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Abstract
In this article, the weak-form differential quadrature method is adopted to analyze the vibration characteristics of rotating 
laminated thin shells with arbitrary boundary conditions. Firstly, based on the Reissner–Naghdi’s linear shell theory, the 
energy expression of rotating laminated cylindrical, conical and spherical shells is established. The arbitrary boundary 
conditions are simulated equivalently by introducing the boundary spring. According to the energy method, the numeri-
cal differentiation and numerical integration techniques of the differential quadrature method are combined into the Ritz 
method, where the admissible function is not introduced in the whole solution process, so to obtain the displacement of any 
point in the element, it is necessary to use the polynomial to approximate the admissible function of shell. In this paper, the 
Lagrangian interpolation polynomials are used. The correctness of the current solution model is fully proved by a series 
of numerical examples. On this basis, the vibration characteristics of rotating cross-ply laminated cylindrical, conical and 
spherical shells under elastic boundary conditions are further studied.

Keywords Weak-form differential quadrature method · Rotating laminated shells · Reissner–Naghdi’s linear shell theory · 
Vibration analysis

1 Introduction

The rotating shell structure, as a basic component, has been 
widely used in gas turbine drive shaft, high-speed centrifu-
gal separator, high-power jet engine, motor and rotor system 
and other engineering structures. Moreover, such a struc-
ture has widely exploited composite material during the 
past decade. In practical engineering, the rotating shells are 
subjected to the complex and diverse boundary conditions, 
and hence, their vibration characteristics are very important 
and significant in their structural design. In this paper, a 

unified modeling and its vibration analysis for cylindrical, 
conical and spherical shells with a general elastic boundary 
condition were conducted. Many researches on the vibration 
characteristics of rotating cylindrical, conical and spherical 
shells have been already conducted.

Lam and Loy [1] studied the free vibration of thin rotat-
ing laminated composite cylindrical shells with simply sup-
ported and investigated the effect of several parameters on 
the frequency characteristics. Hua and Lam [2] studied the 
effects of boundary conditions on frequency characteristics 
of a thin rotating cylindrical shell by using the generalized 
differential quadrature (GDQ) method and Love-type shell 
theory. Lee and Kim [3] studied the free vibrations of sim-
ply supported rotating composite cylindrical shells with 
orthogonal stiffeners. Liew et al. [4] applied the harmonic 
reproducing kernel particle method for free vibration anal-
ysis of rotating cylindrical shells with classical boundary 
conditions. Saito and Endo [5] used the Galerkin’s method 
to study the vibration behavior of rotating cylindrical shell 
with three kinds of boundary conditions including clamped, 
simply supported without axial constraint and simply sup-
ported with axial constraint. Civalek and Gürses [6] studied 
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the free vibration of rotating cylindrical shells with classical 
boundary conditions by using the discrete singular convolu-
tion technique. Malekzadeh and Heydarpour [7] used the 
differential quadrature method to study the free vibration 
of rotating functionally graded cylindrical shells in thermal 
environment. Daneshjou and Talebitooti [8] studied the free 
vibration of rotating stiffened composite cylindrical shells 
using layerwise-differential quadrature (LW-DQ) method. 
Song et al. [9] applied the Rayleigh–Ritz method to study 
the traveling wave of rotating cross-ply laminated cylindrical 
shells with arbitrary boundary conditions. Cai [10] studied 
the free vibration of truncated conical shells using discrete 
variable method. Lam and Li [11] studied the free vibra-
tion of rotating truncated circular orthotropic conical shell 
with simply supported. Civalek [12] extended the discrete 
singular convolution method to study the free vibration of 
rotating conical shells with classical boundary conditions. 
Talebitooti [13] used layerwise-differential quadrature (LW-
DQ) method to study three-dimensional free vibration of 
rotating laminated conical shells. Heydarpour et al. [14] 
studied vibration behavior of rotating functionally graded 
carbon nanotube-reinforced composite truncated conical 
shells with classical boundary conditions by using the differ-
ential quadrature method. Dai et al. [15] investigated the free 
vibration of rotating truncated conical shells using the Haar 
wavelet method. Talebitooti [16] used Galerkin’s method to 
investigate the influence of thermal effect on free vibration 
of ring-stiffened rotating functionally graded conical shell 
with clamped boundary conditions. Tornabene [17] applied 
the generalized differential quadrature for evaluation of the 
critical speed of rotating doubly curved multilayered shell 
structures. Compared with the rotating cylindrical and coni-
cal shells, the relevant literature on the vibration character-
istics of rotating spherical shells has not been published.

