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Abstract
The safety and reliability of mechanical performance are affected by the condition (health status) of the bearings. A health 
indicator (HI) with high monotonicity and robustness is a helpful tool to simplify the predictive model and improve predic-
tion accuracy. In this paper, a new health indicator based on the Wasserstein distance (WD) and cumulative sum (CUSUM) 
is proposed. First, a standard normal signal is simulated as the reference. The second step is to calculate the frequency dis-
tribution histogram of the reference signal and that of monitoring signals for the bearing. The next step is to obtain the WD 
between the frequency distribution histogram of the reference signal and that of the monitoring signal. Finally, the fluctuation 
of the WD is amplified by applying the CUSUM. The performance of the proposed HI is evaluated by testing three run-to-
failure datasets. The results show that the proposed HI has better monotonicity and robustness and can be effectively used 
to predict the remaining useful life of bearings.
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1 Introduction

As an important component of rotating machinery, the 
health of bearing has an important impact on the reliability 
and safety of rotating machinery [1]. Hence, the effective 
and reliable remaining useful life (RUL) prediction of bear-
ing is essential to formulate a timely maintenance schedule 
and improve the reliability of rotating machinery.

To date, most of the prediction methods can be gener-
ally divided into either model-based or data-driven methods. 
Compared with model-based methods [2, 3], the data-driven 
methods do not need to construct a complicated physical 
model and have been extensively applied in the RUL predic-
tion of bearings. For example, Bastami et al. [4] utilized the 
artificial neural network and wavelet packet features to esti-
mate the RUL of bearing. Zhu et al. [5] predicted the RUL 
of bearing by using the multi-scale convolutional neural 

network. Ren et al. [6] proposed a prediction framework for 
bearing based on auto-encoder and deep neural networks. 
However, instead of using direct monitoring signals, the 
above-mentioned data-driven prediction methods all need 
to utilize the indirect indicators to reflect the health status 
of bearing. Therefore, how to develop effective health indi-
cators (HI) is crucial to simplify the data-driven-based pre-
diction models and improve the accuracy of prediction [7].

The HI can be divided into physics HI (PHI) and virtual 
HI (VHI) according to their construction strategies [8]. 
The VHI only describes the degradation trend of machin-
ery and has no clear physical significance. In contrast, the 
PHI is constructed by statistical methods or signal process-
ing methods and is related to the physics of failures. In the 
existing literature of RUL prediction of bearing, a variety 
of PHIs have been applied to reflect the change of deg-
radation trend and identify the physical failures. Among 
these PHIs, the root mean square (RMS) is the most widely 
used [2, 9–12]. For instance, Malhi et al. [13] utilized the 
peak value and RMS of the wavelet coefficients for the 
competitive learning-based preprocessing to predict the 
RUL of bearing. Gebraeel et al. [14] and Elwany et al. 
[15] constructed the PHI based on the average amplitude 
of the defective frequency and the first six harmonics. In 
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addition, other HIs based on the statistical characteristics 
of time-domain signals were also constructed for bear-
ing RUL prediction. For example, the correlation coef-
ficient between two vibration signals was used to predict 
the RUL of bearing by Medjaher et al. [16]. Li et al. [17] 
extracted the degradation features based on mathematical 
morphology and proposed the general mathematical mor-
phology particle for indicating the performance degrada-
tion of bearing. Singleton et al. [18] utilized the entropy 
of Cohen’s class of bilinear time–frequency distribution to 
construct the HI of bearing. Ali et al. [19] constructed the 
HI based on the energy entropy of the different intrinsic 
mode functions. Weibull distribution of the RMS entropy 
estimator was used as HI by Ali et al. [20]. Loutas et al. 
[21] utilized the Wiener entropy or spectral flatness as 
the HI for the RUL estimation of bearing. Qian et al. [22] 
extracted the recurrence plot entropy from the vibration 
signal for reflecting the degradation of bearing.

However, the vibration signals of bearings are often 
disturbed by ambient noise since the bearings are usu-
ally operated in complex environments. In addition, the 
amplitude of the impact will decrease due to the smooth-
ing process which will occur on the surface of bearing 
failure when the bearing begins to degrade [23]. Therefore, 
although all the above-mentioned HIs can reflect the trend 
of bearing degradation, they also have some shortcomings 
in monotonicity and robustness, which will further affect 
the complexity and accuracy of the prediction models. 
Nevertheless, the development of PHIs with high mono-
tonicity and robustness is in critical need to simplify the 
prediction models and improve the prediction accuracy.

