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Abstract
A dual-rotor system is a core component of an aero-engine, and it is very important to study the nonlinear vibrational char-
acteristics for the aero-engine’s development. Based on analyzing structural characteristics of aero-engine’s rotors, a novel 
and more practical dual-rotor dynamic coupling model with nonlinear restoring forces of high-pressure and low-pressure 
rotors is first proposed. In the linear dynamic coupling model, the coupling critical speed, natural frequencies and vibration 
responses of the low-pressure rotor are analyzed systematically. In the nonlinear dynamic coupling model, the vibrational 
characteristics of the dual-rotor system with different nonlinear parameters are simulated numerically based on the nonlin-
ear dynamic theory. The improved shooting method combined the harmonic balance method, and the genetic algorithm is 
proposed to calculate theoretical solutions of the nonlinear dynamic coupling model. The stability of theoretical solutions is 
investigated by the Floquet theory. The research results show that the dual-rotor system appears very complicated nonlinear 
vibrations such as nonlinear multitudinal solutions, double period motions, almost periodic motions and chaotic motions. 
The transition between nonlinear vibrations occurs suddenly.

Keywords Dual-rotor system · Nonlinear restoring forces · Dynamic coupling model · Nonlinear vibrations · Chaotic 
motions

List of symbols
xi, yi  Displacement in x and y 

directions
ri  Radial deflection of the rotor
θx, θy  Inclination of the low-

pressure rotor in x and y 
directions

θ, θ1  Inclination angle of the shaft 
at the position of the disk, 
Euler angle representing an 
inclination of the Z1-axis

mi  Mass of the dual rotor
ei, τ  Eccentricity of the dual rotor, 

skew angle of the low-pres-
sure rotor

I, Ip  Moment of inertia of the 
low-pressure shaft, polar 
moment of inertia of the low-
pressure disk

c11, c12, c21, c22, c  Damping coefficients of the 
dual rotor

α, γ, δ, k  Stiffness coefficients of the 
dual rotor

βτ  Inclination initial value of 
the low-pressure rotor
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ωi, ωLj, ωH, ω  Rotating speed of the dual 
rotor, major critical speed of 
the low-pressure rotor, major 
critical speed of the high-
pressure rotor, excitation 
rotational speed

PLx, PLy, PL, Pθ, PH  Amplitudes of the low-
pressure rotor in x and y 
directions, amplitudes of 
deflection and amplitude of 
inclination of the low pres-
sure, amplitude of the high-
pressure rotor

M-XYZ, M-X1Y1Z1,  
M-X0Y0Z0,  Translating coordinate sys-

tem and rotating coordinate 
systems [when i = 1 (2), it is 
parameters of the low (high) 
pressure rotor]

1 Introduction

There are many nonlinear excitation sources in rotating 
machinery, and a lot of complex nonlinear dynamical phe-
nomena occur. In the engineering practice, it is necessary to 
analyze and explain these complicated nonlinear vibrations 
in order to avoid the serious dangerousness. Many scholars 
around the world have made a lot of researches in the field 
of nonlinear rotor dynamics. Yamamoto [1] and Ishida et al. 
[2, 3] studied vibration characteristics of a single rotor sys-
tem with weak nonlinear spring characteristics by theoretical 
analyses and experiments. Ehrich [4, 5] observed various 
kinds of nonlinear resonances in aircraft engines and found 
a subharmonic resonance of order 1/9 and chaotic motions, 
which greatly enrich the rotor dynamics theory with a strong 
nonlinearity. The nonlinearities of above studies appeared 
due to the clearance of the bearings at supporting positions. 
Sinou [6, 7] emphatically investigated dynamic character-
istics of a rotor system with a transverse crack, and axis 
orbits of harmonic resonances and the subharmonic reso-
nance of order 1/2 were studied by the harmonic balance 
method. Liu et al. [8] proposed a novel crystal format model 
of a cracked rotor and researched vibration characteristics 
under the conditions that cracks were at different positions. 
In the above researches, the nonlinearities of rotor systems 
are caused by cracks. Jiang and Ulbrich [9, 10] modified the 
Jeffcott rotor with a given stator clearance and carried out an 
analytical study on the stability of full-annular rub solutions 
under an externally excited. They systematically explored 
effects of each parameter on the jump phenomenon, almost 
periodic motions, and so on. Chu and Zhang [11, 12] made 
a comprehensive exploration about the Jeffcott rotor with 

the rub-impact and found a lot of complex nonlinear vibra-
tions, including the period doubling bifurcation, the grazing 
bifurcation, a sudden transition from the periodic motion to 
chaotic motions, and others. In these studies, the nonlineari-
ties are generated by friction and the collision between the 
stator and rotor.

The above researches are based on a single rotor system, 
and the theory of nonlinear dynamics has been relatively 
mature. However, applications of the multi-rotor system 
are more extensive in rotating machinery. New methods are 
often needed in the study of multi-rotor systems. It is dif-
ficult to get the unbalance of rotors by directly adding a 
trial weight of a rotor in the dual-rotor system; Zhang et al. 
[13] proposed a new synchronization identification method 
for the unbalance of the dual-rotor system. Similarly, the 
nonlinear vibrations of multi-rotor systems become more 
complicated because of the complex coupling relationship 
between rotors. The nonlinear rotor dynamics theory based 
on a single rotor system has some limitations to explain non-
linear vibration characteristics of a multi-rotor system.

The aero-engine is a typical multi-rotor system, and the 
application of the dual-rotor system is most common. At 
present, many scholars have carried out a lot of researches 
about nonlinear vibration characteristics of the dual-rotor 
system. Deng et al. [14, 15] proposed mathematical model 
to formulate nonlinear displacements, elastic deformations 
and contact forces of bearings of the dual-rotor system, and 
systematically analyzed the dynamic characteristics of the 
dual-rotor system about influences of rotational speeds, 
clearance of the inter-shaft bearing, the number of rollers 
and geometry parameters of bearings. Luo et al. [16, 17] 
established a high-dimensional nonlinear dynamic model of 
a dual-rotor system by using the finite element software and 
fixed the interface modal synthesis method. They considered 
nonlinear forces of a squeeze film damper and the inter-
shaft bearing and studied the nonlinear dynamic response 
characteristics of the counter-rotating dual-rotor system 
with varied unbalance forces. Jin et al. [18] presented a 
two-level model order reduction (MOR) method by combin-
ing component mode synthesis (CMS) method and proper 
orthogonal decomposition (POD) technique to rapidly and 
accurately analyze dynamic behaviors of the complex dual 
rotor-bearing system. Lu et al. [19] focused on nonlinear 
response characteristics of a dual-rotor system coupled by 
the cylindrical roller inter-shaft bearing, and discussed com-
plex nonlinearities affected by the bearing radical clearance, 
the vertical constant force and the rotating speed ratio. In the 
above researches, the nonlinearities of the dual-rotor system 
are caused by the bearings. Hertz elastic contact theory and 
the bearing dynamics theory were applied to calculate the 
nonlinear force. When the nonlinear dynamic model of a 
dual-rotor system was established, the FEM is used or the 
high-pressure rotor is considered to be a rigid shaft. The 
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FEM model pays more attention to vibrations at the support-
ing coupling node, which is not conducive to get global solu-
tions of the rotor system. If the high-pressure rotor is rigid, 
the elastic deformation of the high-pressure rotor is ignored 
and the vibrational characteristics are obtained by the geo-
metrical principle or the deflection equation. Due to the 
complexity of the dual-rotor system’s structure, most schol-
ars paid more attention to nonlinear vibrations caused by 
faults in the rotor system. Sun and Chen [20, 21] investigated 
the steady-state responses of a rub-impact dual-rotor system 
based on simplified and complex structures, and found com-
plicated nonlinear phenomena, such as combined harmonic 
vibrations, hysteresis and resonant peak shifting. Xu and 
Wang [22] calculated collision and friction forces based on 
Hertz contact theory and Coulomb model, and introduced 
a nonlinear spring model and friction coefficients to estab-
lish the one-dimensional finite element model of the dual-
rotor system. Yang et al. [23] studied the coupling faults of 
pedestal looseness and rub-impact to obtain the potential 
effects on the dynamic characteristics of the dual-rotor sys-
tem. Wang et al. [24] analyzed response characteristics of 
a dual-rotor system with unbalance-misalignment coupling 
faults, and discussed effects of the misalignment angle and 
parallel misalignment. Gao et al. [25] investigated nonlinear 
dynamic characteristics of a dual-rotor system affected by 
the local defect on the surface of the outer race or the inner 
race of the inter-shaft bearing, and found that there are four 
abnormal resonances on the amplitude frequency curves due 
to effects of the local defect.

