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Abstract
In this paper, a parametric study is presented for free vibration analysis of rotating truncated conical shells reinforced with 
graphene nanoplatelets (GNPs). The composite shell is considered to be composed of epoxy as the matrix and the GNPs 
which are distributed along the thickness direction based on the various distribution patterns. The shell is modeled based on 
the first-order shear deformation theory (FSDT), and effective material properties are calculated based on the Halpin–Tsai 
model and the rule of mixture. Incorporating centrifugal and Coriolis accelerations along with initial hoop tension, the set 
of the governing equations and boundary conditions are derived using Hamilton’s principle and are solved numerically 
using generalized differential quadrature method. Convergence and accuracy of the presented solution are confirmed, and 
influences of various parameters on the forward and backward frequencies are investigated including circumferential mode 
number, boundary conditions, rotational speed, semi-vertex angle and also mass fraction, distribution pattern, width and 
thickness of the GNPs. It is noteworthy that for the first time, the initial hoop tension is incorporated for a rotating conical 
shell modeled based on the FSDT.

Keywords  Vibration · Rotating conical shell · Coriolis acceleration · Initial hoop tension · Graphene nanoplatelets

1  Introduction

Due to their excellent mechanical and thermal properties, 
GNPs have been widely used as reinforcement in various 
engineering fields such as aerospace, automotive and civil 
engineering. Besides the experimental works on the mate-
rial properties of GNP-reinforced composites, some theoreti-
cal and numerical works are presented on the mechanical 
behavior of such structures. Habibi et al. [1] studied wave 
propagation analysis of GNP-reinforced composite cylin-
drical nanoshells coupled with piezoelectric actuator and 
surrounded with viscoelastic foundation. They concluded 
that by adding GNPs in the pure epoxy matrix, the phase 
velocity of the nanoshells improves. Barati and Shahverdi 
[2] used finite element method (FEM) and studied forced 

vibration analysis of GNP-reinforced nanocomposite beams 
in thermal environments. They showed that dynamical 
deflection can be affected by weight fraction and distribu-
tion of GNPs, and resonance of nanocomposite beams can 
be controlled by the GNP content and distribution. Dynamic 
stability analysis of functionally graded (FG) porous arches 
reinforced with GNPs under the combined action of a static 
force and a dynamic uniform pressure in the radial direc-
tion was investigated by Zhao et al. [3]. They confirmed 
that stability of the porous arch can be enhanced by using 
symmetrically non-uniform porosity distribution and the 
addition of a small amount of GNPs. Afshari and Adab [4] 
presented exact solutions for size-dependent buckling and 
vibration analyses of GNP-reinforced rectangular micro-
plates. It was shown by them that in order to have a better 
reinforcing effect, GNPs with larger surface area and fewer 
monolayer graphene sheets should be used. Static bending 
and free vibration analyses of FG porous plates reinforced 
with GNPs were studied by Nguyen et al. [5]. They con-
firmed that by adding a small amount of GNPs, the strength 
of FG plate structures can be significantly improved and dis-
tribution pattern of GNPs in matrix plays an important role 
in reinforcement. Shokrgozar et al. [6] studied viscoelastic 
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dynamics and static responses of GNP-reinforced compos-
ite cylindrical microshells. They concluded that viscoelastic 
foundation, distribution pattern of GNPs, boundary condi-
tion and weight function of GNPs have remarkable effects on 
the stability of the GNP-reinforced cylindrical microshells. 
Tabatabaei Nejhad et al. [7] studied out-of-plane vibration 
analysis of laminated GNP-reinforced composite curved 
beams bonded by piezoelectric layers. It was revealed by 
them that by using only one percent weigh fraction of GNPs, 
natural frequencies increase about 100% regardless of GNPs 
distribution pattern.

Dynamic analysis of rotating shells is one the most prac-
tical and interesting problems in mechanical engineering, 
and there are a considerable number of paper regarding 
vibration analysis of rotating shells. Rotating shells have 
been extensively used in mechanical and aerospace applica-
tions, such as high-speed centrifugal separator, advanced 
gas turbine and high-power aircraft jet engine. The dynam-
ics of rotating cylindrical shells have received much atten-
tion over the recent years. Hosseini-Hashemi [8] presented 
an exact analytical solution for free vibration analysis of 
rotating FG cylindrical shells. They concluded that unlike 
the transverse modes, rotational speed has no effect on the 
axial modes. Free vibration analysis of rotating FG GNP-
reinforced porous cylindrical shells was studied by Dong 
et al. [9]. They discussed on the effect of initial hoop tension 
on the natural frequencies of the rotating cylindrical shells 
and concluded that initial hoop tension makes the critical 
rotating speed vanishes in some modes. Dong et al. [10] 
presented an analytical solution on linear and nonlinear free 
vibration analysis and dynamic responses of rotating FG 
GNP-reinforced cylindrical shells with various boundary 
conditions and subjected to a static axial load. They showed 
that subjoining a small amount of GNPs increases both lin-
ear and nonlinear frequencies and reduces the nonlinear to 
linear frequency ratio. Qin et al. [11] studied wave propa-
gation in rotating FG GNP-reinforced composite cylindri-
cal shells with general boundary conditions and confirmed 
that the natural frequencies increase by increasing boundary 
spring stiffness and weigh fraction of GNPs. An analytical 
study was presented by Dong et al. [12] to predict the low-
velocity impact response of rotating FG GNP-reinforced 
cylindrical shells subjected to impact, external axial and 
thermal loads. It was shown by them that the peak values 
of the radial displacement of load points and the contact 
duration decrease with increase in weight fraction of GNPs. 
In comparison with the rotating cylindrical shells, there are 
fewer number of works regarding dynamics of rotating coni-
cal shells. Qinkai and Fulei [13] studied dynamic stability 
analysis of rotating truncated conical shells subjected to 
a periodic axial load and presented a parametric study on 
the effects of rotational speed, constant axial load and geo-
metrical parameters on the location and width of instability 

regions. They showed that increase in rotational speed of 
the shell leads to movements of instability region along the 
frequency axis, while it has no considerable effect on the 
width of instability region. Malekzadeh and Heydarpour 
[14] studied free vibration analysis of rotating FG-truncated 
conical shells with different boundary conditions. They con-
cluded that with increase in rotational speed of the shell, 
the effect of Coriolis acceleration on the natural frequencies 
increases and its impact depends on the shell boundary con-
ditions. Heydarpour et al. [15] studied free vibration analysis 
of rotating truncated conical shells reinforced with carbon 
nanotubes (CNTs) and focused on the influences of angular 
velocity, Coriolis acceleration, geometrical parameters, dis-
tribution pattern and volume fraction of CNTs on the natural 
frequencies of the shell. They showed that effects of volume 
fraction and distribution of CNTs depend on the semi-vertex 
angle and angular velocity of the shell. With assumption of 
temperature-dependent material properties, Shakouri [16] 
studied free vibration analysis of FG rotating conical shells 
in thermal environment and concluded that reduction in 
natural frequencies created by temperature rise would be 
attenuated as the rotational speed of the shell increases.