To overcome the above-mentioned problem, this paper 
proposes a new HI based on the Wasserstein distance 
(WD) and the cumulative sum (CUSUM). First, a signal 
following the standard normal distribution is simulated as 
the reference signal. Then the WD between the reference 
signal and the monitoring signals of bearing is obtained 
after the frequency distribution histogram of the refer-
ence signal, and monitoring signals of the bearing are 
calculated. Finally, the CUSUM is used to amplify the 
fluctuation of the WD. The novelty (contribution) of this 
study includes (1) the distance between the distributions 
of vibration signals measured by WD is used to reflect the 
health status of bearings; and (2) the new HI constructed 
by WD and CUSUM significantly reduces the complexity 
of the model for predicting the RUL of bearings.

The rest of this paper is organized as follows. Section 2 
introduces the theory of WD and CUSUM. In Sect. 3, the 
new health indicator is proposed. The effectiveness of the 
health indicator is evaluated by testing with three run-to-
failure datasets in Sect. 4. In Sect. 5, the conclusion of this 
paper is drawn.

2  Theory Background

2.1  The theory of Wasserstein distance

The Wasserstein distance (WD) is a similarity measurement 
method of the distance between two distributions, and its 
essence is to measure the distance for weighted point sets. 
The WD is also known as Earth Mover’s distance [24]. In addi-
tion, it is the discrete version of the well-known Monge–Kan-
torovich mass transportation distance proposed by Mumford 
in 1991 [25]. To date, the WD has been widely applied in 
the color-based image retrieval [26], shape matching [27] 
and machine learning [28]. For two vibration signals of bear-
ings X=

{
x1, x2,… xn

}
 and Y=

{
y1, y2,… yn

}
 , the WD can be 

obtained as follows [29–31]:
Step 1: Calculate the frequency distribution his-

togram of the vibration signals. The histogram 
of the two vibration signals can be described as 
HX =

{(
hX1, pX1

)
,
(
hX2, pX2

)
,… ,

(
hXm, pXm

)}
 a n d 

HY =
{(

hY1, pY1
)
,
(
hY2, pY2

)
,… ,

(
hYn, pYn

)}
 , where h is the 

horizontal ordinate of the frequency distribution histogram, p 
is the ordinate of the frequency distribution histogram.

Step 2: Obtain the optimal flow. The WD is defined in terms 
of an optimal flow F =

(
fij
)
 , which minimizes

where dij is the cost parameter which is some measure of 
dissimilarity between hXi and hYj ; dij is obtained by Euclidean 
distance in the following calculation, the WD

(
HX ,HY ,F

)
 is 

the work required to move the earth from one histogram to 
another. The flow 

(
fij
)
 is subject to the following constraints:

Step 3: Calculate the WD. Once the optimal flow f ∗
ij
 is 

found, the WD between the vibration signals of bearings X and 
Y can be calculated as

(1)WD
(
HX ,HY ,F

)
=

m∑
i=1

n∑
j=1

fij ⋅ dij

(2)

s.t.

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n
n∑
j=1

fij ≤ pXi, 1 ≤ i ≤ m

m∑
i=1

fij ≤ pYj, 1 ≤ j ≤ n

m∑
i=1

n∑
j=1

fij = min

�
m∑
i=1

pXi,
n∑
j=1

pYj

�

(3)WD(X, Y) =

∑m

i=1

n∑
j=1

f ∗
ij
dij

m∑
i=1

∑n

j=1
f ∗
ij
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2.2  The theory of cumulative sum

The cumulative sum (CUSUM) is a control chart model 
which is proposed by Page [32] based on the likelihood 
ratio. The CUSUM can magnify the fluctuation of data by 
accumulating the difference between the measured value 
and the standard value. Therefore, the CUSUM has been 
widely used for monitoring the variability of the process. For 
a signal X=

{
x1, x2,… , xn

}
 , the CUSUM can be obtained as 

follows [33, 34]:
Step 1: Select the reference samples. Select the first l 

samples from X as the reference samples, where l=n∕3 in 
the following calculation.

