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Abstract

In this article, the weak-form differential quadrature method is adopted to analyze the vibration characteristics of rotating
laminated thin shells with arbitrary boundary conditions. Firstly, based on the Reissner—Naghdi’s linear shell theory, the
energy expression of rotating laminated cylindrical, conical and spherical shells is established. The arbitrary boundary
conditions are simulated equivalently by introducing the boundary spring. According to the energy method, the numeri-
cal differentiation and numerical integration techniques of the differential quadrature method are combined into the Ritz
method, where the admissible function is not introduced in the whole solution process, so to obtain the displacement of any
point in the element, it is necessary to use the polynomial to approximate the admissible function of shell. In this paper, the
Lagrangian interpolation polynomials are used. The correctness of the current solution model is fully proved by a series
of numerical examples. On this basis, the vibration characteristics of rotating cross-ply laminated cylindrical, conical and
spherical shells under elastic boundary conditions are further studied.

Keywords Weak-form differential quadrature method - Rotating laminated shells - Reissner—Naghdi’s linear shell theory -
Vibration analysis

1 Introduction unified modeling and its vibration analysis for cylindrical,

conical and spherical shells with a general elastic boundary

The rotating shell structure, as a basic component, has been
widely used in gas turbine drive shaft, high-speed centrifu-
gal separator, high-power jet engine, motor and rotor system
and other engineering structures. Moreover, such a struc-
ture has widely exploited composite material during the
past decade. In practical engineering, the rotating shells are
subjected to the complex and diverse boundary conditions,
and hence, their vibration characteristics are very important
and significant in their structural design. In this paper, a
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condition were conducted. Many researches on the vibration
characteristics of rotating cylindrical, conical and spherical
shells have been already conducted.

Lam and Loy [1] studied the free vibration of thin rotat-
ing laminated composite cylindrical shells with simply sup-
ported and investigated the effect of several parameters on
the frequency characteristics. Hua and Lam [2] studied the
effects of boundary conditions on frequency characteristics
of a thin rotating cylindrical shell by using the generalized
differential quadrature (GDQ) method and Love-type shell
theory. Lee and Kim [3] studied the free vibrations of sim-
ply supported rotating composite cylindrical shells with
orthogonal stiffeners. Liew et al. [4] applied the harmonic
reproducing kernel particle method for free vibration anal-
ysis of rotating cylindrical shells with classical boundary
conditions. Saito and Endo [5] used the Galerkin’s method
to study the vibration behavior of rotating cylindrical shell
with three kinds of boundary conditions including clamped,
simply supported without axial constraint and simply sup-
ported with axial constraint. Civalek and Giirses [6] studied
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the free vibration of rotating cylindrical shells with classical
boundary conditions by using the discrete singular convolu-
tion technique. Malekzadeh and Heydarpour [7] used the
differential quadrature method to study the free vibration
of rotating functionally graded cylindrical shells in thermal
environment. Daneshjou and Talebitooti [8] studied the free
vibration of rotating stiffened composite cylindrical shells
using layerwise-differential quadrature (LW-DQ) method.
Song et al. [9] applied the Rayleigh—Ritz method to study
the traveling wave of rotating cross-ply laminated cylindrical
shells with arbitrary boundary conditions. Cai [10] studied
the free vibration of truncated conical shells using discrete
variable method. Lam and Li [11] studied the free vibra-
tion of rotating truncated circular orthotropic conical shell
with simply supported. Civalek [12] extended the discrete
singular convolution method to study the free vibration of
rotating conical shells with classical boundary conditions.
Talebitooti [13] used layerwise-differential quadrature (LW-
DQ) method to study three-dimensional free vibration of
rotating laminated conical shells. Heydarpour et al. [14]
studied vibration behavior of rotating functionally graded
carbon nanotube-reinforced composite truncated conical
shells with classical boundary conditions by using the differ-
ential quadrature method. Dai et al. [15] investigated the free
vibration of rotating truncated conical shells using the Haar
wavelet method. Talebitooti [16] used Galerkin’s method to
investigate the influence of thermal effect on free vibration
of ring-stiffened rotating functionally graded conical shell
with clamped boundary conditions. Tornabene [17] applied
the generalized differential quadrature for evaluation of the
critical speed of rotating doubly curved multilayered shell
structures. Compared with the rotating cylindrical and coni-
cal shells, the relevant literature on the vibration character-
istics of rotating spherical shells has not been published.
The most commonly used methods are the differential
quadrature method, discrete singular convolution method,
Rayleigh—Ritz method and so on. Of course, in addition to
them, there are also many excellent numerical methods that
can be used to deal with such problems, for example, the
variational iteration method and the homotopy perturba-
tion method. Homotopy analysis method (HAM) was first
proposed by Liao [18]. Unlike the perturbative and non-
perturbative methods, this technique allows more than a uni-
formly valid analytic solution of nonlinear equations with
no possible small parameters. Variational iteration method
was first proposed by He [19]. In this method, the problems
are initially approximated with possible unknowns. Then, a
correction functional is constructed by a general Lagrange
multiplier, which can be identified optimally via the vari-
ational theory. Being different from the other nonlinear
analytical methods, like perturbation methods, this method
does not depend on small parameters, such that it can find
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wide application in nonlinear problems without linearization
or small perturbations. Although the above methods can be
applied to solve the problems in this paper, they are more
complex and need a better mathematical basis. However,
limited to the author’s own level, in this paper, the author
will adopt a differential quadrature method in the form of
weak solutions. At present, there are two types of DQM,
that is, the strong-form DQM and weak-form DQM. Among
them, the weak-form DQM is more flexible and more accu-
rate than the strong-form DQM, so it has been widely used
in the interpretation of structural mechanics [20, 21].