The most commonly used methods are the differential 
quadrature method, discrete singular convolution method, 
Rayleigh–Ritz method and so on. Of course, in addition to 
them, there are also many excellent numerical methods that 
can be used to deal with such problems, for example, the 
variational iteration method and the homotopy perturba-
tion method. Homotopy analysis method (HAM) was first 
proposed by Liao [18]. Unlike the perturbative and non-
perturbative methods, this technique allows more than a uni-
formly valid analytic solution of nonlinear equations with 
no possible small parameters. Variational iteration method 
was first proposed by He [19]. In this method, the problems 
are initially approximated with possible unknowns. Then, a 
correction functional is constructed by a general Lagrange 
multiplier, which can be identified optimally via the vari-
ational theory. Being different from the other nonlinear 
analytical methods, like perturbation methods, this method 
does not depend on small parameters, such that it can find 

wide application in nonlinear problems without linearization 
or small perturbations. Although the above methods can be 
applied to solve the problems in this paper, they are more 
complex and need a better mathematical basis. However, 
limited to the author’s own level, in this paper, the author 
will adopt a differential quadrature method in the form of 
weak solutions. At present, there are two types of DQM, 
that is, the strong-form DQM and weak-form DQM. Among 
them, the weak-form DQM is more flexible and more accu-
rate than the strong-form DQM, so it has been widely used 
in the interpretation of structural mechanics [20, 21].

Through the detailed review above, it can be found that 
most of the current research on rotating laminated cylindri-
cal, conical and spherical shells is for a single structure, and 
a unified vibration characteristic analysis model has never 
been established. For boundaries, due to the limitations of 
research methods, most of the boundary conditions stud-
ied are confined to classical boundary conditions. In addi-
tion, the research on the vibration characteristics of rotat-
ing spherical shells has not been published. Based on this 
background, it is very urgent and significant to carry out the 
research described in the title. The main research objects 
of this paper contain rotating laminated cylindrical, coni-
cal and spherical shells. All energy equations are based on 
Reissner–Naghdi’s linear shell theory. The general elastic 
boundary conditions are obtained by means of boundary 
springs. The vibration characteristics of rotating laminated 
cylindrical, conical and spherical shells are solved by using 
WDQM, and the correctness of the model is verified by 
comparing the existing literature results with the finite ele-
ment simulation results. Finally, this paper also presents a 
series of unpublished numerical results and conclusions for 
the first time, which can be used as comparative data for 
future research in this field.

2  Theoretical formulations

2.1  Description of rotating shells

Figure 1 shows the rotating laminated cylindrical shell, 
conical shell and spherical shell rotating at angular velocity 
Ω (rad/s) around their symmetrical axes. Figure 2 shows 
the coordinate system of cylindrical, conical and spherical 
shells. The deformation displacements of the rotating shell 
with respect to the coordinate system can be defined by u, v 
and w in the α, β and z directions, respectively. As described 
earlier, three groups of linear springs and one group of rotat-
ing spring are introduced at the boundary to simulate the 
boundary force, and then, corresponding boundary condi-
tions are obtained, as shown in Fig. 1.
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2.2  Differential quadrature principle