Step 2: Calculate the standard deviation of the reference 
samples. The standard deviation of the reference samples 
can be obtained as follows:

where x is the mean of the reference samples.
Step 3: Obtain the CUSUM. The CUSUM calculates the 

upward and downward deviations from the target value as 
follows:

where CUH+
j
 and CUH−

j
 are the upward and downward 

CUSUM, respectively, �0 is the target value and �0 = x , k is 
the slack value and k = �∕2.

3  The proposed health indicator

In general, the degradation process of the equipment is irre-
versible without being repaired or replaced, so the degrada-
tion trend of equipment tends to be monotonous upward or 
downward. Therefore, the HI with monotonicity is condu-
cive to reflect the degradation of equipment. However, the 
degradation trend of equipment is often affected by envi-
ronmental noise. The HI with robustness is conducive to 
improve the prediction result of the equipment. Therefore, 
a new WD- and CUSUM-dependent HI with monotonicity 
and robustness is proposed in this paper.

3.1  The effect of WD and CUSUM 
on the construction of proposed HI

In practice, the bearing signals without faults usually fol-
low the Gaussian probability distribution. However, the 

(4)
�=

�∑l

i=1

�
xi − x

�2
l − 1

(5)CUH+
j
= max

(
0, xj −

(
�0 + k

)
+ CUH+

j−1

)

(6)CUH−
j
= max

(
0,
(
�0 − k

)
− xj + CUH−

j−1

)

bearing signals with faults always show the non-Gaussian 
characteristics when the bearing is under various fault con-
ditions [35]. Figure 1 shows the life cycle of bearing and 
corresponding frequency distributions of bearing signals at 
different stages. As shown in Fig. 1, the (I), (II) and (III) are 
the monitoring signals of the normal condition, initial fail-
ure and serious failure of bearing, respectively. For normal 
condition (I), the probability density curve of the bearing 
signal is close to the normal distribution function which is 
estimated by the mean and variance of the signal (Fig. 1a).

Therefore, the frequency distribution histogram of the 
bearing signal is the Gaussian distribution when the bearing 
is in good condition. However, for faulty conditions (II) and 
(III), the heavy tails are found in the frequency distribution 
histogram as shown in Fig. 1b, c. The probability density 
curves of the bearing signal (II) and (III) are far away from 
the normal distribution function which is estimated by the 
mean and variance of signal (II) and (III), respectively. In 
addition, the dominant tails of the frequency distribution 
histogram are dependent on fault degrees. The more fault 
degrees are, the heavier the tails of frequency distribution 
histogram will be. Accordingly, the corresponding frequency 
distribution histogram is farther away from the Gaussian 
distribution [36]. Therefore, the health status of bearings 
can be determined by the distance between the probability 
distributions of the vibration signals.

The WD has been used to effectively measure the dis-
tance between different distributions. Compared with Kull-
back–Leibler divergence (K–L divergence) and Jensen-
Shannon divergence (JS divergence), the WD can still reflect 
the distance of two distributions even if the supporting sets 
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Fig. 1  The vibration signal of bearing. a The frequency distribution 
of (I); b the frequency distribution of (II); c the frequency distribution 
of (III)
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of two distributions do not overlap or the overlap is little 
[37]. Therefore, the distance between different probability 
density distributions of bearings in different statuses can be 
effectively reflected by WD. Furthermore, the degradation 
process of bearings can be measured by WD.

In addition, the CUSUM can amplify the fluctuation 
of the signal by accumulating the difference between the 
value to be measured and the standard value even for small 
changes of signals. Hence, the fluctuation of the signal can 
be significantly reduced by CUSUM, which in turn improves 
the robustness of WD.

Therefore, the WD coupled with CUSUM can be used to 
construct the HI to reflect the health status of bearings and 
predict the RUL of bearings.

3.2  The framework of the proposed HI

Through the above analysis, the degradation information 
of bearings can be effectively reflected by WD, while the 
monotonicity and robustness of WD can be effectively 
improved by CUSUM. Therefore, the WD-CUSUM can 
be used to predict the RUL of bearings. For the life-cycle 
monitoring signals of bearing X=

{
X1,X2,…Xn

}
 , where 

the Xi =
{
xi1, xi2,… , xim

}
 is the monitoring signal at the ith 

sampling point, n is the number of the monitoring signal, m 
is the length of a monitoring signal, the WD-CUSUM can 
be obtained as follows:

Step 1: Simulate a standard normal signal N . Then calcu-
late the frequency distribution histogram of N.