In the researches of the dual-rotor system mentioned 
above, the nonlinear spring characteristics of rotors and the 
influence of rotor’s restoring forces are neglected. Based 
on the research of Yamamoto and Ishida [26], the spring 
characteristics of a rotor are inconsistent with Hooke’s law 
when the supporting conditions of both ends of a shaft are 
different. The study of nonlinear spring characteristics of 
rotors is helpful to further explain the complex nonlinear 
vibration characteristics of a dual-rotor system.

In this paper, referring to the structure of an aero-engine 
with a dual-rotor system and considering nonlinear spring 
characteristics of high-pressure and low-pressure rotors, the 
dynamic coupling model of the dual-rotor system is pro-
posed and the dynamic equations are established. In the 
linear dynamic coupling model, the response curves of the 
dual-rotor system are obtained in the vicinities of critical 
speeds, and natural frequencies and the coupling critical 
speed are analyzed systematically. In the nonlinear dynamic 
strongly coupling model, vibrational characteristics of the 
dual-rotor system with the nonlinear coefficients β(0) and 
ε(1) [27] are discussed emphatically. Numerical simulations 
are performed on the dual-rotor system by the Runge–Kutta 
method. Combined the harmonic balance method and 
the genetic algorithm,  the improved shooting method is 

proposed to obtain theoretical solutions of the nonlinear 
dynamic coupling model. The stabilities of theoretical solu-
tions are investigated allsidedly based on the Floquet theory. 
The theoretical solutions consist with the numerical simula-
tion well. The nonlinear vibrations, such as double period 
motions, almost periodic motions and chaotic motions, are 
analyzed systematically and explained by the time history, 
FFT spectra and Poincare map at some rotational speeds. 
The bifurcation map and the largest Lyapunov exponent are 
applied to further explain chaotic motions. The results of 
this study put forward new research directions to analyze 
nonlinear vibration characteristics of the dual-rotor system.

2  Dual‑rotor physical model 
and establishment of dynamics equations

According to the structure characteristics of an aero-engine 
with a dual rotor, the physical model of the dual-rotor sys-
tem with two disks and four supporting points is established 
as shown in Fig. 1a. The physical model is composed of 
the low-pressure rotor and the high-pressure rotor. The low-
pressure rotor is supported by Fulcra A and D, and the high-
pressure rotor is supported by Fulcrum B and inter-shaft 
bearing C shown in Fig. 1a.

Based on the theory of rotor dynamics, the mathemati-
cal model is obtained by using the lumped mass system. 
The low-pressure rotor is composed of a massless elastic 
shaft supported at both ends and a rigid disk which is not 
mounted at the center of the shaft as shown in Fig. 1b. It 
is simplified to a 4DOF model where deflection motions 
and inclination motions couple with each other. The high-
pressure rotor is also composed of a massless elastic shaft 
supported at both ends and a rigid disk which is mounted 
at the center of the shaft as shown in Fig. 1c. It is assumed 
that vibrations of the low-pressure rotor are small enough to 
ignore the inclinations of the disk of the high-pressure rotor. 
The high-pressure rotor is simplified to a 2DOF model to 
include deflection motions.

The coupling relationship of low-pressure and high-
pressure rotors is the key of the model of the dual-rotor sys-
tem. In the physical model, the high-pressure rotor is sup-
ported by the inter-shaft bearing on the low-pressure rotor. 
The support of the low-pressure rotor to the high-pressure 
rotor provides the restoring force of the high-pressure rotor. 
And the restoring force of the high-pressure rotor acts on 
the low-pressure rotor in the form of the reaction force of 
the supporting force of the low-pressure rotor. In addition, 
vibrations of the low-pressure rotor cause continuously 
small displacements and inclinations of the inter-shaft bear-
ing in x–y plane. It means that the supporting condition of 
the high-pressure rotor is dynamic. According to studies 
by Yamamoto and Ishida [1], the clearance of a single-row 
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deep-groove bearing can cause nonlinear restoring forces 
for the rotor. The clearance of the bearing is always pre-
sented by the angular clearance shown in Fig. 1d. Under the 

dynamic supporting condition, the angular clearance of the 
inter-shaft bearing changes with vibrational amplitudes of 
low-pressure rotor, and the nonlinear restoring forces of the 

Fig. 1  Dual-rotor system: a 
schematic diagram of a dual-
rotor system, b rotor model and 
coordinate system of the low-
pressure rotor, c rotor model 
and coordinate system of the 
high-pressure rotor, d dynamic 
clearance of the inter-shaft 
bearing and nonlinear restoring 
forces of the high-pressure rotor 
with dynamic and asymmetric 
characteristics

(a)

(b)

(c)

(d)
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high-pressure rotor are dynamic and asymmetric in x and 
y directions shown in Fig. 1d. The red and black lines in 
Fig. 1d, respectively, represent restoring forces in two limit 
cases, and restoring forces of the high-pressure rotor change 
between the two cases.

It is assumed that the restoring forces of the high-pressure 
rotor are equal to the supporting forces of the low-pressure 
rotor to the high-pressure rotor. Therefore, the coupling 
relationship of low-pressure and high-pressure rotors in this 
model is described by nonlinear restoring forces of the high-
pressure rotor.

In order to facilitate the mathematical derivations, nonlin-
ear restoring forces of the high-pressure rotor are considered 
to be linear, and the gravity of high-pressure and low-pres-
sure rotors is neglected. The high-pressure rotor is a Jeffcott 
rotor, and it is easy to obtain dynamic equations. So, the 
following derivations are focused on the low-pressure rotor.