The relevant principles of DQM have been fully explained 
[22, 23]. However, in order to make readers have a better 
understanding of it, the principle of the differential solution 
will be briefly described before carrying out the research. In 
addition, because the rotating shell considered in this paper 
is axially symmetrical, the differential quadrature is only 
introduced in the axial direction, so the principle of one-
dimensional differential quadrature is mainly introduced 
below. According to the existing research results of the dif-
ferential quadrature, the kth derivative of a field variable 
f(x) at point xi can be expressed by a weighted linear sum 
as [24, 25]:

where A(k)

ij
 are the weighting coefficients of the kth-order 

derivatives and N is the number of grid points in the x-direc-
tion. The specific expression of the weight coefficient can be 
expressed as follows:
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In the follow-up study, the Gauss–Lobatto quadrature will 

be also used. Here, based on the existing literature, a brief 
introduction is also given. The Gauss–Lobatto quadrature 
rule [24, 25] with precision degree (2n − 3) for function f(x) 
defined at [− 1, 1] is:
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Fig. 1  Rotating laminated composite shell with elastic boundary

Fig. 2  Coordinate system of the 
cylindrical, conical and spheri-
cal shells
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where

2.3  Expressions of rotating shell’s energy

In this paper, the Reissner–Naghdi’s linear shell theory is 
adopted for modeling. In this way, the displacement varia-
tions in the α, β and z directions are expressed by the follow-
ing linear relationships [26]:

where u0 , v0 , w0 are the displacement components for the 
middle surface in α, β and z directions, respectively, and �� 
and �� represent the rotation of transverse normal on β and 
α axes, respectively.

where R� and R� are the mean radii of curvature of middle 
surface in α and β directions, respectively.

The strain–displacement relations of rotating shells can 
be rewritten as [26]:

where �0
�
 , �0

�
 , �0

��
 represent the normal strain and shear strain 

for middle surface and �� , �� , ��� denote the corresponding 
curvature and twist changes.
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where A and B are the Lamé parameters.
It must be noted here that, according to different struc-

tural forms, there are specific differences in the coordinate 
system forms. Therefore, the specific variables represented 
by the symbolic variables also have certain differences, 
which can be expressed as follows [26]:

Figure 2 shows each coordinate system in detail.
According to the principle of differential quadrature, the 

expressions in Eq. (11) can be further expressed as follows:
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where D is given according to the value of R� , �(1) , �(1) , 
�

(2) , �(1)

1
 , �(2)

1
 , �(2)

1
 are weighting coefficients. � , � and � 

are displacement variables. � and � are the identity matrix 
and zero matrix, respectively. The specific expressions will 
be given in detail later.

Figure 3 shows the concrete schematic diagram of the 
laminated material. Based on the existing research results, 
the corresponding stress–strain relations in the kth layer of 
the laminated shell can be written as [26]:
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Fig. 3  Schematic diagram of the 
laminated material
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Integrating the stresses over the thickness, the force and 
moment resultants of thin laminated rotating shells can be 
obtained in a matrix form as [26]:

where Nα, Nβ and Nαβ are the normal and shear force result-
ants and Mα, Mβ and Mαβ denote the bending and twisting 
moment resultants. The stiffness coefficients Aij, Bij and Dij 
are given as:
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Fig. 4  Coordinate definitions for a general rotating shell

Figure 4 shows the coordinate definitions for a general 
rotating shell; the point of interest on the undeformed shell 
serves as the origin of a moving, right-handed coordinate 
system defined by the unit vectors ē1 , ē2 and ē3 ( ̄e2 is into the 
paper). Thus, the particle velocity is [27]:

where

where � is the angle along the meridional direction of shell.
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where � and h are the density and thickness of shell, 
respectively.