Step 2: Calculate the frequency distribution histogram of 
Xi . Then calculate the WD between the Xi and N according 
to the description in Sect. 2.1.

Step 3: Repeat Step 2 until the monitoring signals X are 
completely covered.

Step 4: Calculate the CUSUM of the WD between the 
monitoring signals X and standard normal signal N . Then 
the WD-CUSUM of the life-cycle monitoring signals of 
bearing is obtained.

The calculation process is shown in Fig. 2.

4  Result and discussion

To evaluate the performance of our proposed HI, three dif-
ferent run-to-failure datasets of the bearing are tested.

4.1  The description of datasets

The detailed information of these three datasets is described 
and also shown in Table 1.

Dataset 1 (IMS) This dataset is from the Center for Intel-
ligent Maintenance Systems, University of Cincinnati (IMS) 
[38]. The four test bearings of type Rexnord ZA-2115 are 

installed on the same shaft which is rotating at a constant 
speed of 2000 RPM driven by an AC motor. 6000 lbs load is 
applied onto the shaft and bearing by a spring mechanism. 
A sampling frequency of 20 kHz is used. Each data record 
consists of 20,480 points. Two sets of life-cycle data (IMS 
#1 and IMS #2) are included in this dataset.

Dataset 2 (FEMTO-ST) This dataset is from the FEMTO-
ST Institute [39]. The test bearings are driven by an asyn-
chronous motor at the speed of 1800 RPM. 4000 N is applied 
onto the bearing by a force actuator, which consists of a 
pneumatic jack, where the supply pressure is delivered by a 
digital electro-pneumatic regulator. The sampling frequency 

Input vibration signal 
X={X1,X2, ,Xn}

Input standard 
normal signal N

Calculate the 
frequency distribution 

histogram of Xi

Calculate the 
frequency distribution 

histogram of N

i>n?

Calculate the WD between the 
vibration signal and standard 

normal signal

i=i+1

Calculate the 
CUSUM

N

Y

Obtain the 
WD-CUSUM

Fig. 2  The calculation process of the proposed method

Table 1  The detailed information of the three datasets

a The specific fault locations of the bearing in FEMTO-ST are 
unknown

Datasets Number Load Speed Fault location

IMS IMS #1 6000 lbs 2000 RPM Inner race
IMS #2 Outer race

FEMTO-ST bearing 1_1 4 kN 1800 RPM –a

bearing 1_2 –
bearing 1_3 –
bearing 1_4 –
bearing 1_5 –
bearing 1_6 –
bearing 1_7 –

HZ HZ #1 15.97 kN 3000 RPM Inner race
HZ #2 Inner race
HZ #3 Inner race
HZ #4 Inner race
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is set to 25.6 kHz, and the vibration data are collected every 
1 s. Each data record consists of 2560 points. Seven sets 
of life-cycle data are included in this dataset and named as 
bearing 1_1, bearing 1_2, bearing 1_3, bearing 1_4, bearing 
1_5, bearing 1_6 and bearing 1_7, respectively.

Dataset 3 (HZ) This dataset is from Hangzhou Bearing 
Test and Research Center. The bearing test rig and installa-
tion position of bearing and sensor are shown in Fig. 3. The 
accelerometer is 1A110E of DONGHUA. The sensitivity of 
the sensor is ~ 5 mV/m s−2, and the range of the sensor is 
1000 m s−2. The four test bearings of type HRB 6211 are 
installed on the same shaft which is rotating at a constant 
speed of 3000 RPM driven by an AC motor. A radial load of 
15.97 kN is applied onto the bearing seat of bearing 2 and 
bearing 3. The details of the bearing are shown in Table 2. 
The sampling frequency is 20 kHz. Each data record which 
consists of 20,480 points is collected every 5 s. Four sets of 

life-cycle data are included in this dataset and named as HZ 
#1, HZ #2, HZ #3 and HZ #4, respectively.

As shown in Table 1, although the fault locations of the 
bearing in FEMTO-ST are unknown, the three datasets 
can also represent different fault locations and operating 
conditions. Therefore, the three datasets are, respectively, 
used to evaluate the effect of the proposed HI.