Reduction in weight and increase in strength and stiffness of 
structures is one of the most important challenges for mechani-
cal engineers which has been solved in the recent years using 
multi-phase materials [17–19] and different types of nano-
reinforcements such as single-walled carbon nanotubes (SWC-
NTs), multi-walled carbon nanotubes (MWCNTs) and GNPs. 
In comparison with SWCNTs and MWCNTs, GNPs have big-
ger specific surface area which creates stronger bonding with 
the matrix and significantly enhanced load transfer capability 
[20]. Thus, a truncated conical shell made of a low-density pol-
ymer enriched with GNPs can be considered as a good choice 
to increase the strength and stiffness and decrease the weight 
of rotating shells. It can be seen in the literature review that 
free vibration analysis of rotating GNP-reinforced truncated 
conical shells is not studied which is the topic of the presented 
paper. The shell is modeled based on the FSDT, and effective 
mechanical properties are estimated based on the Halpin–Tsai 
model along with the rule of mixture. The set of the governing 
equations are solved analytically in circumferential direction 
via appropriate harmonic functions and are solved numeri-
cally in meridional direction via GDQM. Effects of various 
geometrical parameters of the shell and distribution pattern, 
mass fraction and dimensional parameters of the GNPs on the 
forward and backward frequencies are investigated. In most of 
the papers regarding vibration analysis of rotating shells, the 
initial hoop tension is modeled based on the classical shells 
theories, and recently, some authors have modeled the initial 
hoop tension in rotating cylindrical shells based on the FSDT 
[9–12]. To the best knowledge of author, this paper is the first 
attempt to model the initial hoop tension in a rotating conical 
shell modeled based on the FSDT.
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2 � Governing equations

As depicted in Fig. 1, a truncated conical shell of small radius 
a, large radius b, semi-vertex angle α, length L and thickness 
h rotating at constant angular velocity Ω is considered. The 
radius of the shell changes linearly as r(x)= a + xsinα, and the 
shell is considered to be made of epoxy enriched with GNPs.

Based on the FSDT and incorporating effect of the neutral sur-
face (z = z0), displacement filed in the shell can be considered as

in which u1, u2 and u3 are components of displacement along 
x, θ and z directions, respectively. u, v and w stand for cor-
responding components of displacement at neutral surface 
(z = z0) and φx and φθ are rotation about θ and x axes, respec-
tively. The distance of the neutral surface from the mid-
surface of the shell can be calculated as [21]

(1)
u1(x, �, z) = u(x, �) +

(

z − z0
)

�x(x, �),

u2(x, �, z) = v(x, �) +
(

z − z0
)

��(x, �),

u3(x, �, z) = w(x, �),

(2)z
0
=

h

2

∫
−

h

2

zE(z)dz

h

2

∫
−

h

2

E(z)dz

.

Components of the strain can be stated as [22] 

and the constitutive equations can be written as follows:

where k = 5/6 is shear correction factor [22] and Q11− Q66 
are defined as

in which E, G and ν are modulus of elasticity, shear modulus 
and Poisson’s ratio, respectively.

The effective modulus of elasticity can be calculated 
using the Halpin–Tsai model as [23] 

in which Em is modulus of elasticity of the polymer matrix 
and ξL, ξw, ηL and ηw are some dimensionless parameters 
defined as follows:
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Fig. 1   Rotating GNP-reinforced 
truncated conical shell
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where EGNP, lGNP, wGNP and hGNP are modulus of elasticity, 
length, width and thickness of the GNPs, respectively.

In Eq. (6) VGNP is volume fraction of GNPs which can 
be stated in terms of density of the matrix (ρm), density of 
GNPs (ρGNP) and mass fraction of GNPs (gGNP) as follows:

Using the rule of mixture, density and Poisson’s ratio of 
the shell can be calculated as

where νm and νGNP are Poisson’s ratio of the polymer 
matrix and Poisson’s ratio of GNPs, respectively, and also 
Vm= 1 − VGNP is volume fraction of the matrix.

As depicted in Fig. 2, five linear types of GNPs distribu-
tion patterns are considered in this paper. Mass fraction of 
GNPs for these patterns can be stated as [4]

in which g*
GNP is total mass fraction of GNPs. It should 

be noted that in order to have a fair comparison between 
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distribution patterns, Eq. (10) is regulated to have same total 
mass fraction of GNPs for all patterns [4].

The set of the governing equations can be derived using 
Hamilton’s principle as [10]

where [t1,t2] is a desired time interval, δ stands for vari-
ational operator, T indicates to kinetic energy, Wn.c. is work 
done by non-conservative loads, Ue stands for the strain 
energy of the shell and Uh indicates the strain energy gener-
ated by initial hoop tension.

The strain energy of the shell can be calculated as [24] 

in which V is volume of the shell. Using Eqs. (3) and (12) 
and dV = dzdS, the variation of the strain energy of the shell 
can be stated as

where S is surface of the shell and stress resultant compo-
nents are defined as follows:

Substituting Eqs. (3) and (4) into Eq. (14) leads to the 
following relations:
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Fig. 2   GNPs distribution patterns
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in which

The strain energy created by initial hoop tension can be 
stated as [9, 10]

in which �0
��

 and �NL
��

 indicate initial hoop tension and non-
linear part of circumferential strain which can be calculated 
using following relations [15, 25]:

Using Eqs. (1), (17) and (18) one can write

in which inertia terms are defined as follows:
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The kinetic energy of the shell can be calculated as

in which v⃗ is absolute velocity vector and the displacement 
vector can be written as [13]

where u1, u2 and u3 are presented based on FSDT in Eq. (1).
The absolute velocity vector can be stated using concept 

of relative velocity as follows [13]:

where Ω⃗ can be stated based on Fig. 1 as follows:
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Substituting Eqs. (22) and (24) into Eq. (23) leads to the 
following equation:

and using Eqs. (1), (21) and (25) one can write

The work done by non-conservative loads can be stated as
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− 2I
1
Ω sin �v

��
x

�t
− 2I

1
Ω sin ���

�u

�t
− 2I

2
Ω sin ���

��
x

�t

− 2I
0
Ω cos �v

�w

�t
− 2I

1
Ω cos ���

�w

�t
+ I

0
Ω2

sin
2 �u2

+ I
2
Ω2

sin
2 ��2

x
+ 2I

1
Ω2

sin
2 �u�

x
+ I

0
Ω2

v
2 + I

2
Ω2�2

�
+ 2I

1
Ω2

v��

+I
0
Ω2

cos
2 �w2 + I

0
Ω2

sin 2�uw + I
1
Ω2

sin 2�w�
x

]

dS,

where q is load per unit area.
Substituting Eqs. (13), (19), (26) and (27) into Eq. (11) 

and using following relation for conical shells:

(27)Wn.c. = ∬
S

q(x, �)wdS,

(28)dS = r(x)d�dx,

the set of the governing equations can be derived as

and the boundary conditions can be written as follows:

(29)

�Nxx

�x
+

Nxx − N��

r
sin � +

1

r

�Nx�

��
− I

0

�2u

�t2
− I

1

�2�x

�t2
+ 2Ω

(

I
0
sin �

�v

�t
+ I

1
sin �

���

�t

)

+ Ω2

(

I
0

�2u

��2
− 2I

0
sin �

�v

��
+ I

1

�2�x

��2
− 2I

1
sin �

���

��

)

= 0,

1

r

�N��

��
+ 2

Nx�

r
sin � +

Q�z

r
cos � +

�Nx�

�x
− I

0

�2v

�t2
− I

1

�2��

�t2
− 2Ω

(

I
0
sin �

�u

�t
+ I

0
cos �

�w

�t
+ I

1
sin �

��x

�t

)

+ Ω2

(

2I
0
sin �

�u

��

+I
0

�2v

��2
+ 2I

0
cos �

�w

��
+ 2I

1
sin �

��x

��
+ I

1

�2��

��2

)

= 0,−
N��

r
cos � +

�Qxz

�x
+

Qxz

r
sin � +

1

r

�Q�z

��
− I

0

�2w

�t2

+ 2Ω

(

I
0
cos �

�v

�t
+ I

1
cos �

���

�t

)