Through the detailed review above, it can be found that
most of the current research on rotating laminated cylindri-
cal, conical and spherical shells is for a single structure, and
a unified vibration characteristic analysis model has never
been established. For boundaries, due to the limitations of
research methods, most of the boundary conditions stud-
ied are confined to classical boundary conditions. In addi-
tion, the research on the vibration characteristics of rotat-
ing spherical shells has not been published. Based on this
background, it is very urgent and significant to carry out the
research described in the title. The main research objects
of this paper contain rotating laminated cylindrical, coni-
cal and spherical shells. All energy equations are based on
Reissner—Naghdi’s linear shell theory. The general elastic
boundary conditions are obtained by means of boundary
springs. The vibration characteristics of rotating laminated
cylindrical, conical and spherical shells are solved by using
WDQM, and the correctness of the model is verified by
comparing the existing literature results with the finite ele-
ment simulation results. Finally, this paper also presents a
series of unpublished numerical results and conclusions for
the first time, which can be used as comparative data for
future research in this field.

2 Theoretical formulations
2.1 Description of rotating shells

Figure 1 shows the rotating laminated cylindrical shell,
conical shell and spherical shell rotating at angular velocity
Q (rad/s) around their symmetrical axes. Figure 2 shows
the coordinate system of cylindrical, conical and spherical
shells. The deformation displacements of the rotating shell
with respect to the coordinate system can be defined by u, v
and w in the a, § and z directions, respectively. As described
earlier, three groups of linear springs and one group of rotat-
ing spring are introduced at the boundary to simulate the
boundary force, and then, corresponding boundary condi-
tions are obtained, as shown in Fig. 1.



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:352

Page3of19 352

Fig. 1 Rotating laminated composite shell with elastic boundary

Fig.2 Coordinate system of the
cylindrical, conical and spheri-
cal shells

2.2 Differential quadrature principle

The relevant principles of DQM have been fully explained
[22, 23]. However, in order to make readers have a better
understanding of it, the principle of the differential solution
will be briefly described before carrying out the research. In
addition, because the rotating shell considered in this paper
is axially symmetrical, the differential quadrature is only
introduced in the axial direction, so the principle of one-
dimensional differential quadrature is mainly introduced
below. According to the existing research results of the dif-
ferential quadrature, the kth derivative of a field variable
Jf(x) at point x; can be expressed by a weighted linear sum
as [24, 25]:

N
fi(k) = ZAfjk)fj (l= 1’29""N) Orfi(k)
2 &)

APt s f=[hf . ]

where Ag‘) are the weighting coefficients of the kth-order
derivatives and N is the number of grid points in the x-direc-
tion. The specific expression of the weight coefficient can be
expressed as follows:

(k) (k) (k)
A11 A1kz Al,{"
- A(k) A() A()
e @
(k) (k) (k)
ANI AN2 ANN

A _ H;j:l,k#i (% = x)

’ (xi - x) Hg:l,k;@j (xj - xk)

3)

(s=1)
AW = [AVTDAD L
ij i _

i

i#j,2<s<(N-1) &

N
AP == Y AY 1<s<(N-1). ®)
oLt

In the follow-up study, the Gauss—Lobatto quadrature will
be also used. Here, based on the existing literature, a brief
introduction is also given. The Gauss—Lobatto quadrature
rule [24, 25] with precision degree (2n — 3) for function f{x)
defined at [— 1, 1] is:
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2.3 Expressions of rotating shell’s energy

In this paper, the Reissner—Naghdi’s linear shell theory is
adopted for modeling. In this way, the displacement varia-
tions in the a, § and z directions are expressed by the follow-
ing linear relationships [26]:

u(a, ﬂ? Z) = Mo(a, ﬁ) + Z¢a(a7 ﬁ)

V((I, ﬁ’ Z) = VO(“? ﬂ) +Z¢ﬂ(a’ ﬂ) (8)
W(a’ ﬂ? Z) = W()(a3 ﬁ)

where u,, v, w, are the displacement components for the
middle surface in a, # and z directions, respectively, and ¢,

and ¢ represent the rotation of transverse normal on $ and
a axes, respectively.