4.2  Evaluation metrics for HIs

The complexity of prediction models and the prediction 
accuracy is greatly influenced by the performance of 
the HI. As mentioned above, the degradation process of 
the equipment is irreversible without being repaired or 
replaced, which is reflected by the monotonous upward or 
downward degradation trend. In addition, the monitoring 
signals of bearings are strongly influenced by environmen-
tal noise, which affects the robustness of HI. In this sec-
tion, the monotonicity and robustness are used to evaluate 
the performance of the HI.

4.2.1  Monotonicity

In general, the monotonicity is considered as an inher-
ent property of HI. The monotonicity metric based on the 
derivatives of the HI sequence is described as follows [40, 
41]:

where HI =
{
hi1, hi2,… hiK

}
 is the HI sequence, K is the 

length of HI , No. PD and No. ND are the number of the 
positive differences and negative differences, respectively. 
In this part, the positive differences and negative differences 
are defined as follows:

The value of monotonicity changes from 0 to 1. The 
higher the value obtained, the better performance of HI 
in monotonicity is.

(7)Mon(HI) =
1

K − 1
|No. PD − No.ND|

(8)PD: hii+1 − hii ≥ 0

(9)ND: hii+1 − hii < 0

(a)

(b)
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Load
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Motor controller

Main part of test rig

Rub Belts

Bearing 1

Bearing 2 Bearing 3

Bearing 4

AC Motor

Shaft

Ru
b 

Be
lts

Sampling System

Radial 
Load

Fig. 3  Test rig and bearing installation information of HZ dataset. a 
bearing test rig, b installation position of sensor and bearing

Table 2  Parameter information of 6211

Type Parameter

Internal diameter (mm) Outside diameter (mm) Width (mm) Rated dynamic load 
(kN)

Rated static load (kN) Equivalent dynamic 
load (kN)

6211 55 100 21 43.2 29.2 15.3
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4.2.2  Robustness

Smoothing method-dependent robustness can be used to 
describe how the HI responds to the environmental interfer-
ences. The smoother the degradation curve is, the more stable 
results can be obtained. The robustness metric is described as 
follows [41]:

where HI =
{
hi1, hi2,… hiK

}
 is the HI sequence, K is the 

length of HI . In order to make the metric applied to the 
case that hii = 0 , the HI =

{
hi1, hi2,… , hiK

}
 is transformed 

to Z =
{
z1, z2,… , zK

}
 by defining zi = hii + � . � is a small 

quantity. zS
i
 is the mean trend value of HI at time ti and can 

be determined by different smoothing methods. In this part, 
zS
i
 is obtained by the cubical smoothing algorithm with five-

point approximation [42]. The cubical smoothing algorithm 
with five-point approximation uses polynomial least square 
approximation to smooth the sampling points. The algorithm 
is simple and can obtain a good effect [43]. The zS

i
 can be 

obtained as follows:

where i = 3, 4,… ,K − 2.

(10)Rob(HI) =
1

K

∑K

i=1
exp

(
−
|||||
zi − zS

i

zi

|||||

)

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zS
1
=

1

70

�
69z

1
+ 4

�
z
2
+ z

4

�
− 6z

3
− z

5

�

zS
2
=

1

35

�
2
�
z
1
+ z

5

�
+ 27z

2
+ 12z

3
− 8z

4

�

⋮

zS
i
=

1

35

�
−3

�
zi−2 + zi+2

�
+ 12

�
zi−1 + zi+1

�
+ 17zi

�

⋮

zS
K−1

=
1

35

�
2
�
zK−4 + zK

�
− 8zK−3 + 12zK−2 + 27zK−1

�

zS
K
=

1

70

�
−zK−4 + 4

�
zK−3 + zK−1

�
− 6zK−2 + 69zK

�

4.3  The comparison of monotonicity 
and robustness of the three HIs

According to the steps described above, the monotonicity 
and robustness of WD-CUSUM-based HI of the three life-
cycle datasets are calculated as shown in Figs. 4, 5 and 6. In 
addition, these results are also compared with the monoto-
nicity and robustness of the RMS and kurtosis which are the 
two most common HI to reflect the degradation of bearings.