When the composite shell is spinning with a constant 
rotational speed Ω, centrifugal forces create a stress field that 
acts like an initial stress in raising natural frequencies. Sec-
ondary strain due to circumferential force is as follows [28]:

(21)
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2 ∫
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(
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)2
+ (ẇ − v𝛺 sin𝜑)2

]
ABd𝛼d𝛽

The strain energy can be divided into three parts [26]:
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The general expression for the strain energy component 
due to centrifugal forces is [28]:

where N� = �h�2r(�)2 , in which r is shown in Fig. 2.
As described above, the ideal boundary conditions are 

equivalent by using the spring simulation technique, so the 
boundary potential energy function can be expressed as fol-
lows [9]:

2.4  Admissible displacement fields

In the vibration mode for the rotating laminated composite 
shell, the admission displacement components of any cir-
cumferential wave number n can be approximated as the 
following expressions [9]:
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In Sect. 2.1, the basic principle of the differential quad-
rature has been briefly introduced. In this case, it will be 
directly applied to represent the admission displacement 
components [24]:

(24)

u(�, �) = u cos (n� + �t)

v(�, �) = v sin (n� + �t)

w(�, �) = w cos (n� + �t).

where li(�) is the ith Lagrange polynomials. � , � and � rep-
resent the displacement at Gauss–Lobatto quadrature node 
of the general shells. Since the Gauss–Lobatto function is 
obtained in the (− 1,1) range, it is necessary to transform the 
matrix in the differential quadrature method into the solu-
tion range corresponding to the size of structure in practical 
application.

where le is the actual size of the structure.
By substituting the above admission displacement func-

tions [Eqs. (24), (25)] into the previous energy functions, the 
following expressions can be obtained:
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2.5  Solution method

Based on the above energy expressions, the Lagrangian 
function of rotating laminated cylindrical, conical and spher-
ical shells with general elastically boundary conditions can 
be expressed as follows [9]:

The equation of motion of the rotating composite shell 
can be derived using the Hamilton’s principle [29], which 
can be mathematically written as:

where q is the generalized coordinates � , � and �.
Through the implementation of Eq. (34), the vibration 

characteristic equation of the rotating composite shell can 
be easily obtained. The specific expressions are as follows:

where

For space reasons, the specific expressions of the above 
matrix elements are given in “Appendix” section. Equa-
tion (35) is a nonstandard eigenvalue equation, which can be 
transformed equivalently into a standard form of eigenvalue 
equation as follows [15]:

3  Numerical results and discussion

A unified analytical model for rotating laminated cylindrical 
shells, conical shells and spherical shells is established. The 
main purpose of this section is to discuss the numerical 
results, which mainly contains three research contents: rotat-
ing laminated cylindrical shells; rotating laminated conical 
shells; and rotating laminated spherical shells. According to 
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the experience of existing literatures, the number of grid 
points N in this paper is set as 30 for all examples. In order 
to facilitate the study and comparison, the frequency param-
eters and rotational speed of the following examples are 
expressed in the dimensionless form. The specific calcula-
tion formulas are as follows: �∗=�L

√
�∕E2 (cylindrical 

shells), �∗=�R1

√
�h∕A11 (conical shells), �∗=�R

√
�∕E2 

(spherical shells) and �∗=�R

√(
1 − �2

)/
E.

3.1  Rotating laminated cylindrical shells

In this subsection, the study of rotating laminated cylindrical 
shells will be carried out. Table 1 shows the comparison of 
frequency parameters of non-rotating laminated cylindrical 
shells with various boundary conditions. In Table 1, the 
comparative data are from Song et al. [9]. Tables 2 and 3 
show the comparison of frequency parameters of rotating 
laminated cylindrical shells with simply supported and 
clamped boundary conditions, respectively. �∗

b
 and �∗

f
 rep-

resent non-dimensional frequency parameters of the back-
ward wave and forward wave, respectively. Also, the com-
parative data in the above tables are from Ref. [9]. The 
material and geometric parameters of the above tables are 
defined as follows: E2 = 7.6 GPa, E1/E2 = 2.5, G12 = 4.1 GPa, 
μ12 = 0.26, ρ = 1643  kg/m3, h/R = 0.002, L/R = 1. From 
Tables 1, 2 and 3, it can be observed that the predicted val-
ues by the current method are in good agreement with the 
existing literature results. Therefore, it indicates that the cur-
rent method has the ability to predict the vibration charac-
teristics of rotating laminated cylindrical shells under arbi-
trary elastic boundary conditions.