+ Ω2

(

−2I
0
cos �

�v

��
+ I

0

�2w

��2
− 2I

1
cos �

���

��

)

= −q,
�Mxx

�x
+

Mxx −M��

r
sin �

+
1

r

�Mx�

��
− Qxz − I

1

�2u

�t2
− I

2

�2�x

�t2
+ 2Ω

(

I
1
sin �

�v

�t
+ I

2
sin �

���

�t

)

+ Ω2

(

I
1

�2u

��2
− 2I

1
sin �

�v

��
+ I

2

�2�x

��2
− 2I

2
sin �

���

��

)

= 0,

1

r

�M��

��
+

�Mx�

�x
+ 2

Mx�

r
sin � − Q�z − I

1

�2v

�t2
− I

2

�2��

�t2
− 2Ω

(

I
1
sin �

�u

�t
+ I

1
cos �

�w

�t
+ I

2
sin �

��x

�t

)

+ Ω2

(

2I
1
sin �

�u

��

+I
1

�2v

��2
+ 2I

1
cos �

�w

��
+ 2I

2
sin �

��x

��
+ I

2

�2��

��2

)

= 0.

(30)
Clamped (C) ∶ u = 0, v = 0, w = 0, �x = 0, �� = 0,

Simply Supported (S) ∶ Nxx = 0, v = 0, w = 0, Mxx = 0, �� = 0,

Free (F) ∶ Nxx = 0, Nx� = 0, Qxz = 0, Mxx = 0, Mx� = 0.
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Substituting Eq. (15) into Eq. (29), the set of the gov-
erning equations can be written for free vibration analysis 
(q = 0) as follows:

(31)

A
11

�2u

�x2
+

A
11
sin �

r

�u

�x
+

(

A
66

r
2

+ I
0
Ω2

)

�2u

��2
−

A
22
sin

2 �

r
2

u

+
A
12

+ A
66

r

�2v

�x��
− sin �

(

A
22

+ A
66

r
2

+ 2I
0
Ω2

)

�v

��
+

A
12
cos �

r

�w

�x

−
A
22
sin 2�

2r2
w + B

11

�2�
x

�x2
+

B
11
sin �

r

��
x

�x
+

(

B
66

r
2

+ I
1
Ω2

)

�2�
x

��2

−
B
22
sin

2 �

r
2

�
x
+

B
12

+ B
66

r

�2��

�x��
− sin �

(

B
22

+ B
66

r
2

+ 2I
1
Ω2

)

���

��

+ 2ΩI
0
sin �

�v

�t
+ 2ΩI

1
sin �

���

�t
− I

0

�2u

�t2
− I

1

�2�
x

�t2
= 0,

A
12

+ A
66

r

�2u

�x��
+ sin �

(

A
22

+ A
66

r
2

+ 2I
0
Ω2

)

�u

��
+ A

66

�2v

�x2

+
A
66
sin �

r

�v

�x
+

(

A
22

r
2

+ I
0
Ω2

)

�2v

��2
−

A
44
cos

2 � + A
66
sin

2 �

r
2

v

+ cos �

(

A
22

+ A
44

r
2

+ 2I
0
Ω2

)

�w

��
+

B
12

+ B
66

r

�2�
x

�x��
+ sin �

(

B
22

+ B
66

r
2

+ 2I
1
Ω2

)

��
x

��
+ B

66

�2��

�x2
+

B
66
sin �

r

���

�x

+

(

B
22

r
2

+ I
1
Ω2

)

�2��

��2
+

(

A
44
cos �

r

−
B
66
sin

2 �

r
2

)

�� − 2I
0
Ω sin

�
�u

�t
− 2I

0
Ω cos �

�w

�t
− 2I

1
Ω sin �

��
x

�t
− I

0

�2v

�t2
− I

1

�2��

�t2
= 0,

−
A
12
cos �

r

�u

�x
−

A
22
sin 2�

2r2
u − cos �

(

A
22

+ A
44

r
2

+ 2I
0
Ω2

)

�v

��
+ A

55

�2w

�x2
+

A
55
sin �

r

�w

�x
+

(

A
44

r
2

+ I
0
Ω2

)

�2w

��2
−

A
22
cos

2 �

r
2

w

+

(

A
55

−
B
12
cos �

r

)

��
x

�x
+

(

A
55
sin �

r

−
B
22
sin 2�

2r2

)

�
x
+

[

A
44

r

−

(

B
22

r
2

+2I
1
Ω2

)

cos �
] ���

��
+ 2I

0
Ω cos �

�v

�t
+ 2I

1
Ω cos �

���

�t
− I

0

�2w

�t2
= 0,

B
11

�2u

�x2
+

B
11
sin �

r

�u

�x
+

(

B
66

r
2

+ I
1
Ω2

)

�2u

��2
−

B
22
sin

2 �

r
2

u

+
B
12

+ B
66

r

�2v

�x��
− sin �

(

B
22

+ B
66

r
2

+ 2I
1
Ω2

)

�v

��
−

(

A
55

−
B
12
cos �

r

)

�w

�x

−
B
22
sin 2�

2r2
w + D

11

�2�
x

�x2
+

D
11
sin �

r

��
x

�x
+

(

D
66

r
2

+ I
2
Ω2

)

�2�
x

��2

−

(

A
55

+
D

22
sin

2 �

r
2

)

�
x
+

D
12

+ D
66

r

�2��

�x��
− sin �

(

D
22

+ D
66

r
2

+ 2I
2
Ω2

)

���

��
+ 2I

1
Ω sin �

�v

�t
+ 2I

2
Ω sin �

���

�t
− I

1

�2u

�t2
− I

2

�2�
x

�t2
= 0,

B
12

+ B
66

r

�2u

�x��
+ sin �

(

B
22

+ B
66

r
2

+ 2I
1
Ω2

)

�u

��
+ B

66

�2v

�x2

+
B
66
sin �

r

�v

�x
+

(

B
22

r
2

+ I
1
Ω2

)

�2v

��2
+

(

A
44
cos �

r

−
B
66
sin

2 �

r
2

)

v

+

[

−
A
44

r

+

(

B
22

r
2

+ 2I
1
Ω2

)

cos �

]

�w

��
+

D
12

+ D
66

r

�2�
x

�x��

+ sin �

(

D
22

+ D
66

r
2

+ 2I
2
Ω2

)

��
x

��
+ D

66

�2��

�x2
+

D
66
sin �

r

���

�x

+

(

D
22

r
2

+ I
2
Ω2

)

�2��

��2
−

(

A
44

+
D

66
sin

2 �

r
2

)

�� − 2I
1
Ω sin �

�u

�t

− 2I
1
Ω cos �

�w

�t
− 2I

2
Ω sin �

��
x

�t
− I

1

�2v

�t2
− I

2

�2��

�t2
= 0.

It is worth mentioning that in Eq. (31), the terms con-
taining second time derivatives of displacements are rela-
tive acceleration, the terms containing square of rotational 
speed denote the centrifugal acceleration along with initial 
hoop tension and the terms containing rotational speed and 
first time derivatives of displacements are Coriolis parts of 
acceleration.