Considering deflection motions and inclination motions 
of the low-pressure rotor, the elastic potential energy can be 
expressed as follows:

In addition, considering the restoring force of the high-
pressure rotor acting on the low-pressure rotor, the following 
potential energy can be obtained:

The potential energy of the low-pressure rotor is got as 
follows:

The kinetic energy of the low-pressure rotor is composed 
of deflection motions and inclination motions. In Fig. 1b, 
the center of gravity of the low-pressure rotor is Point G(xG1, 
yG1, 0), and M(x1, y1, 0) is the geometrical center. The kinetic 
energy for the deflection motions is expressed as follows:
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The principal moments of inertia around principal axes 
X1, Y1 and Z1 of the disk of the low-pressure rotor are IP, I 
and I. The components of angular speeds are ωX1, ωY1 and 
ωZ1, respectively. The kinetic energy for inclination motions 
is expressed as follows, where the transformation relation-
ships of angles are referred to Ref. [21]:

Then, the kinetic energy of the low-pressure rotor is 
obtained as follows:

Based on Lagrange’s equation shown as follows, the 
dynamic equations of the low-pressure rotor can be obtained:

where qL is the general coordinates.
Considering the damping, the dynamic equations of the 

low-pressure rotor can be expressed as follows:

where k̂x2 and k̂y2 represent the reaction forces of the sup-
porting force of the low-pressure rotor.

The dynamic equations of the high-pressure rotor can be 
expressed as follows:
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ÎP�̂�1

(
�̇�x𝜃y − 𝜃x�̇�y

)
+

1

2
Î
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where k̂x2 and k̂y2 represent the restoring forces of the high-
pressure rotor, and they also represent supporting forces of 
the low-pressure rotor to the high-pressure rotor.

Introducing the parameters 𝜉=m̂2g∕k̂ and 𝜔2
n
=k̂∕m̂2 , we 

can get the following dimensionless equations of motion:

w h e r e  𝛼 = �̂�∕m̂1𝜔
2
n
 ,  𝛾1=�̂�∕m̂1𝜔

2
n
𝜉  ,  c11=ĉ11∕m̂1𝜔n  , 

c12=ĉ12∕m̂1𝜔n𝜉  ,  e1=ê1∕𝜉  ,  IP=ÎP∕Î  ,  c21=ĉ21𝜉∕Î𝜔n  , 
c22=ĉ22∕Î𝜔n , 𝛾2=�̂�𝜉∕Î𝜔2

n
 , 𝛿=𝛿∕Î𝜔2

n
 , c=ĉ∕m̂2𝜔n , e2=ê2∕𝜉 

and Δ=m̂2∕m̂1.
For convenience to deal with nonlinear spring character-

istics in theoretical analyses, the nonlinear spring character-
istics expressed by the power series of the shaft deflections 
x and y in Ref. [28] are introduced. The nonlinear terms of 
restoring forces of the 2DOF rotor are described as follows, 
where the NX and NY express nonlinear terms in x and y 
directions, respectively:
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Table 1  Dimensionless coefficients in the model

α γ1, γ2 δ IP c11, c12 c21, c22

2 0.0001 2.3 0.5, 1.5 0.05 0.01
c Δ e1, e2 τ βτ

0.01 1 0.01 1 0
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 a n d 
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c
 . Nonlinear coefficients β(i) (i = 0, 2, 4) 

and ε(j) (j = 1, 3) refer to Ref. [28].
As mentioned above, nonlinear restoring forces of the 

high-pressure rotor change with the vibrational amplitudes 
of the low-pressure rotor. In fact, if we express the nonlin-
ear restoring forces by the power series, the coefficients of 
nonlinear restoring forces change with the vibrational ampli-
tudes of low-pressure rotor. To easily treat dynamic nonlin-
ear restoring forces, inclinations of the inter-shaft bearing 
are ignored and the deflections PL of the low-pressure rotor 
are introduced. In order to describe the nonlinear coupling 
relationship between low-pressure and high-pressure rotors 
easily, the nonlinear coupling coefficient μ is also intro-
duced. The following nonlinear terms of the dual-rotor sys-
tem can be described.

Combining Eqs. (10), (11), (14) and (15), we get dimen-
sionless nonlinear coupling dynamic equations of the dual-
rotor system as follows:
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when μ = 0, Eqs. (16) and (17) are linear coupling dynamic 
equations of the dual-rotor system.

3  Analysis of the dual‑rotor system 
with linear dynamic coupling

The counter-rotating dual-rotor system [16] is used, and the 
rotational speed ratio of the low-pressure rotor and the high-
pressure rotor is − 1(ω = ω1 = -ω2) in numerical simulations. 
The dimensionless coefficients in the model are evaluated 
as shown in Table 1.

(17)

{
ẍ2 + cẋ2 + x2 + Nx = e2𝜔

2

2
cos𝜔2t

ÿ2 + cẏ2 + y2 + Ny = e2𝜔
2

2
sin𝜔2t

3.1  Numerical simulation and analysis

Based on the dual-rotor model with the linear dynamic 
coupling, the Runge–Kutta method is applied to finish the 
numerical simulation. The resonance curves of the dual-
rotor system are obtained and shown in Fig. 2. Abscissa 
shows rotational speed ω and ordinate shows amplitudes of 
rotors’ vibrations. The lines with red dots indicate the ampli-
tude range, and both ends of the line are the maximum and 
the minimum values of amplitudes. The red circles indicate 
the constant amplitude of rotor’s vibrations.

In the linear dynamic coupling model (μ = 0), the high-
pressure rotor is independent of the low-pressure rotor and is 
equivalent to a Jeffcott rotor. The resonance curve has a peak 
at the major critical speed ωH, as shown in Fig. 2c. Accord-
ing to Ref. [27], the major critical speed of the 4DOF rotor 
model is unique when IP> 1 and there are two major critical 
speeds when IP< 1. The resonance curve of the independent 
4DOF rotor is shown in Fig. 2d, and the resonance curves 
of the low-pressure rotor are shown in Fig. 2a, b. Compared 
with the independent 4DOF rotor, the resonance curves of 
the low-pressure rotor have three peaks when IP< 1 and there 
are two peaks when IP> 1. The resonance curves of the low-
pressure rotor always have a large peak at the major critical 
speed ωH, and the position of the peak is same as the posi-
tion of the peak shown in Fig. 2c. The other peaks occur 
at the major critical speeds ωL1 and ωL2. In addition, the 
amplitude P of the independent 4DOF rotor is constant, but 
the amplitude PL of the low-pressure rotor changes within 
a certain range. The range of amplitude PL is largest at the 
major critical speed ωL1.

Fig. 2  Resonance curves of the 
dual rotor with linear coupling: 
a (case of IP< 1) and b (case 
of IP> 1) for resonance curves 
of the low-pressure rotor, c 
resonance curve of the high-
pressure rotor, and d resonance 
curve of the independent 4DOF 
rotor with IP< 1

Fig. 3  Resonance curves of the low-pressure rotor in x and y direc-
tions
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Figure 3 shows resonance curves of the low-pressure 
rotor deflections in x and y directions, respectively. When 
ω < ωH, PLx< PLy. When ω = ωH, PLx= PLy. When ω > ωH, 
PLx> PLy. The difference between PLx and PLy is the largest 
when ω = ωL1.

Combined with the above simulations and analyses, the 
linear dynamic coupling between low-pressure and high-
pressure rotors leads to the difference between amplitudes 
of the low-pressure rotor in x and y directions. The amplitude 
PL changes within a certain range.