Next, the parametric studies will be carried out. Figure 5 
shows the influence of the circumferential wave number n 
on the vibration behavior of rotating laminated cylindrical 
shells with various boundary conditions. In this example, the 
material and geometric parameters are consistent with those 
in Table 2. The rotation speed is 20 rev/s. It must be pointed 
out here that the solid line represents the backward frequen-
cies �∗

b
 and the dotted line represents the forward frequencies 

�∗
f
 . In addition, without special explanation, the meanings 

of dashed and solid lines in all subsequent figures are con-
sistent with those in this figure. Through this study, it can be 
found that the backward frequency �∗

b
 is always larger than 

the forward frequency �∗
f
 . Regardless of the boundary condi-

tions, the frequency parameter always decreases rapidly and 
then increases gradually with the increase of circumferential 
wave number n. In addition, when the circumferential wave 
number n increases and exceeds a certain threshold, the fre-
quency parameters of the rotating laminated cylindrical 
shells tend to be consistent gradually.

Figure 6 shows the effect of boundary parameters on fre-
quency parameters of rotating laminated cylindrical shells. 
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The material parameters and geometric parameters are con-
sistent with Table 2. The boundary condition is defined as 
setting the spring stiffness of one end to infinity and only 
changing one type of the spring in the other end at a time. 
(That is, one varies from  10−3 to  1011, while the others are 
set to 0.) The rotating speed is 20 rev/s. From Fig. 6, it 
can be found that when the stiffness is  104, the frequency 
parameters do not change. After exceeding this threshold, 
the change of frequency parameters is related to the type of 
boundary spring. For example, for rotating spring Kw and 
linear spring ku, their changes have little influence on the 
vibration characteristics of rotating laminated cylindrical 
shells, while for linear elastic kv and kw, their changes have 
great influence on the vibration characteristics of rotating 
laminated cylindrical shells. Based on this analysis, two 
types of elastic boundary conditions are defined: E1: ku= 108, 
kv= kw= Kw= 1014; E2: kv= 108, ku= kw= Kw= 1014.

Figure 7 presents the effect of rotation speed on forward 
and backward frequencies of rotating laminated cylindrical 

shells with various boundary conditions. The circumferential 
wave number n is set as n = 1–3. The material and geometric 
parameters are consistent with Fig. 6. The dimensionless 
rotation speed Ω* varies from 0 to 1. From Fig. 6, it is obvi-
ous that when the circumferential wave number n is 1 and 2, 
the backward frequencies of the laminated cylindrical shells 
gradually increase with the increase of rotation speed, while 
the forward frequencies gradually decrease. At that time, 
when the circumferential wave number is 3, the forward and 
backward frequencies increase with the increase of rotation 
speed.

3.2  Rotating laminated conical shells

The main purpose of this section is to carry out the related 
research of conical shells. Before the parametric studies, 
some validation work should be carried out first. Table 4 
shows the fundamental frequency parameters of an antisym-
metric cross-plied laminated conical shell with the S–S 

Table 1  Frequency parameters 
ω* for a three-layered, cross-
ply [0°/90°/0°] cylindrical 
shell with various boundary 
conditions

Boundary 
condition

Method n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

F–F Ref. [9] 1.115140 1.077907 0.932638 0.782492 0.646864 0.533173
Ref. [9] 1.152210 1.078821 0.932954 0.782632 0.647052 0.533458
Present method 1.115139 1.077903 0.932631 0.782480 0.646847 0.533149

C–C Ref. [9] 1.062242 0.813717 0.629498 0.500864 0.409156 0.341724
Ref. [9] 1.055098 0.813714 0.629554 0.500832 0.409211 0.341720
Present method 1.062189 0.813778 0.629498 0.500592 0.408977 0.342301

S–S Ref. [9] 1.061284 0.804054 0.598331 0.450144 0.345253 0.270754
Ref. [9] 1.061285 0.804063 0.598337 0.450134 0.345249 0.270759
Present method 1.061283 0.804051 0.598326 0.450137 0.345244 0.270741

Table 2  Comparison of frequency parameters ω* for a composite 
cylindrical shell with two edges simply supported