=% " Bop ©)

where R, and R are the mean radii of curvature of middle
surface in a and S directions, respectively.

The strain—displacement relations of rotating shells can
be rewritten as [26]:

ou

€0= 5 =€t e
E5 = ﬂ =&l +z X,
B ap /] g (10)
ou v 0
Vap = ﬁ*‘ Sa -~ Vap T Hap
where 52, 52, ygﬁ represent the normal strain and shear strain

for middle surface and y,, ;. x,,; denote the corresponding
curvature and twist changes.
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where A and B are the Lamé parameters.

It must be noted here that, according to different struc-
tural forms, there are specific differences in the coordinate
system forms. Therefore, the specific variables represented
by the symbolic variables also have certain differences,
which can be expressed as follows [26]:

Cylindrical shell : ¢ =x p=6 R,=oc0 R;=R
A=1 B=R

Conical shell : a=x =60 R,=1
A=1 B=xsing

Spherical shell : a=¢ p=60 R,=R R;=R
A=R B=Rsing.

Rﬂ =xtang@
(12)

Figure 2 shows each coordinate system in detail.
According to the principle of differential quadrature, the
expressions in Eq. (11) can be further expressed as follows:

0 AWM E v
a=[Fog]v (132)
W
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Fig.3 Schematic diagram of the
laminated material
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and zero matrix, respectively. The specific expressions will r= sin” 0 cos”0 2sin 67 cos 0 (14¢)
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Figure 3 shows the concrete schematic diagram of the
laminated material. Based on the existing research results,
the corresponding stress—strain relations in the kth layer of
the laminated shell can be written as [26]:

O, Op are the normal stresses in @ and f directions, respec-
tively, and 7, is the shear stress. Qg.(i, Jj=1,2,6)is the elas-
tic stiffness coefficients in the kth layer. E|, E,, G5, H1a, Mo
are the engineering constants in the orthotropic axes. 8 is
the fiber angle in composite material.
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Fig.4 Coordinate definitions for a general rotating shell

Integrating the stresses over the thickness, the force and
moment resultants of thin laminated rotating shells can be
obtained in a matrix form as [26]:

N, Ay Ay A By By, By || &g
Ny Ay Ay Ay Byy By By 52
Naﬂ — Ay Agg Ass Bis Bas Bee ijﬂ (15)
M, By, By, Big D1y Dyp Dyg Xa
Mﬂ By By, Bys Dyy Dyy Dy Xp
| Myp | | Bis Bas Bos Dis Do Des || x4 |

where N,,, Nyand N4 are the normal and shear force result-
ants and M,, Mz and M, denote the bending and twisting

moment resultants. The stiffness coefficients Aij, B,-j and D,-j
are given as:
N 1 N
_ k _ k(.2 2
Ay = U(Zk+1 - Zk)’By ) Z QU(ZkH Zk)’
k=1 k=1
|~ —
_ k(.3 3
Dy 3 Z sz(zk+1 _Zk)
k=1 (16)

(& - D)ABdadp

B
= / / [(u —vQcos (,o)2 + (.QRﬁ sin @ + v + u cos ¢ + w2 sin (p)2 + (W —vQ2sin (p)2]ABdadﬂ
B

0 0 0
B 1 XaEy + BioXpe, + BiraXaty

+ Bl Xapo + BioXul)
U, = %//2 o ol Bdadp
5 +Byepxp + Byt Xap
+ BZ())(ﬂVgﬂ + BeeJ’SﬁZaﬂ
(17b)
2
Dy (1) + 2Dy xoXp
1 2
U, = 5 +D22()(ﬂ) +2D16 Xy Xap Bdadp.
2
“f + 2Dy X5 Xap +D66()(aﬁ)
(17¢)

Figure 4 shows the coordinate definitions for a general
rotating shell; the point of interest on the undeformed shell
serves as the origin of a moving, right-handed coordinate
system defined by the unit vectors €, &, and &; (&, is into the
paper). Thus, the particle velocity is [27]:

D=0 + (Opj0r )y + @ X Tp) 0y (18)
where

Do = LR, sin @e,
@ = QK = Qcos pe; — 2sin e, "

rP/O/ = Mél + Véz + Wé3
where @ is the angle along the meridional direction of shell.

