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Abstract
In many industries, it is necessary to use structures that exhibit a proper stability against the design loads and depreciate the 
energy in a controlled manner. In this study, the energy absorption characteristics of thin-walled structures with rectangular 
cross sections are investigated under the quasi-static loading. The section of structures has a different aspect ratio, and in 
all of them, an elliptical cutout with a different diameter ratio exists on the larger side. In all instances, the area of the cross 
section and cutout is constant. Hence, an experimental design with two design parameters consisting of the shell aspect ratio 
and the diameter ratio of the cutout was conducted by applying the central composite design method. Energy absorption 
parameters were modeled using the artificial neural network and the response surface method. A systematic crashworthiness 
study was carried out with a multi-objective optimization design using the genetic algorithm. The results showed that the 
optimal amount of the specific energy absorption was 14.48 kJ/kg and the optimal amount of the peak crushing load was 
37.77 kN which was obtained in the aspect ratio of 1 and the diameter ratio of 0.7. The validity of the results was confirmed 
by empirical experiments.

Keywords  Crashworthiness · Optimization · Central composite design · Artificial neural network · Response surface 
method · Genetic algorithm

1  Introduction

Nowadays, increasing the safety of structures is an important 
goal and many researchers investigate in this field. For this 
purpose, one of the best options is using energy absorbers. 
So far, structures have been analyzed by different materi-
als like energy absorption that in most of them, two factors 
decrease in capital and keep occupants alive [1–4].

The behavior of thin-walled structures with differ-
ent cross sections under the axial loading has been stud-
ied for many years. Ha et al. [5] by using a new tubular 

corrugated configuration mimicked the coconut tree pro-
file. In an attempt to enhance the energy absorption, they 
minimized the initial peak crushing force and stabilized the 
crushing process. They used two parameters of the tapered 
angle and the wavelength, and they reported their results 
of the energy absorption. Firouzi et al. [6] worked on the 
energy absorption capability of a type of thin-walled pro-
files with H-shaped cross sections during the quasi-static 
flattening process. They used two different material mod-
els of rigid–linear work hardening and power hardening. 
Their results showed the specific energy absorption by the 
optimum H-shaped section is higher than the correspond-
ing value of square, rectangular and circular tubes. Two 
multi-cell tubes with triangular and Kagome lattices were 
designed and manufactured by Hong et al. [7]. According to 
the research, lattice tubes have mean crushing forces com-
pared to single-cell tubes. Lattice tubes have better energy-
absorbing abilities. Song et al. [8] analyzed the light-weight 
thin-walled structures with patterned windows under the 
axial crushing. The finite element method has been used to 
investigate the effect of the size of windows on the tubes’ 
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collapse parameters. According to the results, the initial peak 
decreases with the increase in the aspect ratio and the energy 
absorption decreases with the increase in the aspect ratio 
when the aspect ratio is small enough to be away from the 
extensional region. Energy absorption capability of different 
tapered tubes under the axial impact loading was reported by 
Nagel and Thambiratnam [9]. They varied the number of the 
tapered sides and the wall thickness. Ming et al. [10] studied 
the cylindrical curvature effects and implemented the energy 
method. They used a theoretical model for the study of the 
behavior of energy absorbers. In another study, crash param-
eters of the conventional square tubes were conducted using 
numerical analyses, through which the finite element mod-
els were well validated [11]. Bigdeli and Nouri [12] intro-
duced two geometries for thin-walled cylinders and perused 
behaviors under the quasi-static axial loadings. Increasing 
the specific energy absorption, reducing the peak energy and 
improving the crushing were the main aims of their work. 
Baroutaji et al. [13] used the response surface method and 
the finite element modeling to design the experiments and 
explore the effects of the geometrical factors. They modeled 
the specific energy absorption and the collapse load of the 
circular tube. They reported that the specific energy absorp-
tion (SEA) of the circular tubes increases after an increase in 
the thickness and a decrease in the diameter. Also, the tubes 
with smaller width and diameter are more suitable to be used 
as the energy-absorbing components. Thin-walled tubes are 
among the best structures to absorb which leads to various 
energy absorption responses. Fang et al. [14] employed finite 
element method to demonstrate the dynamic crashing behav-
ior of multi-cell tubes. Also, they used multi-objective parti-
cle swarm optimization algorithm to optimize the sectional 
parameters. Axial crushing [15–18], axial compression 
[19–21], oblique impact loading [22–25] and axial dynamic 
loading [26, 27] are different models to achieve this target. 
Montazeri et al. [28] researched on two types of thin-walled 
structures by the crushing mechanism. They introduced a 
holed tube, and the crushing behavior was compared with 
the grooved tube. This structure is crushed faster than the 
holed tube, and the maximum crushing force in former is 
lower. The effect of adding the silica nanoparticle to the 
epoxy, silica weight percent, particle size and various com-
binations of epoxy/silica on the energy absorption capability 
of thin-walled square columns was investigated by Shariati 
et al. [29]. Their results showed that when silica content 
was increased, the energy absorption capability of columns 
decreased and the specimens collapsed under the unstable 
and dangerous mode. Alavi Nia et al. [30] studied the normal 
collapse of thin-wall structures in Euler buckling exposed 
to the inclined loads. In this study, the effect of the collapse 
initiators on the energy absorption specifications of square 
tubes under the inclined quasi-static loads in experimental 
and numerical conditions has been investigated. Yang et al. 