�(rev∕ s) n Ref. [9] Present method

�∗
b

�∗
f

�∗
b

�∗
f

0.1 3 0.598510 0.598402 0.598471 0.598183
4 0.450123 0.450084 0.450263 0.450015
5 0.344932 0.345319 0.345353 0.345140
6 0.271001 0.270691 0.270839 0.270654

0.4 3 0.598584 0.598091 0.598911 0.597757
4 0.450396 0.441001 0.450654 0.449660
5 0.345319 0.345099 0.345714 0.344860
6 0.271101 0.270801 0.271193 0.270454

1.0 3 0.598992 0.597901 0.599813 0.596930
4 0.450902 0.449611 0.451502 0.449015
5 0.346091 0.344991 0.346577 0.344442
6 0.271901 0.270799 0.272174 0.270326

Table 3  Comparison of frequency parameters ω* for a composite 
cylindrical shell with two edges clamped

� (rev∕ s) n Ref. [9] Present method

�∗
b

�∗
f

�∗
b

�∗
f

0.1 3 0.629596 0.629382 0.629624 0.629349
4 0.500898 0.500792 0.500951 0.500714
5 0.409194 0.408993 0.409225 0.4090222
6 0.341960 0.341692 0.341753 0.341576

0.4 3 0.629795 0.629301 0.630018 0.628919
4 0.501089 0.500597 0.501329 0.500384
5 0.408998 0.409101 0.409567 0.408752
6 0.342106 0.341599 0.342043 0.341333

1.0 3 0.630501 0.628599 0.630911 0.628164
4 0.501911 0.500392 0.502119 0.499757
5 0.409889 0.408493 0.410356 0.408320
6 0.342489 0.341379 0.342960 0.341187
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Fig. 5  Variation of the frequency parameter ω*of a rotating three-lay-
ered [0°/90°/0°] cylindrical shell with different circumferential wave 
numbers n 

boundary condition. The numerical results from stud-
ies [12, 30, 31] are also given in Table 4 for comparison. 
Material and geometric parameters are defined as: α = 30°, 
L*sinα/R1 = 0.25, h/R1 = 0.01, 0.02, 0.03, 0.04, 0.05,0.06; 
E1/E2 = 40, G12/E2 = 0.5, μ12 = 0.25. It can be found that the 
predicted results of the current method are very close to 
those from the literature. Because the research on rotating 
laminated conical shells has not been published in the exist-
ing literature, most of them are confined to isotropic mate-
rials. Therefore, the next step is to carry out comparative 
validation of rotating isotropic conical shells. In this paper, 

isotropic parameters can be obtained only by setting the fol-
lowing parameters: E1/E2 = 1, G12 = E2/2/(1 + μ12). Table 5 
shows frequency (m, n) = (1, 1) comparisons between the 
literature results [32] and the present method. Geometric 
parameters are defined as follows: φ = 30°, h/R0 = 0.01, 
L/R0 = 6. By comparison, it can be found that the method in 
this paper is also accurate in predicting the vibration char-
acteristics of rotating conical shells. Next, some parametric 
studies will be carried out.