As shown in Figs. 4, 5 and 6, for the three datasets, the 
monotonicity of WD-CUSUM is the highest. Compared with 
the kurtosis, the RMS and WD-CUSUM all have higher 
robustness. Meanwhile, for most of the data, the robustness 
of the WD-CUSUM is the highest. It means that the WD-
CUSUM has a better monotonic trend and smooth curve. 
However, for different datasets, there may be some differ-
ences in the monotonicity and robustness of the datasets due 
to the different test environments. For example, as shown 
in Fig. 5, for the FEMTO-ST Institute datasets, although 
the monotonicity of WD-CUSUM is the highest among the 
three indicators, some bearings are not as high as that of 
IMS datasets. The reasons should be as follows. On the one 
hand, the vibration signal of bearings can be affected by 
loading. The amplitude and distribution of vibration signals 
may change when the bearing is loaded. On the other hand, 
the recorded points of each data are too few to fully reflect 
the distribution of vibration signals in normal and fault situ-
ations. Therefore, the monotonicity of WD-CUSUM of these 
datasets may be lower than that of IMS datasets. However, 
the monotonicity and robustness of WD-CUSUM of these 
datasets are also the highest among the three indicators. 
Meanwhile, the monotonicity of the seven bearings varies 
greatly. To illustrate this phenomenon, the simple vibration 
waveforms of the seven bearings are given as Fig. 7, where 
only 2000 points are used for each sampling data. The red 
line is the vibration range of the initial vibration signal.

As shown in Fig. 7, there are two main reasons for 
the different monotonicity of the seven bearings. (1) The 
influence of environmental noise is on the vibration sig-
nal. Like bearing 1_2 and bearing 1_6, there are a lot of 

Fig. 4  The evaluation metrics 
of the three indicators of IMS 
datasets
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obvious burrs in vibration signals due to the interference 
of environmental noise. (2) The stability of vibration sig-
nals is in the normal stage of bearing. The vibration signal 
in the normal stage of bearing should be stable when the 

bearing is under normal conditions. However, for bear-
ing 1_5 and bearing 1_7, the vibration signal in the nor-
mal stage of bearing is sometimes lower than the red line. 
Therefore, at this time, the non-fault amplitude fluctuation 

Fig. 5  The evaluation metrics 
of the three indicators of the 
FEMTO-ST Institute datasets
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of bearing vibration signal occurs. However, for bearing 
1_1, bearing 1_3 and bearing 1_4, there are no obvious 
burrs in the vibration signal and the vibration signal in 
the normal stage of bearing is stable. Therefore, the mono-
tonicity of bearing 1_1, bearing 1_3 and bearing 1_4 is 
higher than that of the other bearings.

In addition, for the Hangzhou datasets, as shown in Fig. 6, 
the monotonicity of WD-CUSUM is the highest among the 
three indicators and is basically the same as that of IMS 
datasets except the HZ #4. The reason is that the initial load 
affects the monotonicity of the WD-CUSUM. Meanwhile, 
for the HZ #1 and HZ #3, the robustness of WD-CUSUM is 
not the highest because the test environment has less inter-
ference. However, consistent with the above two datasets, 
the WD-CUSUM of these datasets also has good robustness.

Altogether, for the datasets with different fault locations 
in different test environments, although there are some 
differences in the monotonicity and robustness due to the 
different test environments, the monotonicity of the WD-
CUSUM is the highest among the three indicators. In addi-
tion, the WD-CUSUM also has good robustness. Hence, 
compared with RMS and kurtosis, the WD-CUSUM has 

better monotonicity and robustness on the whole. There-
fore, the WD-CUSUM can be effectively used for the RUL 
prediction of bearings.

4.4  The comparison of predicted results of the three 
HIs

In this part, the RUL of bearings is predicted according to 
the three HIs mentioned above to illustrate the performance 
of the three indicators in the prediction. The effective HI 
can simplify the prediction models. Besides, the regres-
sion model as the simplest trend prediction model is widely 
used in trend prediction [44, 45]. Therefore, in this part, 
the regression model is simply used to illustrate the perfor-
mance of WD-CUSUM in the RUL prediction. Specifically, 
the �−� performance metric [46, 47] is also widely used to 
evaluate the performance of prediction. Therefore, the pre-
diction results of the three indicators (RMS, kurtosis, and 
WD-CUSUM) are evaluated by �−� performance metric, 
where the � is the upper and lower bounds of prediction error 
and the � is the relative time distance between a given point 
and the end of bearing life [44]. For the IMS datasets, the 