[31] used two different origami patterns to investigate the 
energy absorption capacity and the deformation mechanism 
of the tubes under the uniaxial loading.

In this paper, the energy absorption characteristics of the 
thin-walled square structures have been evaluated by com-
mercial software Abaqus/Explicit according to two design 
variables, the shell aspect ratio and the diameter ratio of the 
cutout. The numerical results were modeled using artificial 
neural network (ANN) and response surface method (RSM) 
and optimized by the genetic algorithm. Finally, numerical 
results were verified by means of empirical experiments.

2 � Materials and method

2.1 � Energy absorption indices

In general, several indices were employed to quantify the 
energy absorption characteristic of the thin-walled struc-
tures. Among them, energy absorption (EA), specific 
energy absorption (SEA), mean crushing load (MCL) and 
peak crushing load (PCL) are widely used. These indices 
are defined as below:

where P(x), L and M represent the exerted force during 
crashing, crashing length and absorbent mass, respectively. 
PCL is the initial peak force in the load–displacement 
diagram.

2.2 � Design of experiment (DOE)

In this study, Minitab software version 17 was used to DOE. 
This DOE was carried out using the surface response method 
based on the central composite algorithm. The structures are 
thin-walled columns with rectangular cross sections which 
have an elliptical cutout in the center of the larger side. The 
aspect ratio of samples varies, but the sectional area of all 
of them is constant and equal to 900 mm2. Also, all samples 
have an elliptical cutout with a constant cross section of 
200 mm2. Therefore, for this DOE, the effect of two param-
eters on the energy absorption of the samples was investi-
gated: the absorbent aspect ratio (C = a/b) and the diameter 
ratio of the cutout (D = d1/d2). It should be noted that the 

(1)EA =

L

∫
0

P(x)d(x)

(2)SEA =
EA

m

(3)MCL =
EA

L
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range of changes for these parameters was considered as fol-
lows: 1 ≤ C ≤ 3 and 0.5 ≤ D ≤ 1.3 . Furthermore, the height 
and the thickness of the shells were considered 100 mm and 
1 mm, respectively. The schematic of the absorbent and its 
parameters are shown in Fig. 1.

Accordingly, the performed DOE is shown in Table 1.

2.3 � Finite element model (FEM)

The commercial finite element software Abaqus/Explicit is 
used to model the crushing problem. Steel alloy was used, 
and its mechanical properties were extracted according to 
the ASTM E8 standard [32] using an Instron 5500R appa-
ratus. The stress–strain curve obtained from one of the sam-
ples and used for FE analysis is shown in Fig. 2. The density 
of the steel is 7800 kg/m3, the Young’s modulus 210 MPa, 
the yield stress 292 MPa and the Poisson ratio υ = 0.33.