3.2  Mathematical analysis

In order to explain the vibration response of the low-pressure 
rotor with the linear dynamic coupling, the low-pressure rotor is 
simplified to the 2DOF rotor to include deflection motions, and 
the following dynamic equations of high-pressure and low-pres-
sure rotors are obtained without considering damping terms.

The following solutions of the dual rotor are assumed:

Substituting Eq. (20) in Eqs. (18) and (19), Eqs. (21) and 
(22) are obtained as follows:

According to Eq. (21), the amplitudes PLx and PLy are 
affected by the rotational speed and Δ. Because the rota-
tional speed ratio is − 1, Eqs. (23) and (24) are obtained as 
follows:

(18)

{
ẍ1 + 𝛼x1 + Δx2 = e1𝜔

2

1
cos𝜔1t

ÿ1 + 𝛼y1 + Δy2 = e1𝜔
2

1
sin𝜔1t

(19)

{
ẍ2 + x2 = e2𝜔

2

2
cos𝜔2t

ÿ2 + y2 = e2𝜔
2

2
sin𝜔2t

(20)

{
x1 = PLx cos�1t, x2 = PH cos�2t

y1 = PLy sin�1t, y2 = PH sin�2t

(21)

{((
� − �2

1

)
PLx − e1�

2

1

)
cos�1t = −ΔPH cos�2t((

� − �2

1

)
PLy − e1�

2

1

)
sin�1t = −ΔPH sin�2t

(22)
(
PH − PH�

2

2
− e2�

2

2

)
cos�2t = 0

(23)

⎧⎪⎪⎨⎪⎪⎩

PLx =
e1�

2

1
− ΔPH

� − �2

1

PLy =
e1�

2

1
+ ΔPH

� − �2

1

(24)PH =
e2�

2

2

1 − �2

2

=
e1�

2

1

1 − �2

1

The ratio of the PLx and PLy is shown as follows:

When Δ = 1, PLx

PLy

=
||||

�2

1

�2

1
−2

|||| , and the relationship of the PLx 

and PLy holds the inequality shown as follows:

The limit expressions (27) and (28) can be obtained. 
According to the limit expressions, PLx and PLy approach 
the same when the rotational speed approaches the low 
rotational speed or the high rotational speed. When ω = 

√
2 , 

PLx≫ PLy. In the numerical simulation, ωH= 1 and ωL1 = 
√
2 . 

The numerical simulation results are consistent with the 
above mathematical analysis results.

3.3  Analysis of natural frequency

Free vibrations in the dual-rotor system with no exter-
nal force and no damping are governed by the following 
equations, which are given by putting e1 = e2 = 0, τ = 0, 
c11 = c12 = c21 = c22 = 0 into Eqs. (16) and (17).

Equation (30) shows that the natural frequency of the 
high-pressure rotor is 1. So, the following illustration is 
focused on the analyses of natural frequencies of the low-
pressure rotor.

Four variables x1, y1, θx and θy are coupled with each 
other in Eq. (29). In addition, displacements x1 and y1 on 
the low-pressure rotor are affected by displacements x2 and 
y2 on the high-pressure rotor. Based on component analyses 

(25)
PLx

PLy

=
|||||
e1�

2

1
− ΔPH

e1�
2

1
+ ΔPH

|||||
=
|||||
1 − Δ − �2

1

1 + Δ − �2

1

|||||

(26)

⎧
⎪⎨⎪⎩

PLx < PLy

�
0 < 𝜔1 < 1

�

PLx = PLy

�
𝜔1 = 1

�

PLx > PLy

�
𝜔1 > 1

�

(27)

lim
�1→∞

PLx

PLy

= lim
�1→∞

|||||
�2

1

�2

1
− 2

|||||
= lim

�1→0

PLx

PLy

= lim
�1→0

|||||
�2

1

�2

1
− 2

|||||
= 1

(28)lim
�1→

√
2

PLx

PLy

= lim
�1→

√
2

�����
�2

1

�2

1
− 2

�����
= ∞

(29)

⎧⎪⎪⎨⎪⎪⎩

ẍ1 + 𝛼x1 + 𝛾1𝜃x + Δx2 = 0

ÿ1 + 𝛼y1 + 𝛾1𝜃y + Δy2 = 0

�̈�x + IP𝜔1�̇�y + 𝛾2x1 + 𝛿𝜃x = 0

�̈�y − IP𝜔1�̇�x + 𝛾2y1 + 𝛿𝜃y = 0

(30)

{
ẍ2 + x2 = 0

ÿ2 + y2 = 0
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of vibrations in the vicinity of the major critical speed in the 
numerical simulation, the following solutions of free oscil-
lations are assumed.

Fig. 4  Natural frequency 
diagrams of the low-pressure 
rotor: a case of IP< 1 and b case 
of IP> 1

Substituting Eq. (31) in Eq. (29) and comparing the coef-
ficients of terms on the right- and left-hand sides, Eqs. (32) 
and (33) can be obtained as follows:

Equations (32) and (33) are sorted to get Eqs. (34) and 
(35).

(31){
x1 = A cos

(
p1t + �1

)
, �x = C cos

(
p1t + �3

)
, x2 = D cos

(
p1t + �4

)
y1 = B cos

(
p1t + �2

)
, �y = C sin

(
p1t + �3

)
, y2 = D sin

(
p1t + �4

)

(32)
⎧⎪⎨⎪⎩

�
� − p2

1

�
cos

�
p1t + �1

�
+ �1

C

A
cos

�
p1t + �3

�
+ Δ

D

A
cos

�
p1t + �4

�
= 0

�
� − p2

1

�
cos

�
p1t + �2

�
+ �1

C

B
sin

�
p1t + �3

�
+ Δ

D

B
sin

�
p1t + �4

�
= 0

(33)

⎧⎪⎨⎪⎩

�2 cos
�
p1t + �1

�
+
�
� + IP�1p1 − p2

1

�C
A
cos

�
p1t + �3

�
= 0

�2 cos
�
p1t + �2

�
+
�
� + IP�1p1 − p2

1

�C
B
sin

�
p1t + �3

�
= 0

(34)

⎧⎪⎨⎪⎩

cos
�
p1t + �1

�
=

−f51

f4
cos

�
p1t + �3

�

cos
�
p1t + �2

�
=

−f52

f4
sin

�
p1t + �3

�
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where f1 = � − p2
1
 ,  f21 = �1

C

A
 ,  f31 = k

D

A
 ,  f22 = �1

C

B
 , 

f32 = k
D

B
 ,  f4 = �2  ,  f51 =

(
� + IP�1p1 − p2

1

)
C

A
 a n d 

f52 =
(
� + IP�1p1 − p2

1

)
C

B
.

According to the relationship of trigonometric functions, 
Eq. (36) can be obtained as follows:

Simplifying Eq. (36), we can get Eq. (37) to be shown 
as follows:

where � =
D

C
 , D =

e2�
2

2|1−�2

2| and C =
|(1−IP)��2

1||�+(IP−1)�2

1|.
The following frequency equation of the low-pressure 

rotor can be given.

The relationship between natural frequencies of the low-
pressure rotor and the rotational speed is obtained by solving 
Eq. (38), and the results are shown in Fig. 4. The four natural 
frequencies p1a, p1b, p1c and p1d of the low-pressure rotor 
have the following characteristics:

1. T h e  r e l a t i o n s h i p 
p1a >

√
𝛼 > p1b > p1c > 0 > −

√
𝛼 > p1d holds. The 

positive p1a, p1b and p1c respect forward whirling modes, 
and p1d respects a backward whirling mode.