In a similar manner, by substituting Eq. (15) into Eq. (30) 
and doing some simplifications for simply supported condi-
tion, the boundary conditions can be written as follows:

Using the following solution [25]:

in which ω is natural frequency and n is circumferential 
mode number, Eq. (31) can be written as follows:

(32)

Clamped (C) ∶ u = 0, v = 0, w = 0, �
x
= 0, �� = 0,

Simply Supported (S) ∶ A11

�u

�x
+

A12 sin �

r

u + B11

��
x

�x

+
B12 sin �

r

�
x
= 0, v = 0,

w = 0, B11

�u

�x
+

B12 sin �

r

u + D11

��
x

�x

+
D12 sin �

r

�
x
= 0, �� = 0,

Free (F) ∶

A11

�u

�x
+ B11

��
x

�x
+ A12

(

sin �

r

u +
1

r

�v

��
+

cos �

r

w

)

+ B12

(

sin �

r

�
x
+

1

r

���

��

)

= 0,

A66

(

1

r

�u

��
+

�v

�x
−

sin �

r

v

)

+ B66

(

1

r

��
x

��
+

���

�x
−

sin �

r

��

)

= 0,

�w

�x
+ �

x
= 0,

B11

�u

�x
+ D11

��
x

�x
+ B12

(

sin �

r

u +
1

r

�v

��
+

cos �

r

w

)

+ D12

(

sin �

r

�
x
+

1

r

���

��

)

= 0,

B66

(

1

r

�u

��
+

�v

�x
−

sin �

r

v

)

+ D66

(

1

r

��
x

��
+

���

�x
−

sin �

r

��

)

= 0.

(33)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u(x, �, t)

v(x, �, t)

w(x, �, t)

�x(x, �, t)

��(x, �, t)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U(x) cos (n� + �t)

V(x) sin (n� + �t)

W(x) cos (n� + �t)

X(x) cos (n� + �t)

Θ(x) sin (n� + �t)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, n = 1, 2, 3,… ,
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in which prime denotes derivative with respect the spatial 
variable x. In a similar manner, using Eqs. (32) and (33), the 
boundary conditions can be written as follows:

(34)

A11U�� +
A11 sin �

r

U� −

(

A22 sin
2 � + A66n

2

r
2

+ n
2
I0Ω

2

)

U +
n

(

A12 + A66

)

r

V� − n sin �

(

A22 + A66

r
2

+ 2I0Ω
2

)

V

+
A12 cos �

r

W� −
A22 sin 2�

2r2
W + B11X�� +

B11 sin �

r

X� −

(

B22 sin
2 � + B66n

2

r
2

+ n
2
I1Ω

2

)

X

+
n

(

B12 + B66

)

r

Θ� − n sin �

(

B22 + B66

r
2

+ 2I1Ω
2

)

Θ + 2Ω�I0 sin �V + 2Ω�I1 sin �Θ + I0�
2
U + I1�

2
X = 0,

−
n

(

A12 + A66

)

r

U� − n sin �

(

A22 + A66

r
2

+ 2I0Ω
2

)

U + A66V�� +
A66 sin �

r

V�

−

(

A22n
2 + A44 cos

2 � + A66 sin
2 �

r
2

+ n
2
I0Ω

2

)

V − n cos �

(

A22 + A44

r
2

+ 2I0Ω
2

)

W

−
n

(

B12 + B66

)

r

X� − n sin �

(

B22 + B66

r
2

+ 2I1Ω
2

)

X + B66Θ�� +
B66 sin �

r

Θ�

+

(

A44 cos �

r

−
B22n

2 + B66 sin
2 �

r
2

− n
2
I1Ω

2

)

Θ + 2I0Ω� sin �U + 2I0Ω� cos �W

+ 2I1Ω� sin �X + I0�
2
V + I1�

2Θ = 0,

−
A12 cos �

r

U� −
A22 sin 2�

2r2
U − n cos �

(

A22 + A44

r
2

+ 2I0Ω
2

)

V + A55W�� +
A55 sin �

r

W�

−

(

A22 cos
2 � + A44n

2

r
2

+ n
2
I0Ω

2

)

W +

(

A55 −
B12 cos �

r

)

X� +

(

A55 sin �

r

−
B22 sin 2�

2r2

)

X

+ n

[

A44

r

−

(

B22

r
2

+ 2I1Ω
2

)

cos �

]

Θ + 2I0Ω� cos �V + 2I1Ω� cos �Θ + I0�
2
W = 0,

B11U�� +
B11 sin �

r

U� −

(

B22 sin
2 � + B66n

2

r
2

+ n
2
I1Ω

2

)

U +
n

(

B12 + B66

)

r

V�

− n sin �

(

B22 + B66

r
2

+ 2I1Ω
2

)

V −

(

A55 −
B12 cos �

r

)

W� −
B22 sin 2�

2r2
W

+ D11X�� +
D11 sin �

r

X� −

(

D22 sin
2 � + D66n

2

r
2

+ A55 + n
2
I2Ω

2

)

X

+
n

(

D12 + D66

)

r

Θ� − n sin �

(

D22 + D66

r
2

+ 2I2Ω
2

)

Θ + 2I1Ω� sin �V

+ 2I2Ω� sin �Θ + I1�
2
U + I2�

2
X = 0,

−
n

(

B12 + B66

)

r

U� − n sin �

(

B22 + B66

r
2

+ 2I1Ω
2

)

U + B66V�� +
B66 sin �

r

V� +

(

A44 cos �

r

−
B22n

2 + B66 sin
2 �

r
2

− n
2
I1Ω

2

)

V + n

[

A44

r

−

(

B22

r
2

+ 2I1Ω
2

)

cos �

]

W

−
n

(

D12 + D66

)

r

X� − n sin �

(

D22 + D66

r
2

+ 2I2Ω
2

)

X + D66Θ�� +
D66 sin �

r

Θ� −

(

D22n
2 + D66 sin

2 �

r
2

+ A44 + n
2
I2Ω

2

)

Θ + 2I1Ω� sin �U + 2I1Ω� cos �W

+ 2I2Ω� sin �X + I1�
2
V + I2�

2Θ = 0.

(35)

Clamped (C) ∶ U = 0, V = 0, W = 0, X = 0, Θ = 0,

Simply Supported (S) ∶ A11U� +
A12 sin �

r
U + B11X� +

B12 sin �

r
X = 0, V = 0,

W = 0, B11U� +
B12 sin �

r
U + D11X� +

D12 sin �

r
X = 0, Θ = 0,

Free (F) ∶

A11U� + B11X� +
A12

r
(sin �U + nV + cos �W) +

B12

r
(sin �X + nΘ) = 0,

A66

(

−
n

r
U + V� −

sin �

r
V
)

+ B66

(

−
n

r
X + Θ� −

sin �

r
Θ

)

= 0,

W� + X = 0,

B11U� + D11X� +
B12

r
(sin �U + nV + cos �W) +

D12

r
(sin �X + nΘ) = 0,

B66

(

−
n

r
U + V� −

sin �

r
V
)

+ D66

(

−
n

r
X + Θ� −

sin �

r
Θ

)

= 0.
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3 � Solution procedure

Due to the mathematical complexities in the set of the 
governing equations and boundary conditions, a numeri-
cal solution is presented here using DQM. This method is 
based on this idea that all derivatives of a function like f(x) 
can be estimated by means of the weighted linear sum of 
the values of the function at N pre-selected grid of discrete 
points as [26] 

in which [A(r)] is the weighting coefficient associated with 
the rth order derivative which can be calculated as follows 
[26]:

(36)
drf

dxr

|

|

|

|x=xi

=

N
∑

j=1

A
(r)

ij
fj,

Distribution of grid points plays an important role in con-
vergence of the solution using DQM. A well-accepted set 
of the grid points is the Gauss–Lobatto–Chebyshev points 
given for 0≤ x ≤ L as [26]

(37)
A

(1)

ij
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

N
∏

m=1
m≠i,j

�

xi − xm
�

N
∏

m=1
m≠j

�

xj − xm
�

, i, j = 1, 2, 3,… ,N; i ≠ j

N
�

m=1
m≠i

1

xi − xm
, i = j = 1, 2, 3,… ,N

,

A(r) = A(1)A(r−1), r = 2, 3,… ,N − 1.