To apply boundary conditions, two rigid plates were 
attached to the top and bottom of the samples. All degrees 
of freedom of the lower and upper plates were closed, and 
only the upper plate was allowed to be displaced in the direc-
tion of the sample’s height. Samples were compressed in the 
height direction through the top plate at a constant speed of 
5 mm/min. In all analyses, the amount of the energy absorp-
tion was measured over 70% collapse of the initial height.

After defining the geometry and applying the bound-
ary conditions and loading, the sample must be meshed for 
analysis. For this purpose, S4R element was used that is 
suitable for large strain analyses and allows the transverse 
shear deformation. The S4R is a four-node element that is 
a strong element in the analysis of thin-walled shells with a 
general application. Also, by this element, the reduced inte-
gration was used to calculate the element hardness matrix. 
As mentioned earlier, all samples have cutouts and applying 
an appropriate mesh around the cutout is important due to 
the stress concentration and high variation in stress. Fig-
ure 3 shows a general overview of the meshed sample and 
the mesh around the cutout. It should be noted that such 

problems have many deformations and also there are con-
tacts on the wall surface. Hence, a self-contact algorithm 
was used to prevent the interpenetration during the folding 
of the walls.

The mesh convergence with the number of 456, 1080, 
3200 and 7200 elements is shown in Fig. 4. Based on this 
figure, the meshed sample with 3200 elements was selected.

2.4 � Validation of the numerical result

The energy absorption behavior of numerical results is vali-
dated against the experimental results. Figure 5 shows the 
experimental and numerical deformation modes in different 
collapse lengths (L) for DOE1. Also, the force–displacement 
diagram of this sample is presented in Fig. 6. It can be seen 
that the numerical results are in good agreement with the 
experimental results.

Fig. 1   Schematic of absorbent 
and its geometrical parameters

Table 1   Design of experiment based on the central composite algo-
rithm

Sample code Shell aspect ratio 
(C = a/b)

Diameter ratio of 
cutout (D = d1/d2)

DOE1 1 0.9
DOE2 1.3 0.62
DOE3 1.3 1.18
DOE4 2 0.5
DOE5 2 0.9
DOE6 2 1.3
DOE7 2.7 0.62
DOE8 2.7 1.18
DOE9 3 0.9

Fig. 2   Stress–strain curve of the used steel alloy
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3 � Results and discussion

3.1 � Numerical results

As mentioned, several indices were employed to quantify 
the energy absorption characteristic of the thin-walled 
structures. For this study, energy absorption (EA), spe-
cific energy absorption (SEA), mean crushing load (MCL) 
and peak crushing load (PCL) were considered. An ideal 
energy absorber is the line parallel to the horizontal axis 
in the load–displacement diagram which has a minimum 

peak load and maximum energy absorption. Figure  7 
shows the load–displacement behavior of some samples. 
The first peak represents the first wrinkle that is referred 
to as the peak load. Also, energy absorption parameters of 
all analyzed samples are reported in Table 2.

It can be seen that the lowest PCL and the highest SEA, 
with values 32.72 kN and 15.265 kJ/kg, are related to sam-
ple DOE1 with the aspect ratio 1 and the diameter ratio 0.9. 
According to Table 2, DOE4 has the highest EA which is equal 
to 1471 J. Also, the maximum value of MCL is related to 
DOE4 with the aspect ratio 2 and the diameter ratio 0.5. In 
order to have the proper absorbent, it is better to have the low 
initial peak and the high energy absorption. Therefore, DOE1 
has a better fit. For a better comparison, energy absorption 
parameters of all samples are shown in Fig. 8.

For example, the collapse behavior of DOE1 under quasi-
static tests is represented in Fig. 9. As expected, the first wrin-
kling started from the cutout, and then the two edges of the 
cutout were placed on each other and then the strength of this 
section increased. Then, the shell wrinkled from another area 
and entered the plastic zone and a new peak was formed in the 
load–displacement chart. This process was repeated until the 
sample was completely crushed. This behavior of thin-walled 
structures increases the crashworthiness. For a better under-
standing, Fig. 10 shows the collapse behavior of DOE2–DOE9 
under quasi-static loading.