Substituting Egs. (19) into (18) yields

0 =(it — v cos )¢, + (2R, sing + v + u cos ¢ + wsin @),

+ (W — vQ2sin p)e;.
(20)

The kinetic energy is, therefore,

2y

The strain energy can be divided into three parts [26]:

, |ABdadp

2
| A (€2) +2A el + Ay (&)
ey
T2
w B + 2A16£2y2ﬂ + 2A26£2y2ﬁ +Ag <y2ﬁ>
(17a)
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where p and h are the density and thickness of shell,
respectively.

When the composite shell is spinning with a constant
rotational speed €, centrifugal forces create a stress field that
acts like an initial stress in raising natural frequencies. Sec-
ondary strain due to circumferential force is as follows [28]:
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The general expression for the strain energy component
due to centrifugal forces is [28]:

u(a, 0) = ucos (nf + wt)
v(a, @) = vsin (n6 + wt) (24)

w(a, 8) = wcos (nf + wt).

In Sect. 2.1, the basic principle of the differential quad-
rature has been briefly introduced. In this case, it will be
directly applied to represent the admission displacement
components [24]:

1ov, woB, w\
B dﬁ AB da R,
U, = / / Nye*ABdadf = / / 5 , JABdadp (22)
lou u oA + v low
B 0,6 " AB ()ﬁ R; BJp
where N, = ph_QZr(a)Z’ in which r is shown in Fig. 2. "y = f 1 (@)U
As described above, the ideal boundary conditions are - P i
equivalent by using the spring simulation technique, so the M
boundary potential energy function can be expressed as fol- v = Z L(a)V (25)
lows [9]: i=1
M
2 [k”u2+k”v2+k“w2+K“(aw> ] w= Zli(a)W
U. = 1 o =0 Bdp i=1
spr — E .
0 [k”u2 +EV KW + K ( g:) ] where /,(«) is the ith Lagrange polynomials. U, V and W rep-
a=L,

(23)

2.4 Admissible displacement fields

In the vibration mode for the rotating laminated composite
shell, the admission displacement components of any cir-
cumferential wave number n can be approximated as the
following expressions [9]:

1 1 :
A =APU + —EW
”(A 1 +Ra
1. 1 1 0B
+ 2A12<ZA1 U+ R—aEW> <——EU

AB 0
1 0B
+A22<AB() EU+ % R
s

2
gy 4 iEW) +A66(—1%EU + LAy

resent the displacement at Gauss—Lobatto quadrature node
of the general shells. Since the Gauss—Lobatto function is
obtained in the (— 1,1) range, it is necessary to transform the
matrix in the differential quadrature method into the solu-
tion range corresponding to the size of structure in practical
application.

lE
=AVA € =5C (26)

M _ 2,0 A®
A= l—eA A
where /¢ is the actual size of the structure.

By substituting the above admission displacement func-
tions [Eqs. (24), (25)] into the previous energy functions, the
following expressions can be obtained:

TRV RiEw) ABda @7

B

1 0B 2
LoBgy)
Al AB da
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2.5 Solution method

Based on the above energy expressions, the Lagrangian
function of rotating laminated cylindrical, conical and spher-
ical shells with general elastically boundary conditions can
be expressed as follows [9]:

L=T-U,-U -U,-U,—U,, (33)

The equation of motion of the rotating composite shell
can be derived using the Hamilton’s principle [29], which
can be mathematically written as:

g % — % =0 34

ai\og) oq (34)

where ¢ is the generalized coordinates U, V and W.
Through the implementation of Eq. (34), the vibration

characteristic equation of the rotating composite shell can
be easily obtained. The specific expressions are as follows:

[0*M+0G + K|X =0 (35)
where
M, 0O O
M=znphf 0 M,, O AB (36a)
0 0 M, [~
0 G, O
G =2zph| G,, 0 G,, AB (36b)
0 GWV 0 3XN

spr

For space reasons, the specific expressions of the above
matrix elements are given in “Appendix” section. Equa-
tion (35) is a nonstandard eigenvalue equation, which can be
transformed equivalently into a standard form of eigenvalue
equation as follows [15]:

(Ll -lou){ng=e @

3 Numerical results and discussion

A unified analytical model for rotating laminated cylindrical
shells, conical shells and spherical shells is established. The
main purpose of this section is to discuss the numerical
results, which mainly contains three research contents: rotat-
ing laminated cylindrical shells; rotating laminated conical
shells; and rotating laminated spherical shells. According to

the experience of existing literatures, the number of grid
points NV in this paper is set as 30 for all examples. In order
to facilitate the study and comparison, the frequency param-
eters and rotational speed of the following examples are
expressed in the dimensionless form. The specific calcula-
tion formulas are as follows: w*=wL+/p/E, (cylindrical
shells), w*=wR,+/ph/ A, (conical shells), w*=wR+/p/ E,
(spherical shells) and 2*=QR / (1 — yz)/E.