Table 1   Convergence of the 
presented numerical solution

n m N = 7 N = 9 N = 11 N = 13 N = 15 N = 17

1 Forward 1 2422.953 2412.233 2410.593 2410.094 2410.114 2410.136
2 2504.059 2497.010 2500.215 2500.862 2500.935 2500.933
3 3286.674 3227.666 3232.732 3231.327 3231.360 3231.392

Backward 1 1477.263 1474.638 1473.746 1473.369 1473.329 1473.336
2 2466.686 2453.447 2454.354 2454.527 2454.630 2454.651
3 3009.080 2996.514 3000.600 3000.722 3000.851 3000.863

2 Forward 1 1656.612 1658.607 1658.802 1658.450 1658.327 1658.308
2 2660.994 2653.639 2653.333 2652.927 2652.931 2652.952
3 3405.157 3325.211 3328.189 3326.099 3326.110 3326.094

Backward 1 916.0765 918.3045 918.4430 918.0316 917.8874 917.8670
2 2167.852 2165.257 2164.561 2164.396 2164.428 2164.450
3 2998.231 3002.118 3004.497 3003.189 3003.199 3003.164

3 Forward 1 1795.408 1797.626 1798.355 1798.372 1798.324 1798.307
2 2523.495 2521.542 2520.798 2520.593 2520.589 2520.607
3 3231.620 3244.472 3244.771 3244.139 3244.225 3244.196

Backward 1 1254.819 1257.236 1258.011 1258.020 1257.963 1257.943
2 2069.890 2068.378 2067.492 2067.379 2067.399 2067.421
3 2855.313 2909.961 2909.752 2909.665 2909.716 2909.677

4 Forward 1 2308.748 2309.476 2309.895 2309.981 2309.986 2309.983
2 2829.753 2829.231 2828.473 2828.221 2828.181 2828.187
3 3502.518 3490.283 3485.355 3484.840 3485.014 3484.996

Backward 1 1905.402 1906.145 1906.599 1906.692 1906.697 1906.692
2 2467.951 2467.924 2466.841 2466.619 2466.585 2466.594
3 3175.574 3190.013 3184.416 3184.319 3184.474 3184.448

Table 2   Dimensionless natural 
frequencies of a CC stationary 
homogenous truncated 
conical shell (ν = 0.3, α = 45°, 
h/b = 0.01, Lsinα/b = 0.5, m = 1)

n 1 2 3 4 5 6 7 8 9

Present 0.8117 0.6694 0.5426 0.4563 0.4085 0.3957 0.4134 0.4556 0.5160
Liew et al. [36] 0.8120 0.6696 0.5428 0.4565 0.4088 0.3961 0.4141 0.4567 0.5175
Shu [37] 0.8120 0.6696 0.5428 0.4566 0.4089 0.3963 0.4143 0.4568 0.5177
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Using the following notation:

Equation (36) can be rewritten for the first two derivates 
as

Applying Eq. (40), the set of the governing Eq. (34) can 
be written in the following algebraic form:

where [M], [G], [K] and {s} are mass matrix, gyroscopic 
matrix, stiffness matrix and displacement vector which are 
presented in details in Appendix A.

Using Eqs. (35) and (40), the boundary conditions can be 
written in the following algebraic form:

in which matrix [T] is presented in Appendix B for various 
boundary conditions.

Simultaneous solution of algebraic Eqs. (41) and (42) 
leads to inconsistency between number of unknown vari-
ables and number of equations. In order to overcome this 
challenge, let us divide the grid points into two sets: bound-
ary points (x1 and xN) and domain ones (x2 − xN−1). By 

(38)xi =
L

2

{

1 − cos

[

(i − 1)�

N − 1

]}

, i = 1, 2, 3,… ,N.

(39)[A] =
[

A(1)
]

, [B] =
[

A(2)
]

,

(40)
{

df

dx

}

= [A]{f },
{

d2f

dx2

}

= [B]{f }.

(41)�2[M]{s} + �[G]{s} + [K]{s} = {0},

(42)[T]{s} = {0},

Table 3   Dimensionless forward and backward frequencies of a rotat-
ing homogenous truncated conical shell (ν = 0.3, α = 30°, h/a = 0.01, 
L/a = 6, n = m=1)

Ω*= 0.2 Ω*= 0.3

Forward Backward Forward Backward

CC
 Present 0.8852 0.5990 0.9432 0.5198
 Dai et al. [32] 0.8836 0.6018 0.9260 0.5265

SC
 Present 0.8797 0.5941 0.9407 0.5160
 Dai et al. [32] 0.8784 0.5963 0.9254 0.5215

CS
 Present 0.7587 0.5420 0.7918 0.4504
 Dai et al. [32] 0.7642 0.5357 0.8030 0.4369

SS
 Present 0.7210 0.5388 0.7555 0.4479
 Dai et al. [32] 0.7290 0.5331 0.7724 0.4350

neglecting satisfying Eq. (41) at the boundary points, this 
equation can be written as

in which bar sign implies the corresponding non-square 
matrix. Equations (42) and (43) can be rearranged and par-
titioned in order to separate the boundary and domain points 
as follows:

where subscripts “b” and “d” indicate to boundary and 
domain points, respectively. Substituting Eq. (44-b) into 
Eq. (44-a) leads to the following eigen value equation:

in which

The eigenvalue Eq. (45) provides the natural frequencies 
of the rotating conical shells. Among all these frequencies, 
there are two sets of natural frequencies, the positive val-
ues which are known as forward frequencies and negative 
ones which are known as backward frequencies [27–31]. It 
is worth mentioning that the reverse definition is used by 
some authors as well [25, 32].

4 � Numerical results

Numerical results are provided in this section to confirm 
convergence and accuracy of the presented numerical 
solution and examine the influences of different param-
eters on the forward and backward frequencies of rotating 
GNP-reinforced truncated conical shells. Except for the 
cases which are mentioned directly, in what follows, mate-
rial properties of the epoxy and GNPs are considered as 
Em= 3 GPa, νm= 0.34, ρm= 1200 kg/m3, EGNP= 1.01 TPa, 
νGNP= 0.186 and ρGNP= 1060 kg/m3 [33–35] and results are 
presented for a rotating GNP-reinforced truncated conical 
shell clamped at x = 0 and simply supported at x = L (CS). 
The shell is of a = 0.5 m, α = 20°, L/a = 4, h/a = 0.1 which 
is rotating at Ω= 500 rad/s and FG-A distribution pattern 
is chosen for GNPs of g*

GNP= 0.01, lGNP/a = 2×10−6, wGNP/

(43)𝜔2
[

M̄
]

{s} + 𝜔
[

Ḡ
]

{s} +
[

K̄
]

{s} = {0},

(44-a)

𝜔2
([

M̄
]

b
{s}b +

[

M̄
]

d
{s}d

)

+ 𝜔
([

Ḡ
]

b
{s}b +

[

Ḡ
]

d
{s}d

)

+
[

K̄
]

b
{s}b +

[

K̄
]

d
{s}d = {0},

(44-b)[T]d{s}d + [T]b{s}b = {0},

(45)�2
[

M∗
]

{s}d + �
[

G∗
]

{s}d +
[

K∗
]

{s}d = {0},

(46)

[

M∗
]

=
[

M̄
]

d
+
[

M̄
]

b

[

p
]

,
[

K∗
]

=
[

K̄
]

d
+
[

K̄
]

b

[

p
]