2. The natural frequencies p1a, p1b and p1d change as a func-
tion of the rotational speed. As ω → ∞, they approach as 

(35)

⎧
⎪⎪⎨⎪⎪⎩

cos
�
p1t + �4

�
= −

−f1f51

f4
+ f21

f31
cos

�
p1t + �3

�

sin
�
p1t + �4

�
= −

−f1f52

f4
+ f22

f32
sin

�
p1t + �3

�

(36)

⎛⎜⎜⎝
−

−f1f51

f4
+ f21

f31

⎞⎟⎟⎠

2

cos2
�
p1t + �3

�
+

⎛⎜⎜⎝
−

−f1f52

f4
+ f22

f32

⎞⎟⎟⎠

2

sin
2
�
p1t + �3

�
= 1

(37)
|||
(
� − p2

1

)(
� + IP�1p1 − p2

1

)
− �1�2

||| − ||�2Δ�|| = 0

(38)

|||
(
� − p2

1

)(
� + IP�1p1 − p2

1

)
− �1�2

|||
|||
(
1 − IP

)
�
(
1 − p2

1

)|||
−
|||�2Δe2

(
� +

(
IP − 1

)
p2
1

)||| = 0

p1a→ IPω, p1b→ 
√
� and p1d→ −

√
� , asymptotically. In 

addition, the natural frequency p1c= 1.

Compared with the independent 4DOF rotor, the low-
pressure rotor has a new natural frequency p1c, which is 
produced by the coupling between high-pressure and low-
pressure rotors, and the natural frequency p1c is equal to the 
natural frequency of the high-pressure rotor.

The line p1 = ω1 is drawn in Fig. 4a, b, and the different 
intersection points are created by the line p1 = ω1 and natural 
frequencies. The rotational speeds at the different intersec-
tions respect critical speeds of the low-pressure rotor. When 
IP< 1, there are three intersections  C1,  C2 and  C3, and the 
low-pressure rotor has three critical speeds ωH, ωL1 and ωL2 
shown in Fig. 4a. The natural frequencies shown in 4a are 
consistent with the resonance curve shown in Fig. 2a well. 
When IP> 1, there are two intersections  C1 and  C2, and the 
low-pressure rotor has two critical speeds ωH and ωL1 shown 
in Fig. 4b. The natural frequencies shown in 4b are also 
consistent with the resonance curve shown in Fig. 2b well.

4  Analysis of the dual‑rotor system 
with nonlinear dynamic coupling

Reference [21] discussed systematically characteristics of 
nonlinear parameters β(i) (i = 0, 2, 4) and ε(j) (j = 1, 3) of 
Eqs. (12) and (13), and results show that nonlinear param-
eters β(0) and ε(1) will cause the single rotor system to pro-
duce nonlinear vibrations in the vicinities of the harmonic 
resonance and the subharmonic resonance of order 1/2. 
Based on results mentioned above, influences of nonlinear 
parameters β(0) and ε(1) on the vibration response of the dual-
rotor system are studied in this paper. The parameter’s envi-
ronment of numerical simulations and theoretical analyses 
in the nonlinear dynamic coupling model is the same with 
the condition in the linear dynamic coupling model, and the 
changed parameters are labeled in the following figures. For 
resonance to be shown clearly, the nonlinear coupling coef-
ficient μ is set to a larger value. The nonlinear coefficients 
β(0) and ε(1) shown in Figs. 5 and 6 are assigned, and the oth-
ers are 0. The resonance curves are obtained by numerical 

Fig. 5  Resonance curves of the 
dual rotor with the nonlinear 
dynamic coupling (case of 
α = 2): a Resonance curves 
of the low-pressure rotor, b 
resonance curve of the high-
pressure rotor
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simulations based on Eqs. (16) and (17). In figures, the red 
circles and the lines with red dots on both ends are numerical 
simulation results. The blue curves represent the theoretical 
solution curves, in which the solid lines are stable and the 
dotted lines are unstable.

4.1  Theoretical solution and analysis of stability

If the harmonic balance method is used to solve the nonlin-
ear dynamic coupling model of the dual-rotor system, there 
will be so many uncertain parameters that make theoretical 
solutions be obtained difficultly. Because there are many 
parameters and a large amount of calculations, the improved 
shooting method is used to find theoretical solutions. The 
stabilities of those solutions are investigated based on the 
Floquet theory.

4.1.1  Derivation of theoretical solutions

When the complicated nonlinear differential equations are 
solved, the initial condition will directly affect the con-
vergence of solutions and the calculation accuracy. Even 
though the initial values are adjusted by the Newton itera-
tive method, the computational quantity is very large. In 
addition, the shooting method is often used to solve peri-
odic solutions of a rotor system, and it is difficult to find 
maximum amplitudes of the system. In view of the above 
problems, the theoretical solutions of the nonlinear dynamic 
coupling model of the dual-rotor system are calculated by 
using the proposed shooting method systematically.

It is considered that the constant terms in the vibrational 
composition are small, and components of the harmonic 
resonance are focused on here. Therefore, we can assume 
solutions of the nonlinear dynamic coupling model to be 
expressed as follows:

Substitute Eq. (39) in Eqs. (16) and (17), and the rotat-
ing relationship is set as ω1t = -ω2t = 2nπ (n represents the 
number of cycles in the system response) to eliminate time 

(39)
{

x1 = PL cos
(
�1t + �L

)
, �x = P� cos

(
�1t + ��

)
, x2 = PH cos

(
�2t + �H

)
y1 = PL sin

(
�1t + �L

)
, �y = P� sin

(
�1t + ��

)
, y2 = PH sin

(
�2t + �H

)

parameter t in the system. The six-element nonlinear equa-
tions can be obtained as follows:

Therefore, the optimal numerical solutions of each 
parameter in the equations are solved by using the genetic 
algorithm.

4.1.2  Analysis of the stability based on Floquet theory

The Floquet theory is the stability theory for analyzing solu-
tions of linear differential equations with periodic variable 
coefficients. In the stability analysis for solutions of the dual-
rotor system, some small disturbances are considered and the 
stability of solutions is investigated based on the stability 
principle of the Floquet theory.

Taking the deflection in x direction on the high-pressure 
rotor as an example, the following dynamics differential 
equation is presented.

A small disturbance x′ is considered as follows:

where x2(t) is the theoretical solution.