3.1 Rotating laminated cylindrical shells

In this subsection, the study of rotating laminated cylindrical
shells will be carried out. Table 1 shows the comparison of
frequency parameters of non-rotating laminated cylindrical
shells with various boundary conditions. In Table 1, the
comparative data are from Song et al. [9]. Tables 2 and 3
show the comparison of frequency parameters of rotating
laminated cylindrical shells with simply supported and
clamped boundary conditions, respectively. w, and w}" rep-
resent non-dimensional frequency parameters of the back-
ward wave and forward wave, respectively. Also, the com-
parative data in the above tables are from Ref. [9]. The
material and geometric parameters of the above tables are
defined as follows: E,=7.6 GPa, E|/E,=2.5, G|,=4.1 GPa,
i1, =0.26, p=1643 kg/m*, h/R=0.002, L/R=1. From
Tables 1, 2 and 3, it can be observed that the predicted val-
ues by the current method are in good agreement with the
existing literature results. Therefore, it indicates that the cur-
rent method has the ability to predict the vibration charac-
teristics of rotating laminated cylindrical shells under arbi-
trary elastic boundary conditions.

Next, the parametric studies will be carried out. Figure 5
shows the influence of the circumferential wave number n
on the vibration behavior of rotating laminated cylindrical
shells with various boundary conditions. In this example, the
material and geometric parameters are consistent with those
in Table 2. The rotation speed is 20 rev/s. It must be pointed
out here that the solid line represents the backward frequen-
cies w; and the dotted line represents the forward frequencies
w}‘ In addition, without special explanation, the meanings
of dashed and solid lines in all subsequent figures are con-
sistent with those in this figure. Through this study, it can be
found that the backward frequency w; is always larger than
the forward frequency a); Regardless of the boundary condi-
tions, the frequency parameter always decreases rapidly and
then increases gradually with the increase of circumferential
wave number z. In addition, when the circumferential wave
number n increases and exceeds a certain threshold, the fre-
quency parameters of the rotating laminated cylindrical
shells tend to be consistent gradually.

Figure 6 shows the effect of boundary parameters on fre-
quency parameters of rotating laminated cylindrical shells.
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Table 1 Frequency parameters

Boundary  Method n=1 n=2 n=3 n=4 n=>5 n=6
w* for a three-layered, cross- condition
ply [0°/90°/0°] cylindrical
shell with various boundary F-F Ref. [9] 1115140  1.077907  0.932638  0.782492  0.646864  0.533173
conditions Ref. [9] 1152210 1.078821  0.932954  0.782632  0.647052  0.533458
Present method  1.115139  1.077903  0.932631  0.782480  0.646847  0.533149
Cc-C Ref. [9] 1062242 0.813717  0.629498  0.500864 0.409156  0.341724
Ref. [9] 1.055098  0.813714  0.629554  0.500832  0.409211  0.341720
Present method  1.062189  0.813778  0.629498  0.500592  0.408977  0.342301
S-S Ref. [9] 1.061284  0.804054 0.598331 0.450144 0.345253  0.270754
Ref. [9] 1.061285  0.804063  0.598337  0.450134  0.345249  0.270759
Present method ~ 1.061283  0.804051  0.598326  0.450137  0.345244  0.270741

The material parameters and geometric parameters are con-
sistent with Table 2. The boundary condition is defined as
setting the spring stiffness of one end to infinity and only
changing one type of the spring in the other end at a time.
(That is, one varies from 107> to 10'!, while the others are
set to 0.) The rotating speed is 20 rev/s. From Fig. 6, it
can be found that when the stiffness is 10*, the frequency
parameters do not change. After exceeding this threshold,
the change of frequency parameters is related to the type of
boundary spring. For example, for rotating spring K" and
linear spring k", their changes have little influence on the
vibration characteristics of rotating laminated cylindrical
shells, while for linear elastic k” and k", their changes have
great influence on the vibration characteristics of rotating
laminated cylindrical shells. Based on this analysis, two
types of elastic boundary conditions are defined: E,: k"= 108,
K=k"=K"=10"%; E,: k’'=10%, k"=k"=K"=10".

Figure 7 presents the effect of rotation speed on forward
and backward frequencies of rotating laminated cylindrical

Table2 Comparison of frequency parameters w* for a composite
cylindrical shell with two edges simply supported

shells with various boundary conditions. The circumferential
wave number # is set as n=1-3. The material and geometric
parameters are consistent with Fig. 6. The dimensionless
rotation speed Q* varies from 0O to 1. From Fig. 6, it is obvi-
ous that when the circumferential wave number # is 1 and 2,
the backward frequencies of the laminated cylindrical shells
gradually increase with the increase of rotation speed, while
the forward frequencies gradually decrease. At that time,
when the circumferential wave number is 3, the forward and
backward frequencies increase with the increase of rotation
speed.