,
[

G∗
]

=
[

Ḡ
]

d
+
[

Ḡ
]

b

[

p
]

,
[

p
]

= −[T]−1
b
[T]d.
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Fig. 3   Effect of circumferential mode number on the forward and backward frequencies of the shell

Table 4   Effect of boundary 
conditions on the forward and 
backward frequencies of the 
shell

n m CC SC CS SS FC CF

1 Forward 1 2474.444 2420.392 2410.094 2207.664 1915.779 917.8133
2 3262.936 3210.424 2500.862 2418.169 2928.790 2341.068
3 3761.422 3737.353 3231.327 3090.926 3238.553 2910.980

Backward 1 1599.276 1564.826 1473.369 1465.050 935.1589 59.78743
2 2851.743 2827.447 2454.527 2214.097 2276.995 1822.798
3 3511.507 3498.870 3000.722 2786.025 3043.634 2849.230

2 Forward 1 1820.777 1753.604 1658.450 1594.344 1364.714 1050.558
2 2758.933 2714.134 2652.927 2622.019 2140.192 1858.789
3 3481.664 3443.141 3326.099 3287.006 3028.432 2886.449

Backward 1 1135.714 1065.243 918.0316 854.1163 615.9952 364.7010
2 2226.313 2176.896 2164.396 2120.007 1503.413 1232.697
3 3143.231 3097.222 3003.189 2960.282 2588.657 2485.024

3 Forward 1 1909.564 1872.494 1798.372 1765.576 1808.503 1550.555
2 2584.914 2525.451 2520.593 2463.807 2183.048 1925.112
3 3376.556 3310.173 3244.139 3184.233 2865.448 2746.053

Backward 1 1399.870 1359.201 1258.020 1223.945 1286.103 1042.480
2 2134.948 2069.667 2067.379 2001.382 1683.038 1431.164
3 3029.421 2954.754 2909.665 2841.653 2445.666 2341.949

4 Forward 1 2387.900 2381.245 2309.981 2305.331 2379.426 2098.918
2 2897.215 2864.189 2828.221 2798.954 2802.516 2414.927
3 3604.141 3543.182 3484.840 3430.720 3279.343 3015.033

Backward 1 2005.311 1997.974 1906.692 1901.937 1996.187 1717.234
2 2540.410 2503.868 2466.619 2433.423 2435.741 2033.685
3 3299.112 3231.758 3184.319 3123.399 2936.820 2677.797
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lGNP= 0.5 and hGNP/lGNP= 0.5 × 10−3. Also it should be noted 
that the natural frequencies are denoted by ωmn in which “n” 
indicates to circumferential mode number [Eq. (33)] and 
m = 1,2,3,… shows the sequence of modes in meridional 
direction (x-axis).

Table 1 shows the effect of the number of grid points 
[N in Eq. (36)] on the values of forward and backward fre-
quencies of the shell. As shown in this table, the presented 

solution converges rapidly and what follows, all of the 
numerical examples are reported based on N = 13.

In order to confirm the accuracy of the presented solu-
tion, consider a CC stationary homogenous truncated conical 
shell of ν = 0.3, α = 45°, h/b = 0.01 and Lsinα/b = 0.5. For 
various values of circumferential mode number, values of 
dimensionless natural frequency (ω*= ωb[ρ(1 − ν2)/E]0.5) 
are presented in Table 2 for m = 1 against corresponding 

Fig. 4   Effect of angular velocity on the forward (-) and backward (–) frequencies of the shell
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ones reported by Liew et al. [36] and Shu [37]. This table 
confirms that the presented solution has high accuracy 
and results are in agreement with those reported by other 
authors. It is worth mentioning that in Refs. [36, 37] the 
shear deformation and rotational inertia are neglected and 
the natural frequencies are obtained higher than the more 
accurate ones predicted in the presented paper based on the 
FSDT.

An homogenous rotating truncated conical shell of 
α = 30°, L/a = 6, h/a = 0.01 and ν = 0.3 is considered. For 

Fig. 5   Effect of centrifugal and Coriolis accelerations and initial hoop tension on the forward (-) and backward (–) frequencies of the shell

different boundary conditions, two selected values of 
dimensionless angular velocity (Ω*= Ωb[ρ(1 − ν2)/E]0.5) 
and n = m=1, dimensionless values of the forward and back-
ward frequencies (ω*= ωb[ρ(1 − ν2)/E]0.5) are presented in 
Table 3 against corresponding ones reported by Dai et al. 
[32]. This table confirms that values of the frequencies are 
in high agreement and results with high accuracy can be 
obtained using the presented numerical solution. It should 
be noted that Dai et al. [32] used a classical shell theory 
to model the shell, and values of the both forward and 
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backward frequencies reported by them are higher than the 
more accurate ones achieved in the presented paper. Also 
it is worth mentioning that the definition of forward and 
backward frequencies in Ref. [32] is reverse of the definition 
used in the current papers.

Effect of circumferential mode number on the values of 
forward and backward frequencies of the rotating GNP-
reinforced truncated conical shells is illustrated in Fig. 3. 

This figure shows that for a special value of circumferential 
mode number, the minimum values of forward and back-
ward frequencies can be obtained. Figure 3 reveals that this 
special value of circumferential mode number is same for 
forward and backward frequencies but is not same for dif-
ferent meridional mode numbers.

Effect of boundary conditions on the forward and back-
ward frequencies of the rotating GNP-reinforced truncated 

Fig. 6   Effect of semi-vertex angle on the forward (-) and backward (–) frequencies
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conical shells is investigated in Table 4. This table shows 
that as was expected, using more constrained conditions at 
the edges of the shell leads to increase in values of forward 
and backward frequencies. A simple comparison between 
results for SC and CS or FC and CF shells reveals that in 
order to increase values of forward and backward frequen-
cies it is better to use more constrained conditions at x = L 
(large radius of the cone) rather that x = 0 (small radius of 

the cone). It is noteworthy that result of this table can be 
used as benchmark results for other researchers.

As rotational speed of the shell rises, both the Coriolis 
acceleration and initial hoop tension increase. The initial 
hoop tension leads to increase in stiffness of the shell and 
increases both forward and backward frequencies, but the 
Coriolis acceleration increases forward frequencies and 
reduces backward ones. Figure 4 shows the influence 

Fig. 7   Effect of total mass fraction of GNPs on the forward (-) and backward (–) frequencies
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of rotational speed on the natural frequencies of the 
shell which is known as the Campbell diagram [27]. As 
depicted in this figure, with increase in rotational speed 
of the shell, all forward frequencies grow which shows 
the cooperative effects of initial hoop tension and the 
Coriolis acceleration on the forward modes. Figure 4 
shows different trends for backward modes; for n = 1 and 
n = 2, with increase in rotational speed, some backward 
frequencies decrease, some of them increase and other 
ones decrease at first and increase subsequently, and for 
n ≥ 3, all backward frequencies grow with increase in 
rotational speed of the shell. This different trends can be 
explained by the contrast between effects of initial hoop 
tension and the Coriolis acceleration on the backward 
modes.

In Fig. 4, the line of Ω= ±ω is shown as well which is 
known as the line of synchronous whirling [27]. Intersec-
tion of this line with the Campbell diagram determines the 
critical resonance speeds of the rotating shell which should 
be strongly avoided. At these critical speeds, any residual 
unbalance increases the amplitude of vibration and leads 
to a catastrophic failure. As shown in this figure for the 

current case study, the resonance speeds can be found for 
n = 1 (Ωcr ≈ 1000 rad/s) and n = 2 (Ωcr≈ 914 rad/s), and for 
higher values of the circumferential mode number (n ≥ 3) 
the line of synchronous whirling has no intersection with 
the Campbell diagram and no resonance speed can be 
found.