Fig. 6  The evaluation metrics 
of the three indicators of the 
Hangzhou datasets
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two bearings (IMS #1 and IMS #2) are all used to illustrate 
the performance of prediction. However, for the FEMTO-ST 
Institute datasets, as the above analysis, not all the bearings 
can be used for prediction due to the monotonicity which 
is influenced by the test environment and recorded points. 
Hence, the three bearings (bearing 1_1, bearing 1_3 and 
bearing 1_4) which have good monotonicity are selected 
to illustrate the performance of prediction. In addition, for 
the Hangzhou datasets, as there are few data points in the 
degradation stage of HZ #2 and HZ #3, the HZ #1 and HZ 

#4 are selected to illustrate the performance of prediction. 
The waveforms of the three indicators of the selected bear-
ings are, respectively, shown in Figs. 8, 9 and 10. The �−� 
performance metrics of them are, respectively, shown in 
Figs. 11, 12 and 13.

As shown in Figs. 8, 9 and 10, the WD-CUSUM has 
better monotonic trend and smooth curve than RMS and 
kurtosis. These further prove the above calculation results 
in Sect. 4.3. In addition, compared with RMS and kurto-
sis, although the initial point of the degradation stage of 

Fig. 7  The vibration signals of 
the seven bearings
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WD-CUSUM is not the earliest, this is the easiest to be 
detected. And it is not necessary to be detected by other 
additional methods.

As shown in Figs. 11, 12 and 13, for the three datasets, 
the predicted RULs by WD-CUSUM all lie within the 
acceptable error bounds even if the simplest prediction 
model is used. And the predicted RULs are all closer to 
the actual RULs. However, for the RMS, only the predicted 
RUL of bearing 1_1 lies within the acceptable error bounds. 
The parts of the predicted RUL of IMS #2 and bearing 1_4 
lie within the acceptable error bounds. The other predicted 
RULs are all not within the acceptable error bounds. In addi-
tion, the predicted RUL of HZ #1 is not convergent. For the 
kurtosis, all the predicted RULs are not convergent because 
there are no obvious trends in the degradation stage. There-
fore, the WD-CUSUM can be effectively used to predict the 
RUL even though the prediction model is the simplest. To 
summarize, for the three datasets, the WD-CUSUM all have 
a better monotonic trend and smooth curve than RMS and 
kurtosis and can be effectively used to predict the RUL even 
though the prediction model is the simplest.

Altogether, through the comprehensive analysis of the 
above three run-to-failure datasets, the WD-CUSUM has 
strong applicability for the three datasets. The performance 
of WD-CUSUM is well whatever operating conditions and 
fault locations. Besides, the monotonicity and robustness 
of WD-CUSUM are the best among the three indicators. 
In addition, the initial point of the degradation stage of the 
WD-CUSUM can be detected more easily. And it is unnec-
essary to be detected by other additional methods. Mean-
while, predicted RULs by WD-CUSUM are all closer to the 
actual RULs even if the simplest prediction model is used. 
Therefore, the WD-CUSUM cannot only be effectively used 
as the HI to reflect the degradation of bearings, but also can 
be effectively used to predict the RUL of bearings.
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5  Conclusions

To improve the prediction accuracy and simplify the predic-
tion model, this paper proposes a new HI for RUL prediction 
of bearing. The conclusions drawn from this study are sum-
marized as follows:

1. The degradation trend of bearing can be reflected by the 
change of the distribution of vibration signal. And the 
WD can effectively reflect the change of distribution of 
vibration signal in numerical form and further reflect the 

degradation state of bearing from the perspective of the 
distribution of vibration signal.

2. Through the verification of the run-to-failure dataset of 
the IMS, the FEMTO-ST Institute and the Hangzhou 
Bearing Test and Research Center, it is proved that the 
proposed HI has better monotonicity and robustness than 
RMS and kurtosis for the datasets with different fault 
locations under different operating conditions.

3. And the initial point of the degradation stage of the WD-
CUSUM can be detected more easily.
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4. In addition, the WD-CUSUM can also be used to predict 
the RUL of bearing by a simple prediction model effec-
tively.

In conclusion, the proposed HI can be effectively applied 
to the RUL prediction of bearing. Although some impor-
tant problems associated with the proposed HI have been 

investigated in this paper, there are still a few questions wor-
thy of further consideration. The WD-CUSUM only pays 
attention to the change of vibration signal distribution in 
the degradation process of bearings, and the HI consider-
ing the multi-degradation information of bearings deserves 
further study.
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