3.2 Rotating laminated conical shells

The main purpose of this section is to carry out the related
research of conical shells. Before the parametric studies,
some validation work should be carried out first. Table 4
shows the fundamental frequency parameters of an antisym-
metric cross-plied laminated conical shell with the S-S

Table3 Comparison of frequency parameters w* for a composite
cylindrical shell with two edges clamped

Q(rev/s) n  Ref. [9] Present method Qev/s) n Ref. [9] Present method
w; a)}“ ) a)}f ; cu}‘ w; a);
0.1 3 0598510 0.598402  0.598471  0.598183 0.1 3 0.629596  0.629382  0.629624  0.629349
4 0450123 0.450084  0.450263  0.450015 4 0.500898 0.500792  0.500951  0.500714
5 0.344932 0.345319  0.345353  0.345140 S5 0409194 0.408993  0.409225  0.4090222
6  0.271001 0.270691 0.270839  0.270654 6 0341960 0.341692  0.341753  0.341576
0.4 3 0.598584  0.598091 0.598911  0.597757 0.4 3 0.629795  0.629301  0.630018  0.628919
4 0450396  0.441001 0.450654  0.449660 4 0.501089  0.500597 0.501329  0.500384
5 0.345319  0.345099  0.345714  0.344860 5 0408998 0.409101 0.409567  0.408752
6  0.271101 0.270801 0.271193  0.270454 6 0342106 0.341599  0.342043  0.341333
1.0 3 0598992  0.597901 0.599813  0.596930 1.0 3 0.630501 0.628599  0.630911  0.628164
4 0450902 0.449611 0.451502  0.449015 4 0.501911 0.500392  0.502119  0.499757
5 0.346091 0.344991 0.346577  0.344442 5 0409889 0.408493 0.410356  0.408320
6  0.271901 0.270799  0.272174  0.270326 6 0342489  0.341379  0.342960  0.341187
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Fig.5 Variation of the frequency parameter w*of a rotating three-lay-
ered [0°/90°/0°] cylindrical shell with different circumferential wave
numbers n

boundary condition. The numerical results from stud-
ies [12, 30, 31] are also given in Table 4 for comparison.
Material and geometric parameters are defined as: a=30°,
L*sina/R;=0.25, /R, =0.01, 0.02, 0.03, 0.04, 0.05,0.06;
E\/E,=40, G|,/E;=0.5, 4;,=0.25. It can be found that the
predicted results of the current method are very close to
those from the literature. Because the research on rotating
laminated conical shells has not been published in the exist-
ing literature, most of them are confined to isotropic mate-
rials. Therefore, the next step is to carry out comparative
validation of rotating isotropic conical shells. In this paper,
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Fig.6 Frequency for a three-layered [0°/90°/0°] laminated cylindrical
shell with one edge clamped, while the other edge restrained by one
set of variable stiffness spring

isotropic parameters can be obtained only by setting the fol-
lowing parameters: E\/E,=1, G, =E,/2/(1 4+ u,,). Table 5
shows frequency (m, n)=(1, 1) comparisons between the
literature results [32] and the present method. Geometric
parameters are defined as follows: ¢ =30°, h/R,=0.01,
L/R,=6. By comparison, it can be found that the method in
this paper is also accurate in predicting the vibration char-
acteristics of rotating conical shells. Next, some parametric
studies will be carried out.

Figure 8 shows the effect of the circumferential wave
number n on frequency parameters of three-layered
[0°/90°/0°] rotating laminated conical shells with various
boundary conditions. In this example, the material and
geometric parameters are consistent with those in Table 4.
The rotation speed is 20 rev/s. Geometric parameters are
defined as follows: ¢ =30°, /R, =0.01, L/R,;=1. It can be
found intuitively that when the circumferential wave num-
ber is less than 3, the frequency parameter decreases rap-
idly with the increase of the circumferential wave number.
When the circumferential wave number is more than 3, the
frequency parameter increases linearly with the increase of
the circumferential wave number. When the wave number is
large enough, the frequency parameter tends to be consistent
gradually, regardless of the boundary conditions. Figure 9
shows the relationship between boundary parameters and
vibration characteristics of three-layered [0°/90°/0°] rotat-
ing laminated conical shells. The geometric parameters and
material constants are consistent with Fig. 8. The boundary
conditions are defined as shown in Fig. 6. It is obvious that
the effects of the linear elastic spring k" and rotating spring
K" on the vibration characteristics of the rotating laminated
conical shells are very weak, while the linear elastic springs
k" and k" are very strong. Figure 10 shows the variation of
frequency (m, n)=(1, 3) of three-layered [0°/90°/0°] rotat-
ing laminated conical shells subjected to different bound-
ary conditions. In this section, each kind of springs carries
one direction with stiffness distributed zero, and the rest
springs are assigned infinity. The rotation speed Q varies
from O to 20 rev/s. In this example, it can be seen that the
backward frequency parameter is always larger than the for-
ward frequency parameter, which is similar to the cylindrical
shell. For the backward frequency parameter, the frequency
parameter increases with the increase of the rotation speed.
However, for the forward frequency parameters, when the
rotation speed is less than 5, the forward frequency decreases
with the increase of the rotation speed. After the rotation
speed is more than 5, the forward frequency parameters
gradually increase with the increase of the rotation speed.