In order to investigated the influences of centrifugal and 
Coriolis accelerations and initial hoop tension, variation of 
forward and backward frequencies is depicted in Fig. 5 ver-
sus rotational speed for m = 1, and three cases which are 
determined based on Eq. (31) as follows:

Case 1 Centrifugal acceleration and initial hoop tension 
(terms contain square of rotational speed) are consid-
ered but Coriolis acceleration (terms contain rotational 
speed and first time derivatives of displacements) is 
neglected.
Case 2 Coriolis acceleration is considered but centrifugal 
acceleration and initial hoop tension are neglected.
Case 3 Coriolis and centrifugal accelerations and initial 
hoop tension are considered.

Table 5   Effect of distribution 
pattern of GNPs on the forward 
and backward frequencies

n m FG-O FG-V FG-A UD FG-X

1 Forward 1 2411.381 2419.388 2410.094 2417.615 2422.468
2 2488.552 2490.278 2500.862 2501.856 2512.996
3 3198.122 3224.119 3231.327 3255.517 3299.813

Backward 1 1471.346 1473.823 1473.369 1475.529 1479.520
2 2437.108 2441.553 2454.527 2458.276 2475.724
3 2980.749 2981.036 3000.722 3000.859 3019.469

2 Forward 1 1647.360 1658.119 1658.450 1669.334 1689.570
2 2626.990 2650.808 2652.927 2678.233 2726.588
3 3249.840 3322.254 3326.099 3400.493 3534.883

Backward 1 894.3988 892.7373 918.0316 916.0112 935.9404
2 2121.864 2127.729 2164.396 2170.989 2217.660
3 2913.432 2958.538 3003.189 3050.508 3175.981

3 Forward 1 1768.808 1798.270 1798.372 1828.177 1882.633
2 2466.202 2520.099 2520.593 2576.291 2678.385
3 3141.628 3243.006 3244.139 3349.344 3539.218

Backward 1 1200.548 1202.228 1258.020 1259.018 1312.640
2 1979.876 2003.288 2067.379 2090.905 2192.931
3 2775.612 2840.641 2909.665 2977.035 3161.491

4 Forward 1 2257.177 2309.843 2309.981 2363.077 2459.682
2 2728.989 2827.724 2828.221 2928.106 3107.537
3 3329.011 3483.922 3484.840 3642.514 3922.327

Backward 1 1812.215 1823.374 1906.692 1916.799 2012.102
2 2319.082 2372.316 2466.619 2518.642 2697.351
3 2980.623 3086.384 3184.319 3290.389 3566.159
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As depicted in Fig. 5, for a stationary shell there is no 
difference between three cases, but as rotating speed of the 
shell increases, significant differences can be seen between 
all cases. This figure shows that by neglecting Coriolis 
acceleration (Case 1) no difference can be detected between 
forward and backward frequencies and values of the natural 
frequencies are between corresponding values of forward 
and backward frequencies predicted in Case 3. Figure 5 

reveals that centrifugal acceleration and initial hoop ten-
sion play predominant roles in determining values of critical 
speeds of the rotating shells. A comparison between cases 
2 and 3 in this figure that reveals that for n = 1,2 neglecting 
centrifugal acceleration and initial hoop tension generates 
error in prediction of values of the critical speed, and for 
n > 2 the critical speeds predicted in case 2 vanish as the 

Fig. 8   Effect of width of the GNPs on the forward (-) and backward (–) frequencies



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:519

1 3

519  Page 18 of 22

centrifugal acceleration and initial hoop tension are con-
sidered (case 3).

Figure 6 shows the influence of the semi-vertex angle 
on the forward and backward frequencies of the shell. As 
depicted in this figure, increase in value of the semi-ver-
tex angle from α = 0 (cylindrical shell of radius r = a) to 
α = 90° (circular annular plate of inner radius r = a and 

outer radius r = b) leads to reduction in forward frequen-
cies but no specific trend can be seen for backward ones, 
and these modes may increase or decrease with increase 
in value of semi-vertex angle. For explain this, it should 
be noted that with specific values of small radius and 
length of the shell, increase in value of semi-vertex angle 
of the shell affects both stiffness and inertia of the shell. 

Fig. 9   Effect of thickness of the GNPs on the forward (-) and backward (–) frequencies
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Figure 6 also shows that for high values of semi-vertex 
angle forward and backward frequencies reach to same 
values which are corresponding natural frequencies of a 
rotating annular circular plate of inner radius r = a and 
outer radius r = b.

Figure 7 shows the influence of total mass fraction of 
GNPs on the forward and backward frequencies of the 
rotating GNP-reinforced truncated conical shells for dif-
ferent values of circumferential mode number. As shown 
in this figure, subjoining a small amount of GNPs to the 
epoxy leads to a significant increase in the values of the 
forward and backward frequencies. It can be explained by 
high value of the modulus of elasticity of the GNPs which 
is significantly greater than modulus of elasticity of the 
epoxy.

Table 5 shows values of the forward and backward fre-
quencies of the rotating GNP-reinforced truncated conical 
shell for different types of GNPs distribution patterns. 
This table reveals that among all studied patterns, the 
highest values of the forward and backward frequencies 
belong to FG-X pattern and the lowest ones belong to 
FG-O pattern. In other words, in order to make the most 
increase in the values of the forward and backward fre-
quencies, it is better to put the GNPs as far as away from 
the middle surface of the shell which creates the highest 
flexural stiffness.

Variation of forward and backward frequencies of the 
GNP-reinforced truncated conical shells versus width of 
the GNPs is depicted in Fig. 8. As shown in this figure, 
increase in the width of the GNPs slightly increases both 
forward and backward frequencies of GNP-reinforced coni-
cal shells. In other words, increase in surface area of the 
GNPs increases the stiffness of a GNP-reinforced structure. 
To explain this, it can be pointed that a larger contact area 
between the GNPs and the polymer matrix provides better 
load transfer capability.

Figure  9 shows the inf luence of thickness of the 
GNPs on forward and backward frequencies of the 
GNP-reinforced truncated conical shells. This figure 
shows that increase in thickness of the GNPs leads to 
a slight reduction in both forward and backward fre-
quencies which can be explained by increase in the 
monolayer graphene sheets. Figures 8 and 9 confirm 
that in order to have a better reinforcing effect, GNPs 
with larger surface area and fewer monolayer graphene 
sheets should be used.

5 � Conclusions

Using GDQM, a numerical solution was presented for free 
vibration analysis of rotating truncated conical shells made 
of GNP-reinforced epoxy. The shell was modeled based on 
the FSDT incorporating centrifugal and Coriolis accelera-
tions and initial hoop tension. Numerical results confirmed 
that presented solution is convergent, and for a special 
value of the circumferential mode number, the minimum 
values can be achieved for both forward and backward fre-
quencies. It was shown that centrifugal and coriolis accel-
erations and initial hoop tension play predominant roles in 
dynamics of rotating conical shells. It was concluded that 
as rotational speed of the shell increases, forward frequen-
cies increase, but no specific trend can be stated for varia-
tion of backward frequencies versus variation of rotational 
speed. Numerical results confirmed that increase in values 
of the semi-vertex angle decreases forward frequencies, 
but no specific trend can be stated for the effect of semi-
vertex angle on the variation of backward frequencies. It 
was shown by numerical examples that increase in the 
value of the mass fraction of GNPs significantly increases 
values of both forward and backward frequencies, and in 
order to achieve higher reinforcing effect, it is better to use 
the GNPs with a larger surface area and fewer monolayer 
graphene and put them as far as away from the middle 
surface of the shell.