(40)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− PL�
2

1
cos �L − c11PL�1 sin �L − c12P��1 sin �� + �PL cos �L

+ �1P� cos �� + ΔPH cos �H + ΔN�
x
= e1�

2

1

PL�
2

1
sin �L + c11PL�1 cos �L + c12P��1 cos �� + �PL sin �L

+ �1P� sin �� + ΔPH sin �H + ΔN�
y
= 0

− P��
2

1
cos �� + IP�1P��1 cos �� − c21PL�1 sin �L − c22P��1 sin ��

+ �2PL cos �L + �P� cos �� =
�
IP − 1

�
��2

1

− P��
2

1
sin �� + IP�1P��1 sin �� + c21PL�1 cos �L + c22P��1 cos ��

+ �2PL sin �L + �P� sin �� = 0

− PH�
2

2
cos �H − cPH�2 sin �H + PH cos �H + N�

x
= e2�

2

2

− PH�
2

2
sin �H + cPH�2 cos �H + PH sin �H + N�

y
= 0

(41)ẍ2 = f
(
x2, ẋ2, t

)

(42)x2(t) = x2(t) + x�(t)

Fig. 6  Resonance curves of the 
dual rotor with the nonlinear 
coupling (case of α = 1.8): a 
Resonance curves of the low-
pressure rotor, b resonance 
curve of the high-pressure rotor
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Substituting Eqs. (42) in (41), the power series of the 
disturbance x′ are to be developed in the neighborhood of the 
solution x2. The variation Eq. (43) is obtained by retaining 
the linear term as follows:

Therefore, the linear differential equation with periodic 
variable coefficients is obtained as follows:

where p(t) = −
𝜕f

𝜕ẋ2
 and q(t) = −

�f

�x2
.

The stability analysis can be carried out by the Floquet 
theory based on Eq. (44). If the stability of the disturbance 
x′ is asymptotic stable, the theoretical solutions of the dual-
rotor system are stable. Otherwise, the theoretical solutions 
are unstable. The stability is determined by the Floquet mul-
tiplier, which can be solved by the following process.

The solution of Eq. (44) is assumed as follows:

According to the periodic solution, the solution of 
Eq. (45) can be characterized as follows:

Therefore, the following characteristic Eq. (47) can be 
obtained.

The characteristic solutions of Eq. (47) are the Floquet 
multiplier λi which corresponds to a theoretical solution for 
the high-pressure rotor.

Based on the Floquet theory, the stability of theoretical 
solutions of the dual-rotor system can be judged as follows: 
If ||𝜆i|| > 1 , the corresponding theoretical solution is unstable. 
If ||𝜆i|| < 1 , the corresponding theoretical solution is stable. 
If ||�i|| = 1 , the corresponding theoretical solution is within 
a critical condition.

4.2  Influence of nonlinear coefficient β(0) 
on dynamic characteristics

Leading the nonlinear coefficient β(0) to Eqs. (16) and (17), 
the dynamic characteristics of the dual-rotor system are stud-
ied with influences of the coefficient β(0). Both cases of α = 2 
and α = 1.8 are discussed. The major critical speed of the 

(43)
ẍ2 + ẍ� = f

(
x2 + x�, ẋ2 + ẋ�, t

)

= f
(
x2, ẋ2, t

)
+

𝜕f

𝜕x2
x� +

𝜕f

𝜕ẋ2
ẋ�

(44)ẍ� + p(t)ẋ� + q(t)x� = 0

(45)x�(t) = a1x
�
1
(t) + a2x

�
2
(t)

(46)

{
x�
1
(t + T) = a11x

�
1
(t) + a12x

�
2
(t)

x�
2
(t + T) = a21x

�
1
(t) + a22x

�
2
(t)

(47)
|||||
a11 − � a12

a21 a22 − �

|||||
= 0

low-pressure rotor is slightly away from the major critical 
speed of the high-pressure rotor when α = 2, and the major 
critical speed of the low-pressure rotor is closer to the major 
critical speed of the high-pressure rotor when α = 1.8.

4.2.1  Analysis of numerical simulation

The resonance curves of the dual rotor obtained by numeri-
cal simulations are shown in Figs. 5 and 6. Considering 
the nonlinear coefficient β(0), the resonance curves of the 
dual-rotor system have changed greatly. When the rotational 
speed moves in the vicinity of ω = ωH (when α = 2, the rota-
tional speed ω is between 0.965 and 1.185. When α = 1.8, the 
rotational speed ω is between 0.935 and 1.22), the variation 
range of amplitude of the low-pressure rotor becomes larger 
and the maximum amplitude suddenly increases as shown in 
Figs. 5a and 6a. In other rotational speed regions, the vibra-
tional characteristics of the low-pressure rotor are the same 
to compare with the condition of the linear dynamic cou-
pling model. As shown in Figs. 5b and 6b, vibrations of the 
high-pressure rotor do not have constant amplitudes and the 
almost periodic motions appear when the rotational speed 
goes in the vicinity of ω = ωH. The maximum amplitudes are 
larger than amplitudes on other rotational speeds. In addi-
tion, the theoretical analysis shows that theoretical solutions 
of high-pressure and low-pressure rotors are unstable in the 
vicinity of ω = ωH.

The time history, FFT spectra and Poincare map are used 
to further investigate nonlinear vibrations of the dual-rotor 
system, and the results are shown in Figs. 7 and 8.

Under the case of α = 2, the conditions of three rotational 
speeds ω = 1, 1.15 and 1.17 were selected for specific analy-
ses. The analysis results are shown in Fig. 7. When ω = 1, 
the time history of the low-pressure rotor shows a beat vibra-
tion. The FFT spectra show that there are two very similar 
frequency components, which are distributed on both sides 
of ω = 1.414. The distribution of scattered points in the 
Poincare map is a ring. The above phenomena are shown in 
Fig. 7a1. The time history of the high-pressure rotor shows 
a similar beat vibration, and the FFT spectra mainly show 
three kinds of frequency components which are distributed 
around ω = 1, ω = 1.414 and ω = 1.84, respectively. There 
are some small high-frequency components to make the dis-
tribution of scattered points in the Poincare map to become 
confused. The above phenomena are shown in Fig. 7a2. 
When ω = 1.15, the time history of the low-pressure rotor 
shows a similar beat vibration. The FFT spectra mainly show 
two very similar frequency components which are distrib-
uted on both sides of ω = 1.414, and there are multiple kinds 
of frequency components with small amplitudes. The dis-
tribution of scatter points in the Poincare map is approxi-
mately ring. The above phenomena are shown in Fig. 7b1. 
The vibrations of the high-pressure rotor are similar to the 
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Fig. 7  Results of numerical 
simulation (case of α = 2): 
time history, FFT spectra and 
Poincare map
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vibrations of the low-pressure rotor. However, it is more 
complex than the low-pressure rotor. Its FFT spectra show 
a series of frequency components, and the amplitudes of 
frequency components are relatively large. The distribution 
of scattered points in the Poincare map tends to be confused 
and presents chaotic motions. The above phenomena are 
shown in Fig. 7b2. When ω = 1.17, the time histories of the 
low-pressure rotor and the high-pressure rotor exhibit almost 
periodic motions. The distribution of scattered points in the 
Poincare map shows a closed ring. The above phenomena 
are shown in Fig. 7c1,  c2.