3.3 Rotating laminated spherical shells

Next, the related research work on rotating laminated
spherical shells will be carried out. At present, most of the
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studies on non-rotating laminated spherical shells are based
on the first-order shear deformation theory, and the results
of thin laminated spherical shells are lacking. In addition,
the research on rotating laminated spherical shells has not
been published before. Therefore, in order to verify the cor-
rectness of this method, a comparative study between the

present method and the finite element numerical results is
given here. Table 6 shows the frequency parameters for a
non-rotating three-layered [0°/90°/0°] laminated spherical
shell. Geometric and material parameters are defined as fol-
lows: ¢, =60°, ¢,=90°, h=0.01 m, R=1m, E,=138GPa,
E,=10.6GPa, G,,=6GPa, u;,=0.25, p=1500 kg/m>.

Table 4 Fundamental frequency parameters of an antisymmetric cross-plied laminated conical shell with the S—S boundary condition

hR, Ref.[31] Ref. [30] Ref. [12] Present method
With coupling Without cou- With coupling Without cou- With coupling  Without cou- With coupling Without coupling
pling pling pling

0.01 0.1769 0.1978 0.1799 0.1976 0.1785 0.1980 0.1770 0.1978
0.02 0.2119 0.2355 0.2153 0.2351 0.2128 0.2353 0.2119 0.2355
0.03 0.2360 0.2671 0.2397 0.2667 0.2402 0.2671 0.2359 0.2671
0.04 0.2578 0.2992 0.2620 0.2987 0.2607 0.2994 0.2577 0.2992
0.05 0.2794 0.3308 0.2841 0.3303 0.2816 0.3307 0.2793 0.3308
0.06 0.3010 0.3606 0.3061 0.3602 0.3024 0.3611 0.3008 0.3606
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Table 5 Frequency comparisons Boundary  (m,m)=(1,1)  Ref.[32]  Ref.[32]  Ref.[32] Present method
between the Han’s model and condition
present model with various
boundary conditions 0.2 c-C o] 0.6193 0.6021 0.5965 0.5964
o 0.8935 0.8843 0.8831 0.8830
S-S o 0.5631 0.5366 0.5422 0.5423
w? 0.7338 0.7387 0.7248 0.7246
C-S o 0.5680 0.5414 0.5441 0.5441
o 0.7751 0.7800 0.7624 0.7621
S-C ] 0.6143 0.5956 0.5910 0.5911
o 0.8890 0.8774 0.8767 0.8767
0.3 c-C } 0.5659 0.5268 0.5145 0.5144
o 0.9300 0.9287 0.9403 0.9402
S-S } 0.4695 0.4371 0.4537 0.4539
o 0.7613 0.7692 0.7619 0.7616
C-S } 0.5008 0.4412 0.4547 0.4548
o 0.7915 0.7978 0.7974 0.7972
S—C } 0.5615 0.5210 0.5096 0.5097
o 0.9304 0.9273 0.9362 0.9362

Detailed parameters of the finite element model are as fol-
lows: mesh type: S4R (ABAQUS 6.10) and the number of
the grid: 30472. By comparing with the results of the finite
element method, it can be found that the current method has
good calculation accuracy for the study of rotating laminated
spherical shells.

Figure 11 shows the correlation between frequency
parameters of the rotating three-layered [0°/90°/0°] lami-
nated spherical shells and circumferential wave number 7.
The rotation speed € is 20 rev/s. Obviously, the frequency
parameters obtained under fixed boundary conditions are
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Fig.8 Variation of the frequency parameters w* for a three-layered
[0°/90°/0°] laminated conical shell with circumferential wave num-
bers n

the largest. For C—S boundary and S-S boundary, when the
wave number is less than 3, the frequency parameter under
S-S boundary is larger than that under C—S boundary, and
when the wave number is more than 3, the frequency param-
eter under S—S boundary is smaller than that under C-S
boundary. In addition, the variation of frequency parameters
with the wave number is similar to those of cylindrical shells
and conical shells. However, it must be noted that no matter
how large the wave number is, their frequency parameters
do not converge.
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Fig.9 Frequency for a three-layered [0°/90°/0°] laminated conical
shell with one edge clamped, while the other edge restrained by one
set of variable stiffness spring
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Fig. 10 Vibration of bifurcation of frequency parameter w* for a
three-layered [0°/90°/0°] laminated conical shell as a function of the
rotating speed Q