Appendix A

In Eq. (41) mass, gyroscopic and stiffness matrices and dis-
placement vector are defined as follows:

in which [0] is zero matrix of order N and
(A-1)
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(A-2)
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(

A12 + A66

)[

a1
]

[A] − n
(

A22 + A66

)

sin �
[

a2
]

− 2nI0Ω
2 sin �I,

k13 = A12 cos �
[

a1
]

[A] − 0.5 sin 2�A22

[

a2
]

,

k14 = B11[B] + B11 sin �
[

a1
]

[A] −
(

B22 sin
2 � + B66n

2
)[

a2
]

− n2I1Ω
2I,

k15 = n
(

B12 + B66

)[

a1
]

[A] − n
(

B22 + B66

)

sin �
[

a2
]

− 2nI1Ω
2 sin �I,

g12 = 2ΩI0 sin �I, g15 = 2ΩI1 sin �I,

m11 = I0I, m14 = I1I,

k21 = −n
(

A12 + A66

)[

a1
]

[A] − n
(

A22 + A66

)

sin �
[

a2
]

− 2nI0Ω
2 sin �I,

k22 = A66[B] + A66 sin �
[

a1
]

[A] −
(

A22n
2 + A44 cos

2 � + A66 sin
2 �

)[

a2
]

− n2I0Ω
2I,

k23 = −n
(

A22 + A44

)

cos �
[

a2
]

− 2nI0Ω
2 cos �I,

k24 = −n
(

B12 + B66

)[

a1
]

[A] − n
(

B22 + B66

)

sin �
[

a2
]

− 2nI1Ω
2 sin �I,

k25 = B66[B] + B66 sin �
[

a1
]

[A] + A44 cos �
[

a1
]

−
(

B22n
2 + B66 sin

2 �
)[

a2
]

− n2I1Ω
2I,

g21 = 2I0Ω sin �I, g23 = 2I0Ω cos �I, g24 = 2I1Ω sin �I,

m22 = I0I, m25 = I1I,

k31 = −A12 cos �
[

a1
]

[A] − 0.5 sin 2�A22

[

a2
]

,

k32 = −n
(

A22 + A44

)

cos �
[

a2
]

− 2nI0Ω
2 cos �I,

k33 = A55[B] + A55 sin �
[

a1
]

[A] −
(

A22 cos
2 � + A44n

2
)[

a2
]

− n2I0Ω
2I,

k34 =
(

A55I − B12 cos �
[

a1
])

[A] + A55 sin �
[

a1
]

− 0.5B22 sin 2�
[

a2
]

,

k35 = n
(

A44

[

a1
]

− B22 cos �
[

a2
])

− 2nI1Ω
2 cos �I,

g32 = 2I0Ω cos �I, g35 = 2I1Ω cos �I,

m33 = I0I,

k41 = B11[B] + B11 sin �
[

a1
]

[A] −
(

B22 sin
2 � + B66n

2
)[

a2
]

− n2I1Ω
2I,

k42 = n
(

B12 + B66

)[

a1
]

[A] − n
(

B22 + B66

)

sin �
[

a2
]

− 2nI1Ω
2 sin �I,

k43 = −A55[A] + B12 cos �
[

a1
]

[A] − 0.5 sin 2�B22

[

a2
]

,

k44 = D11[B] + D11 sin �
[

a1
]

[A] −
(

D22 sin
2 � + D66n

2
)[

a2
]

−
(

A55 + n2I2Ω
2
)

I,

k45 = n
(

D12 + D66

)[

a1
]

[A] − n
(

D22 + D66

)

sin �
[

a2
]

− 2nI2Ω
2 sin �I,

g42 = 2I1Ω sin �I, g45 = 2I2Ω sin �I,

m41 = I1I, m44 = I2I,

k51 = −n
(

B12 + B66

)[

a1
]

[A] − n
(

B22 + B66

)

sin �
[

a2
]

− 2nI1Ω
2 sin �I,

k52 = B66[B] + B66 sin �
[

a1
]

[A] + A44 cos �
[

a1
]

−
(

B22n
2 + B66 sin

2 �
)[

a2
]

− n2I1Ω
2I,

k53 = n
(

A44

[

a1
]

− B22 cos �
[

a2
])

− 2nI1Ω
2 cos �I,

k54 = −n
(

D12 + D66

)[

a1
]

[A] − n
(

D22 + D66

)

sin �
[

a2
]

− 2nI2Ω
2 sin �I,

k55 = D66[B] + D66 sin �
[

a1
]

[A] −
(

D22n
2 + D66 sin

2 �
)[

a2
]

−
(

A44 + n2I2Ω
2
)

I,

g51 = 2I1Ω sin �I, g53 = 2I1Ω cos �I, g54 = 2I2Ω sin �I,

m52 = I1I, m55 = I2I,
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where I is identity matrix of order N and [a1] and [a2] are 
two diagonal matrices defined as follows:

Appendix B

In Eq. (42), matrix [T] is defined as

in which T11 − T55 are associated with the conditions at x = 0 
and are defined as follows:

in which the subscript 1 indicates to the first row of each 
matrix.

Also, with the following definitions, T61 − T105 are asso-
ciated with the conditions at x = L:

(A-3)
[

a1
]

ii
=

1

ri
,
[

a2
]

ii
=

1

r2
i

.

(B-1)[T]10×5N =

⎡

⎢

⎢

⎢

⎣

T11 T12 T13 T14 T15
T21 T22 T23 T24 T25
⋮ ⋮ ⋮ ⋮ ⋮

T101 T102 T103 T104 T105

⎤

⎥

⎥

⎥

⎦

,

(B-2)

Clamped (C) ∶

T11 = T22 = T33 = T44 = T55 = I1,

T12 = T13 = T14 = T15 = T21 = T23 = T24 = T25 = T31 = T32 = T34 =

T35 = T41 = T42 = T43 = T45 = T51 = T52 = T53 = T54 = {0}1×N ,

Simply Supported (S) ∶

T11 = A11A1 +
A12 sin �

a
I1, T14 = T41 = B11A1 +

B12 sin �

a
I1,

T44 = D11A1 +
D12 sin �

a
I1, T22 = T33 = T55 = I1,

T12 = T13 = T15 = T21 = T23 = T24 = T25 = T31 = T32 = T34 =

T35 = T42 = T43 = T45 = T51 = T52 = T53 = T54 = {0}1×N ,

Free (F) ∶

T11 = A11A1 +
A12 sin �

a
I1, T12 =

nA12

a
I1, T13 =

A12 cos �

a
I1,

T14 = B11A1 +
B12 sin �

a
I1, T15 =

nB12

a
I1,

T21 = −
nA66

a
I1, T22 = A66A1 −

A66 sin �

a
I1, T23 = {0}1×N ,

T24 = −
nB66

a
I1, T25 = B66A1 −

B66 sin �

a
I1,

T31 = T32 = T35 = {0}1×N , T33 = A1, T34 = I1,

T41 = B11A1 +
B12 sin �

a
I1, T42 =

nB12

a
I1,

T43 =
B12 cos �

a
I1, T44 = D11A1 +

D12 sin �

a
I1,

T45 =
nD12

a
I1, T51 = −

nB66

a
I1, T52 = B66A1 −

B66 sin �

a
I1,

T53 = {0}1×N , T54 = −
D66n

a
I1, T55 = D66A1 −

D66 sin �

a
I1,

in which the subscript N indicates to the last row of each 
matrix.
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