Under the case of α = 1.8, the conditions of four rota-
tional speeds ω = 1, 1.12, 1.17 and 1.21 were selected for 
specific analyses. The analysis results are shown in Fig. 8. 
When ω = 1, the time history of the low-pressure rotor shows 
a beat vibration. The FFT spectra show that there are two 
very similar frequency components which are distributed 
on both sides of ω = 1.34. The distribution of scattered 
points in the Poincare map is a ring. The above phenom-
ena are shown in Fig. 8a1. The time history of the high-
pressure rotor shows a similar beat vibration, and the FFT 
spectra mainly show three kinds of frequency components 
which are distributed around ω = 1, ω = 1.34 and ω = 1.69, 
respectively. There are some other frequency components 
with small amplitudes to make the distribution of scattered 
points in the Poincare map to become confused. The above 
phenomena are shown in Fig. 8a2. When ω = 1.15, the time 
history of the low-pressure rotor also shows a similar beat 
vibration. The FFT spectra mainly show two very similar 
frequency components which are distributed on both sides of 
ω = 1.34, and there are multiple kinds of frequency compo-
nents with small amplitudes. The distribution of the scatter 
points in the Poincare map still has the characteristics of a 
circular distribution. The above phenomena are shown in 
Fig. 8b1. The vibrations of the high-pressure rotor are similar 
to the vibrations of the low-pressure rotor. However, it is 
more complex than the low-pressure rotor. Its FFT spectra 
show a series of frequency components, and the amplitudes 
of frequency components are relatively large. The Poincare 
map presents chaotic motions. The above phenomena are 
shown in Fig. 8b2. When ω = 1.17, the time histories of the 
low-pressure rotor and the high-pressure rotor exhibit almost 
periodic motions. The distribution of scattered points in the 
Poincare map shows a closed annular. The above phenomena 
are shown in Fig. 8c1,  c2. When ω = 1.21, the time histories 
of the low-pressure rotor and the high-pressure rotor show 
similar almost periodic motions. However, the FFT shows a 
series of complex frequency components, and the Poincare 
map presents chaotic motions. The above phenomena are 
shown in Fig. 8d1,  d2.

Fig. 8  Results of numerical simulation (case of α = 1.8): time history, 
FFT spectra and Poincare map

▸
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According to the results of the FFT under different rota-
tional speeds shown in Figs. 7 and 8, it can be seen that there 
is always an amplitude-maximizing frequency component 
when the dual-rotor system appears nonlinear vibrations. 
This frequency is equal to natural frequency ωL1 of the low-
pressure rotor. In addition, Figs. 7a1 and 8a1 show that the 
harmonic resonance frequency ω does not exist when the 
motion of the low-pressure rotor is a beat vibration, and 
Figs. 7c1, 8c1,  d1 show that the component of the harmonic 
resonance frequency ω is very small when the motions of 
the low-pressure rotor are almost periodic motions and cha-
otic motions. Furthermore, there are a series of frequency 
components which are generated by combinations of har-
monic resonance frequency ω, the low-pressure rotor natural 
frequency ωL1 and other frequencies. Based on the above 
analyses, not only the maximum amplitudes of the output 
response change suddenly, but also the frequency compo-
nents of the output response change abruptly.

4.2.2  Theoretical analysis

Based on Eqs. (40) and (47), the shooting method and analy-
ses of the Floquet theory are performed to obtain the theoret-
ical solution curves of the dual-rotor system. The calculation 
results are shown in Figs. 5 and 6.

Under the case of α = 2, the theoretical solution curves 
of the low-pressure rotor are shown in Fig. 5a. The figure 
shows that the solution of the low-pressure rotor is unsteady, 
and the solution consists of two curves which are Curve 
 A1-B1-C1-D1 starting from the low rotational speed and 
Curve  H1-G1-F1-E1-C1-D1 starting from the high rotational 
speed. The curves of Sections  A1-B1 and  H1-G1-F1-E1 con-
sist with the maximum amplitude of numerical simulation 
results. The two solution curves of Sections  B1-C1 and  E1-C1 
increase and gradually approach each other. After the two 
solution curves approximately coincide at Point  C1, the 
growth trend suddenly turned into a downward trend, and 
the curves extend to Point  D1. In the rotational speed region 
of Segment  F1-E1, there are three curves overlapping, indi-
cating that the low-pressure rotor has triple theoretical solu-
tions. In the rotational speed range of Segment  C1-D1, there 

are two curves overlapping and the low-pressure rotor has 
double theoretical solutions. The theoretical solution curves 
of the high-pressure rotor are shown in Fig. 5b. The figure 
shows that the theoretical solutions of the high-pressure 
rotor have two types of stable and unsteady solutions. There 
are also two curves, which are Curve  A2-B2-C2-D2 starting 
from a low rotational speed and Curve  G2-F2-E2-C2-D2 start-
ing from a high rotational speed. The solutions of Sections 
 A2-B2 and  G2-F2 are stable, and the solutions are unstable 
in the other sections. The curves of Sections  A2-B2 and 
G2-F2-E2 consist with the results of numerical simulation. 
Both curves of Sections  B2-C2 and  E2-C2 have a trend of 
increasing firstly and then decreasing. After the two solu-
tion curves approximately coincide at Point  C2, the down-
ward trend suddenly turned into a growth trend, and the 
curves extend to Point  D2. In the rotational speed region 
of Segment  F2-E2, there are three curves overlapping, and 
the high-pressure rotor has triple theoretical solutions. In 
the rotational speed range of Segment  C2-D2, there are two 
curves overlapping, and the high-pressure rotor has double 
theoretical solutions.

Under the case of α = 1.8, the theoretical solution curves 
of the low-pressure rotor are shown in Fig. 6a. The charac-
teristics of the theoretical solution curves are similar to the 
theoretical solution curves shown in Fig. 5a, but the two 
curves starting from a low rotational speed and a high rota-
tional speed, respectively, are not coincident. In the rota-
tional speed region of Segment  F1-E1-D1, there are three 
curves overlapping, and the low-pressure rotor has triple 
theoretical solutions. The theoretical solution curves of the 
high-pressure rotor are shown in Fig. 6b. The characteris-
tics of theoretical solution curves are similar to theoretical 
solution curves shown in Fig. 5b, but the two curves start-
ing from a low rotational speed and a high rotational speed, 
respectively, are also not coincident. In the rotational speed 
region of Segment  G2-F2-E2, there are three curves over-
lapping, and the low-pressure rotor has triple theoretical 
solutions.

Fig. 9  Resonance curves of the 
dual rotor with the nonlinear 
coupling: a Resonance curves 
of the low-pressure rotor, b 
resonance curves of the high-
pressure rotor
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Fig. 10  Results of numerical 
simulation: time history, FFT 
spectra and Poincare map
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Fig. 10  (continued)
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4.3  Influence of nonlinear coefficients β(0) and ε(1) 
on dynamic characteristics

The case of α = 2 is discussed. Considering the nonlinear 
coefficients β(0) and ε(1), Eqs. (16) and (17) are solved and 
we discussed influences of the nonlinear coefficients β(0) and 
ε(1) on the dual-rotor system.

4.3.1  Analysis of numerical simulation

The resonance curves obtained by numerical simulations and 
theoretical solution analyses are shown in Fig. 9. Figure 9a 
shows that variation ranges of amplitudes of the low-pres-
sure rotor become larger abruptly and the maximum ampli-
tude suddenly increases when the rotational speed locates in 
the vicinities of ω = ωH, ω = ωL1 and ω = 2ωH (the rotational 
speed ω is between 0.87–1.105, 1.315–1.45 and 1.97–2.17, 
respectively). We can find that the vibrational characteristics 
of the high-pressure rotor do not meet the characteristics of 
harmonic vibrations from Fig. 9b. The vibration amplitude 
has a certain range of variations, and the maximum ampli-
tude abruptly increases. In addition, the theoretical solutions 
of high-pressure and low-pressure rotors are whole unstable 
in the above three rotational speed regions.