Figure 12 shows the frequency parameter for a three-
layered [0°/90°/0°] spherical shell with elastic boundary
conditions. The definition of elastic boundary conditions is
consistent with Fig. 6. The material constants and geometric
parameters are consistent with Fig. 11. From Fig. 6, it can be
found that the stiffness coefficient of the rotating spring K"
has little effect on the vibration characteristics of the rotat-
ing laminated spherical shells. However, unlike cylindrical
shells and conical shells, the linear spring k“ has the most
significant effect on the vibration characteristics of rotating
three laminated spherical shells. Figure 13 shows the vari-
ation of frequency (m, n)=(1, 3) of rotating three-layered
[0°/90°/0°] laminated spherical shells with different rotation
speeds. The geometric and material parameters are similar
to those in Fig. 12. The definition of boundary conditions is
similar to Fig. 10. It is not difficult to find that the frequency
parameters of rotating laminated spherical shells are not sen-
sitive to the increase of the rotation speed. When the rotation
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Fig. 11 Variation of the frequency parameters w* for a three-layered
[0°/90°/0°] laminated spherical shell with circumferential wave num-
ber n

speed is less than 6, the frequency parameters are basically
unchanged. Therefore, it can be concluded that when the
structural form is different, the influence of the same param-
eters on the vibration characteristics is not consistent.

4 Conclusions

The aim of this paper is to establish a unified analytical
model for rotating laminated cylindrical shells, conical shells
and spherical shells with various boundary conditions. The
Reissner—Naghdi’s linear shell theory is adopted to estab-
lish the energy function. The spring simulation technique
is introduced to simulate general boundary conditions. On
the basis of the above, the Lagrangian function of unified
rotation laminated shells is established and the differential
quadrature is used to represent the displacement function of
structure. Finally, the vibration characteristics of the rotating

Table 6 Comparison of BC

Method n
frequency parameters w* for a
composite spherical shell with 1 2 3 4 5
various boundary conditions
F-F FEM 0.0029 0.0226 0.0643 0.1182 0.1802
Present method 0.0029 0.0230 0.0649 0.1192 0.1817
F-C FEM 1.4665 0.9176 0.5967 0.4089 0.3272
Present method 1.4676 0.9201 0.5986 0.4171 0.3344
C-F FEM 1.2193 0.7500 0.4865 0.3346 0.2686
Present method 1.2204 0.7529 0.4901 0.3377 0.2755
c-C FEM 3.1493 2.9417 2.8462 2.7666 2.7207
Present method 3.1685 2.9370 2.8408 2.7532 2.7203
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Fig. 13 Vibration of bifurcation of frequency parameter w* for a
three-layered [0°/90°/0°] laminated spherical shell as a function of
the rotating speed Q

laminated shells will be transformed into a standard system
of linear equations. The correctness of the current model is
verified by comparing with the existing literature. Consider-
ing that the results for rotating laminated conical shells and
laminated spherical shells have not been published before,
therefore, the work of this paper can be used as reference
data for future research.
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| 0 0 Ksyy, [ M 2
+k2”<21i(0)) +KyADTAY
= (64)
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Kh,, Kh,, Kh,,

K,=7ph2*| Kh,, Kh, Kh, | AB (65)
Kh,, Kh,, Kh,, |
wu wy ww XN
- (‘)B >2ETCdiag[r(a)2]E
U T A2 5
A iz da 66)
+ EETCdiag [r(@)?*]|E
0B .
Kh,, = Kh, = éaETCdlag [r(@)*|E (67)
B 1 0Borp 5
Khuw = Khwu = m%E Cdlag [V((I) ]E (68)

n? . 1 .
Kh,, = EETCdlag [r(@)?*]E + FETCchag [r@’]E  (69)
B

Kh

W

n . 2 n . 2
= @ETCdlag [r(a) ]E + B_RﬁETCdlag [r(a) ]E
(70)

1 . n? .
Kh,,, = FETCdlag [r(@)’|E + B Cdiag [r@’]E. (71
B

The ‘diag’ represents a diagonal matrix.

Mhuu 0 Mhuw

M,=zph’l 0 Mh, 0 AB (72)
Mh, 0 Mh,, | .

Mh,, = cos* pCMh,,, = Mh,,,= sin ¢ cos ¢C

Mh,, = cos’ $CMh,,, = sin® $C. (73)
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