Fig. 3   A meshed sample and meshing around the cutout

Fig. 4   Study of the mesh convergence and selection of 3200 elements
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3.2 � Modeling results

In this section, in order to model the energy absorption char-
acteristics, three methods of the response surface (linear and 
quadratic) and the artificial neural network were used.

3.2.1 � Response surface method (RSM)

RSM is generally defined as a statistical regression method 
employing mathematical relations [33–35]. The first step in 
RSM is finding a formula between the response and independ-
ent variables. The mathematical expression of the linear and 

Fig. 5   Deformation modes in 
different collapse lengths for 
DOE1 a numerical, b experi-
mental

Fig. 6   Force–displacement diagram for DOE1
Fig. 7   Load–displacement diagram of DOE1 to DOE9
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quadratic response surface method is as Eqs. 4 and 5, respec-
tively [36–39]:

where Xi and Xj are inputs or predictors and B coefficients 
show the weight of each input in the output. For quadratic 
from Eq. 5, Bij coefficients show the two inputs interaction 
effect on the output.

3.2.2 � Artificial neural network (ANN)

ANN model has been described by several researches in 
detail [40–42]. ANN is a nonlinear model which is com-
posed of a large neuron collection. Neurons are connected to 
each other by links known as synapses, and there is a weight 
factor associated with each synapse [43–45]. A linear func-
tion can be calculated as follows:

(4)Ȳ(X) = B0 +
∑

BiXi +
∑

BjXj

(5)

Ȳ(X) = B0

+
∑

BiXi +
∑

BjXj +
∑

BiiX
2

i
+
∑

BijXiXj +
∑

BjjX
2

j
+⋯

X = Xi,j,… where �l is the response of the output layer, f (�l) is the trans-
fer function associated with neuron l in the output layer, �l 
is the sum of weighted input of neuron l, �l is the bias, Wlk 
is the weight connection of neuron k and neuron l, and yk is 
the input to the neuron l.

There are a lot of relations to evaluate the models; mean 
square error (MSE) is one of the most common relations

In all three methods, 60% of the data was used for train 
and 40% for test. Figure 11a shows the PCL quantities 
extracted from three modeling methods in comparison with 
numerical results for train data. The error percent of each 
sample is shown in Fig. 11b for a better analysis. Figure 12a 

(6)�l = f (�l) = �l +

p
∑

k=1

wlkyk

(7)MSE =

∑M

i=1
(yi − ȳi)

2

M

Table 2   Energy absorption parameters of all analyzed samples

Sample code PCL (kN) EA (J) SEA (kJ/kg) MCL (kN)

DOE1 32.72 1404 15.265 20.05
DOE2 33.99 1370 14.758 19.57
DOE3 33.15 1325 14.277 18.92
DOE4 37.49 1471 15.053 21.01
DOE5 35.72 1388 14.21 19.82
DOE6 34.03 1339 13.703 19.12
DOE7 39.88 1469 14.126 20.98
DOE8 37.71 1441 13.852 20.58
DOE9 38.55 1432 13.389 20.45

Fig. 8   Energy absorption parameters of all samples

Fig. 9   Collapse behavior of 
DOE1 under quasi-static load-
ing
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and b shows the results of the three methods of modeling 
compared with numerical results and their errors in test data, 
respectively.

The best model should be able to predict the minimum 
error in both train and test data. Hence, quadratic RSM was 
the best choice considering the least mean square error. 

The equation obtained for PCL from quadratic RSM is as 
follows:

(8)

PCL(x1, x2) = 36.9928 − 3.0356x1 + 0.0221x2

+ 1.6931x
2

1
− 1.563x

2

2
− 0.3932x1x2

Fig. 10   Collapse behavior of a DOE2, b DOE3, c DOE4, d DOE5, e DOE6, f DOE7, g DOE8 and h DOE9 under quasi-static loading

Fig. 11   a Comparison of PCL 
quantities extracted from three 
modeling methods with numeri-
cal results for train data, b 
error percent of each modeling 
method
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where x1 represents C =

(

a

b

)

 and x2 represents D =

(

d1

d2

)

 in 
a direct manner. Related to Eq. 8, the effect of C is negative 
for the first order and is positive for D and, of course, negli-
gible (see coefficients of x1 and x2); but the effect of C is 
positive in the second order and D is negative for this time. 
It is obvious that the effect of the shell aspect ratio is more 
than the diameter ratio of the cutout for PCL.

