
and deformation factors were obtained in drilling pro-
cesses carried out using WC tool, maximum thrust forces 
and surface roughnesses and deformation factors were 
obtained in the drilling processes performed using Brad 
Spur tool. Minimum and maximum thrust forces for 
UD, 0/90, and ± 45 CFRPs are 62.8 N, 59.1, 57.4 N and 
978 N, 1049 N, and 1141 N, respectively. Minimum and 
maximum surface roughnesses for UD, 0/90, and ± 45 

Table 4   Thermal image of 0/90-CFRP (Load level = 0.9)

WC (5000 rev/min, 0.05 mm/rev) HSS (3000 rev/min, 0.10 mm/rev) BS (1000 rev/min, 0.15 mm/rev)

100th cycle

500th cycle

1000th cycle

Fracture



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:20

1 3

20  Page 12 of 14

CFRPs are 1.47 μm, 1.27 μm, 1.15 μm and 5.35 μm, 
5.67 μm, and 5.56 μm, respectively. Minimum and maxi-
mum deformation factors for UD, 0/90, and ± 45 CFRPs 
are 1.15, 1.22, 1.16 and 1.43, 1.49, and 1.45, respectively.

•	 While the increase in feed rate lowered the drilling qual-
ity, an increase in spindle speed bettered the drilling 
quality.

•	 Drilling quality directly affected tensile load and 
fatigue life. While in drilling processes performed at 
low feed rate and high spindle speed using WC tool, 
higher tensile load, and fatigue life were obtained, low 
tensile loads and fatigue life were obtained in drill-
ing processes carried out using Brad Spur tool. In the 
case of the selection of the correct drilling parameters, 
decreases of %26, %19, and %19 in the tensile strengths 
of ± 45, UD, and 0/90 CFRPs could be prevented, 

respectively. Besides, in the fatigue life of ± 45, UD, 
and 0/90 CFRPs, these ratios are with regard to drill-
ing parameters that could be prevented by %39–%50, 
%22–%60, and %24–%43, respectively.

•	 The best drilling parameters for UD, 0/90, and ± 45 
CFRPs were established using WC tool at low feed rate 
and high spindle speed.
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