The time history, FFT spectra and Poincare map are used 
to further investigate nonlinear vibrations of the dual-rotor 
system, and the calculation results are shown in Fig. 10.

When ω = 0.95, the time histories of high-pressure and 
low-pressure rotors exhibit almost periodic motions. The dis-
tribution of scattered points in the Poincare map of the low-
pressure rotor shows a closed annulus, and the distribution 
of scattered points in the Poincare map of the high-pressure 
rotor shows double closed rings. The above phenomena are 
shown in Fig. 10a1,  a2. When ω = 1.08, the time histories 
of high-pressure and low-pressure rotors show a disorderly 
state. The FFT spectra show complex frequency compo-
nents, and the Poincare maps exhibit chaotic motions. The 
above phenomena are shown in Fig. 10b1,  b2. When ω = 1.4, 
the time histories of high-pressure and low-pressure rotors 
are confused. The FFT spectra show diverse frequency com-
ponents, and the Poincare maps exhibit chaotic motions. The 
above phenomena are shown in Fig. 10c1,  c2. When ω = 2.02, 
the time histories of high-pressure and low-pressure rotors 
show a kind of periodic motion similar to the harmonic 
motion. The FFT spectra show that there are harmonic 
frequencies ω, super-harmonic frequencies 2ω and 3ω, as 
shown in Fig. 10e1,  e2. When ω = 2.05, the time histories of 
high-pressure and low-pressure rotors exhibit double period 
motions. The FFT spectra show frequency components of 
the harmonic frequency ω and the natural frequency ωH of 
the high-pressure rotor. The Poincare maps all have two 
points. The above phenomena are shown in Fig. 10f1,  f2.

As can be seen from the FFT spectra shown in Fig. 10, 
there is no constant term in the output response of the low-
pressure rotor. But there is always a constant term in the out-
put response of the high-pressure rotor shown in Fig. 10d1, 
 d2. In addition, Fig. 10a1,  a2 shows that the harmonic fre-
quency ω is suppressed in the output response when the rota-
tional speed moves in the vicinities of ω = ωH and ω = ωL1. 
When the system appears the nonlinear vibrations, the fre-
quency components of the output response change abruptly. 
Furthermore, the super-harmonic frequency is excited when 
the rotational speed goes in the vicinity of ω = 2ωH. As the 
rotational speed increases, the super-harmonic frequency 
component disappears and the natural frequency ωH of high-
pressure rotor is excited.

It is shown from the above analyses that the dual-rotor 
system appears chaotic motions in the vicinities of differ-
ent major critical speeds. In order to further analyze cha-
otic motions, the bifurcation map and the largest Lyapunov 
exponent are calculated. The result is shown in Fig. 11. The 
Poincare section method is used to obtain the bifurcation 
map and the Lyapunov exponent λ is defined as follows. 
Let us consider two trajectories at distance d0 at t = 0 in 
the phase space. We assume that the two points on these 
trajectories have a distance d expressed approximately by 
d(t) = d0eλt. The λ in this expression expresses the Lyapunov 
exponent. If the Lyapunov exponent has a positive value, 
these trajectories diverge rapidly. This means that the solu-
tion depends sensitively on the initial condition, and this 
sensitive dependence on the initial condition is a character-
istic of chaotic vibration. Figure 11 shows the largest value 
of Lyapunov exponents, which was obtained based on the 
method proposed by Wolf [29]. When the rotational speed is 
in the vicinities of ω = 1.1 and ω = 1.4, the scattered points 
in the bifurcation map are confused and the largest Lya-
punov exponents are positive. These phenomena mean the 
occurrence of chaotic motions. In addition, the bifurcation 
map shows that the vibration form has suddenly changed at 
ω = 0.87, ω = 1.11, ω = 1.31 and ω = 1.45.

Fig. 11  Bifurcation map and largest Lyapunov exponents (LET)
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4.3.2  Theoretical analysis

Based on Eqs. (40) and (47), the improved shooting method 
and the analyses of the Floquet theory are performed to 
obtain the theoretical solution curves of the dual-rotor sys-
tem. The calculation results are shown in Fig. 9.

The theoretical solution curves of the low-pressure rotor 
are shown in Fig. 9a. The theoretical solutions are all unsta-
ble, and Curves  A1-B1,  C1-D1,  E1-F1, and  G1-H1 consist with 
the maximum amplitude obtained by numerical simulations. 
In Segments  B1-C1,  D1-E1 and  F1-G1 with nonlinear vibra-
tions, the theoretical solution curves transition smoothly and 
there are no multiple solutions.

The theoretical solution curves of the high-pressure rotor 
are shown in Fig. 9b. The theoretical solution curves of the 
high-pressure rotor are composed of stable and unstable 
solutions. The theoretical solution curves consist with the 
results of numerical simulation in Sections  A2-B2,  C2-D2, 
 E2-F2 and  G2-H2. In addition, the theoretical solutions of 
Segments  A2-B2,  E2-F2, and  G2-H2 are stable, and the others 
are unstable. In Segments  B2-C2,  D2-E2 and  F2-G2 with non-
linear vibrations, the theoretical solution curves transition 
smoothly and there are no multiple solutions.

5  Conclusions

In this paper, the dynamic coupling models of the dual-rotor 
system with nonlinear restoring forces are first proposed. 
The influence of nonlinear spring characteristics on the dual-
rotor system is discussed by numerical simulations and theo-
retical analyses. The following results are obtained.

1. Without considering the nonlinearity, the low-pressure 
rotor has a coupling natural frequency that is equal to 
the natural frequency of the high-pressure rotor in the 
linear dynamic coupling model. In addition, the vibra-
tions of the low-pressure rotor change within a certain 
range when the rotor rotates at any rotational speeds. 
The vibration amplitudes of the low-pressure rotor in 
x and y directions are influenced by the mass and rota-
tional speeds of high-pressure and low-pressure rotors.

2. Structural characteristics of the dual-rotor system with 
the inter-shaft bearing lead to dynamic support condi-
tions of the high-pressure rotor, which mean that non-
linear spring characteristics of rotors caused by a clear-
ance of the bearing cannot be ignored. The symmetric 
nonlinear coefficient β(0) induces nonlinear vibrations of 
the dual-rotor system in the vicinity of the major critical 
speed of the high-pressure rotor (ω = ωH). The nonlinear 
coefficients β(0) and ε(1) induce nonlinear vibrations of 
the system in the vicinities of the major critical speed 
of the high-pressure rotor (ω = ωH), the major critical 

speed of the low-pressure rotor (ω = ωL1) and the criti-
cal speed of the subharmonic resonance of order 1/2 of 
the high-pressure rotor (ω = 2ωH). The nonlinear vibra-
tions always exhibit almost periodic motions and chaotic 
motions in the major critical speeds of high-pressure and 
low-pressure rotors.

3. When the dual-rotor system appears nonlinear vibra-
tions, the frequency components of the vibration 
response are very complex. There are the natural fre-
quency ωH, the natural frequency ωL1, super-harmonic 
frequencies and combinations of various frequencies due 
to the nonlinearity. The harmonic frequency ω is even 
suppressed. The frequency components change abruptly, 
and the transition between nonlinear vibrations occurs 
suddenly.
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