Figure 13a compares the results of the numerical analy-
sis of MCL and modeling methods in training data. Also, 
the error percentage of each model is shown in Fig. 13b. 
Similarly, Fig. 14a and b shows the results of comparison 
between the modeling and numerical analysis of MCL and 
also their error in testing data, respectively. By checking 
the errors in both training and testing data, it can be seen 
that the least mean square error is related to quadratic RSM. 
Hence, like PCL, the quadratic RSM is the selected model 
for MCL. The equation obtained through the quadratic RSM 
for MCL is as follows:

Similar to PCL formula, x1 and x2 represent the C and D, 
respectively. As it is obvious in Eq. 9, the effect of C is nega-
tive for the first order and it is positive for the second order. 
Also, the effect of D is zero for the first order and negative 
for second order. It could be concluded that the behavior of 
MCL is mostly affected by the shell aspect ratio.

Based on the explanations in the previous part, the 
RSMs and ANN methods are used for modeling the SEA 
index, too. Figures 15 and 16 show the comparison of 
numerical data and the outcomes of the mentioned models 
and their relative errors for train and test data, respectively. 
The error analysis indicates that the least mean square 
error belongs to quadratic RSM. Therefore, similar to the 
PCL and MCL indices, quadratic RSM is more accurate 

(9)

MCL(x1, x2) = 20.5727 − 2.4818x1 + 0.7092x
2

1

− 1.3239x
2

2
+ 0.6313x1x2

Fig. 12   a Comparison of 
PCL quantities extracted from 
three modeling methods with 
numerical results for test data, b 
error percent of each modeling 
method

Fig. 13   Comparison of MCL 
results extracted from RSMs 
and ANN methods with numeri-
cal results for train data, b 
error percent of each modeling 
method
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Fig. 14   Comparison of MCL 
results extracted from RSMs 
and ANN methods with numeri-
cal results for test data, b error 
percent of each modeling 
method

Fig. 15   a Comparing SEA 
quantities extracted from three 
modeling methods with numeri-
cal results for train data, b 
error percent of each modeling 
method

Fig. 16   a Comparing SEA 
quantities extracted from 
three modeling methods with 
numerical results for test data, b 
error percent of each modeling 
method
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for modeling SEA. The equation obtained through the 
quadratic RSM is shown in Eq. 10. Like before, x1 and x2 
represent C and D, respectively. It is clear that the effect of 
both variables is positive for the first order, but the effect 
of D is negligible in comparison with C. Also, the effect 
of both variables is negative for the second order and it is 
obvious that the effect of C is more than D.

For a better comparison, the FEM results of the energy 
absorption characteristics and the selected model (quad-
ratic RSM) results are presented in Table 3. The results 
indicate that the predictions of the selected model are 
clearly close to numerical results.

Pearson correlation coefficient or the bivariate correla-
tion (Pearson’s R), in statistics, is a measure of the linear 
correlation between two variables. It provides a measure 
of how well-observed experiments are predicted by the 
model. It has a value between +1 and − 1, where 1 is the 
total positive linear correlation, 0 is no linear correlation, 
and − 1 is the total negative linear correlation. The closer 
the value is to 1, the model provides a more accurate esti-
mation of the results. Train and test regression plots for the 
mentioned energy absorption indices are shown in Figs. 17 
and 18, respectively. It shows that the training R value 
for PCL, MCL and SEA is 0.99, 0.98 and 0.99 (Fig. 17), 
and the testing R values are 0.96, 0.99 and 0.93 (Fig. 18), 
respectively. Basically, the R value shows how much close 
the target values are to the output values. So, it can be said 
that quadratic RSM is well suited for predicting the energy 
absorption parameters.