Figure 8 shows the effect of the circumferential wave 
number n on frequency parameters of three-layered 
[0°/90°/0°] rotating laminated conical shells with various 
boundary conditions. In this example, the material and 
geometric parameters are consistent with those in Table 4. 
The rotation speed is 20 rev/s. Geometric parameters are 
defined as follows: φ = 30°, h/R1 = 0.01, L/R1 = 1. It can be 
found intuitively that when the circumferential wave num-
ber is less than 3, the frequency parameter decreases rap-
idly with the increase of the circumferential wave number. 
When the circumferential wave number is more than 3, the 
frequency parameter increases linearly with the increase of 
the circumferential wave number. When the wave number is 
large enough, the frequency parameter tends to be consistent 
gradually, regardless of the boundary conditions. Figure 9 
shows the relationship between boundary parameters and 
vibration characteristics of three-layered [0°/90°/0°] rotat-
ing laminated conical shells. The geometric parameters and 
material constants are consistent with Fig. 8. The boundary 
conditions are defined as shown in Fig. 6. It is obvious that 
the effects of the linear elastic spring ku and rotating spring 
Kw on the vibration characteristics of the rotating laminated 
conical shells are very weak, while the linear elastic springs 
ku and kw are very strong. Figure 10 shows the variation of 
frequency (m, n) = (1, 3) of three-layered [0°/90°/0°] rotat-
ing laminated conical shells subjected to different bound-
ary conditions. In this section, each kind of springs carries 
one direction with stiffness distributed zero, and the rest 
springs are assigned infinity. The rotation speed Ω varies 
from 0 to 20 rev/s. In this example, it can be seen that the 
backward frequency parameter is always larger than the for-
ward frequency parameter, which is similar to the cylindrical 
shell. For the backward frequency parameter, the frequency 
parameter increases with the increase of the rotation speed. 
However, for the forward frequency parameters, when the 
rotation speed is less than 5, the forward frequency decreases 
with the increase of the rotation speed. After the rotation 
speed is more than 5, the forward frequency parameters 
gradually increase with the increase of the rotation speed.

3.3  Rotating laminated spherical shells

Next, the related research work on rotating laminated 
spherical shells will be carried out. At present, most of the 

Fig. 6  Frequency for a three-layered [0°/90°/0°] laminated cylindrical 
shell with one edge clamped, while the other edge restrained by one 
set of variable stiffness spring
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studies on non-rotating laminated spherical shells are based 
on the first-order shear deformation theory, and the results 
of thin laminated spherical shells are lacking. In addition, 
the research on rotating laminated spherical shells has not 
been published before. Therefore, in order to verify the cor-
rectness of this method, a comparative study between the 

present method and the finite element numerical results is 
given here. Table 6 shows the frequency parameters for a 
non-rotating three-layered [0°/90°/0°] laminated spherical 
shell. Geometric and material parameters are defined as fol-
lows: φ1 = 60°, φ2 = 90°, h = 0.01 m, R = 1 m, E1 = 138GPa, 
E2 = 10.6GPa, G12 = 6GPa, μ12 = 0.25, ρ = 1500  kg/m3. 

(a) (b)

(c) (d)

Fig. 7  Variation of the frequency parameters �∗
f
 and �∗

b
 of three-layered [0°/90°/0°] laminated cylindrical shell with rotating speed Ω*: a C–C; b 

SD–SD; c E1–E1; d E2–E2

Table 4  Fundamental frequency parameters of an antisymmetric cross-plied laminated conical shell with the S–S boundary condition

h/R1 Ref. [31] Ref. [30] Ref. [12] Present method

With coupling Without cou-
pling

With coupling Without cou-
pling

With coupling Without cou-
pling

With coupling Without coupling

0.01 0.1769 0.1978 0.1799 0.1976 0.1785 0.1980 0.1770 0.1978
0.02 0.2119 0.2355 0.2153 0.2351 0.2128 0.2353 0.2119 0.2355
0.03 0.2360 0.2671 0.2397 0.2667 0.2402 0.2671 0.2359 0.2671
0.04 0.2578 0.2992 0.2620 0.2987 0.2607 0.2994 0.2577 0.2992
0.05 0.2794 0.3308 0.2841 0.3303 0.2816 0.3307 0.2793 0.3308
0.06 0.3010 0.3606 0.3061 0.3602 0.3024 0.3611 0.3008 0.3606
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Detailed parameters of the finite element model are as fol-
lows: mesh type: S4R (ABAQUS 6.10) and the number of 
the grid: 30472. By comparing with the results of the finite 
element method, it can be found that the current method has 
good calculation accuracy for the study of rotating laminated 
spherical shells.