Based on the results obtained from the selected model, 
the behavior of each of the energy absorption parameters 
can be plotted as 3D graphs. Figures 19, 20 and 21 show 
the response surface of the PCL, MCL and SEA with 
design variables, C and D, respectively.

(10)

SEA(x1, x2) = 12.212 + 3.4549x1 + 0.0426x2

− 1.0685x
2

1
− 0.9269x

2

2
+ 0.4367x1x2

3.3 � Optimization results

Genetic algorithm (GA) was used to optimize the energy 
absorption parameters. A genetic algorithm is usually used 
to make high-quality solutions to optimize and search prob-
lems using bio-inspired operators. In genetic algorithm 
(GA), genes are expressed as a combination of binary 0 and 
1. GA uses the independent variables. The binary type of 
GA was used in this work. In this type, each variable had a 
peculiar length based on its resolution.

As mentioned above, the ideal energy absorber should 
have low PCL and high SEA. Thus, in order to have an accu-
rate optimization, a multi-objective optimization algorithm 
should be applied. This algorithm is derived from the multi-
ple index decision making that is concerned with mathemati-
cal optimization problems including more than one objective 
function to be optimized simultaneously. Since the PCL and 
SEA are the most important crashworthiness indices, they 
were set as the goals of the multi-objective optimization. 
The optimized parameters were C and D. The multi-objec-
tive optimization is as follows:

Based on this optimization, the best absorbent is a struc-
ture with C = 1 and D = 0.7.

4 � Conclusion

In this paper, the effect of different aspect ratios and the 
elliptical cutout on crashworthiness of thin-walled structures 
with rectangular cross sections was proposed experimen-
tally, numerically and mathematically. After implementing 
a DOE, the response surface method (quadratic and linear 
RSM) and artificial neural network (ANN) for FEM’s results 

(11)

⎧

⎪

⎨

⎪

⎩

Max SEA = f (C,D);

Min PCL = f (C,D);

S.t 1 ≤ C ≤ 3

0.5 ≤ D ≤ 1.3

Table 3   Comparing the energy 
absorption characteristics in 
FEM and RSM

Sample code
(

a

b

) (

d1

d2

)

PCL (kN) MCL (kN) SEA (kJ/kg)

FEM RSM FEM RSM FEM RSM

DOE1 1 0.9 32.72 34.05 18.72 18.29 15.26 14.27
DOE2 1.3 0.62 33.99 35 18.26 18.54 14.75 14.91
DOE3 1.3 1.18 33.15 33.15 17.67 17.66 14.27 14.32
DOE4 2 0.5 37.49 36.92 19.61 18.74 15.05 15.07
DOE5 2 0.9 35.72 35.74 18.51 18.5 14.21 14.92
DOE6 2 1.3 34.03 34.05 17.85 17.84 13.7 14.47
DOE7 2.7 0.62 39.88 39.89 19.59 19.58 14.12 14.15
DOE8 2.7 1.18 37.71 37.73 19.21 19.2 13.85 13.9
DOE9 3 0.9 38.55 40.18 19.1 20.14 13.38 13.42



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:563	

1 3

Page 11 of 14  563

Fig. 17   The training R value for a PCL, b MCL and c SEA

Fig. 18   The testing R value for a PCL, b MCL and c SEA
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were used to explore the effect of the geometrical factors on 
SEA, MCL and PCL. By comparing the mean squared error 
of each method, it was found that the quadratic RSM had the 
least error and was reported as the selected model. Regard-
ing the relations extracted by quadratic RSM and the coef-
ficients analysis, it was observed that the effect of the aspect 
ratio is greater than the diameter ratio on the absorption 
parameters. Finally, taking the aspect ratio and the diameter 
ratio as optimization parameters, the multi-objective opti-
mization study was carried out using the genetic algorithm. 
Based on this optimization, the structure with C = 1 and 
D = 0.7 was introduced as the best absorbent. Compatible 

with these points, the optimum amounts of SEA and PCL 
were 14.48 kJ/kg and 34.62 kN, respectively.
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