Figure  11 shows the correlation between frequency 
parameters of the rotating three-layered [0°/90°/0°] lami-
nated spherical shells and circumferential wave number n. 
The rotation speed Ω is 20 rev/s. Obviously, the frequency 
parameters obtained under fixed boundary conditions are 

the largest. For C–S boundary and S–S boundary, when the 
wave number is less than 3, the frequency parameter under 
S–S boundary is larger than that under C–S boundary, and 
when the wave number is more than 3, the frequency param-
eter under S–S boundary is smaller than that under C–S 
boundary. In addition, the variation of frequency parameters 
with the wave number is similar to those of cylindrical shells 
and conical shells. However, it must be noted that no matter 
how large the wave number is, their frequency parameters 
do not converge.

Table 5  Frequency comparisons 
between the Han’s model and 
present model with various 
boundary conditions

Ω* Boundary 
condition

(m, n) = (1,1) Ref. [32] Ref. [32] Ref. [32] Present method

0.2 C–C �∗
f

0.6193 0.6021 0.5965 0.5964
�∗
b

0.8935 0.8843 0.8831 0.8830
S–S �∗

f
0.5631 0.5366 0.5422 0.5423

�∗
b

0.7338 0.7387 0.7248 0.7246
C–S �∗

f
0.5680 0.5414 0.5441 0.5441

�∗
b

0.7751 0.7800 0.7624 0.7621
S–C �∗

f
0.6143 0.5956 0.5910 0.5911

�∗
b

0.8890 0.8774 0.8767 0.8767
0.3 C–C �∗

f
0.5659 0.5268 0.5145 0.5144

�∗
b

0.9300 0.9287 0.9403 0.9402
S–S �∗

f
0.4695 0.4371 0.4537 0.4539

�∗
b

0.7613 0.7692 0.7619 0.7616
C–S �∗

f
0.5008 0.4412 0.4547 0.4548

�∗
b

0.7915 0.7978 0.7974 0.7972
S–C �∗

f
0.5615 0.5210 0.5096 0.5097

�∗
b

0.9304 0.9273 0.9362 0.9362

Fig. 8  Variation of the frequency parameters ω* for a three-layered 
[0°/90°/0°] laminated conical shell with circumferential wave num-
bers n 

Fig. 9  Frequency for a three-layered [0°/90°/0°] laminated conical 
shell with one edge clamped, while the other edge restrained by one 
set of variable stiffness spring
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Figure 12 shows the frequency parameter for a three-
layered [0°/90°/0°] spherical shell with elastic boundary 
conditions. The definition of elastic boundary conditions is 
consistent with Fig. 6. The material constants and geometric 
parameters are consistent with Fig. 11. From Fig. 6, it can be 
found that the stiffness coefficient of the rotating spring Kw 
has little effect on the vibration characteristics of the rotat-
ing laminated spherical shells. However, unlike cylindrical 
shells and conical shells, the linear spring ku has the most 
significant effect on the vibration characteristics of rotating 
three laminated spherical shells. Figure 13 shows the vari-
ation of frequency (m, n) = (1, 3) of rotating three-layered 
[0°/90°/0°] laminated spherical shells with different rotation 
speeds. The geometric and material parameters are similar 
to those in Fig. 12. The definition of boundary conditions is 
similar to Fig. 10. It is not difficult to find that the frequency 
parameters of rotating laminated spherical shells are not sen-
sitive to the increase of the rotation speed. When the rotation 

speed is less than 6, the frequency parameters are basically 
unchanged. Therefore, it can be concluded that when the 
structural form is different, the influence of the same param-
eters on the vibration characteristics is not consistent.

4  Conclusions

The aim of this paper is to establish a unified analytical 
model for rotating laminated cylindrical shells, conical shells 
and spherical shells with various boundary conditions. The 
Reissner–Naghdi’s linear shell theory is adopted to estab-
lish the energy function. The spring simulation technique 
is introduced to simulate general boundary conditions. On 
the basis of the above, the Lagrangian function of unified 
rotation laminated shells is established and the differential 
quadrature is used to represent the displacement function of 
structure. Finally, the vibration characteristics of the rotating 

Table 6  Comparison of 
frequency parameters ω* for a 
composite spherical shell with 
various boundary conditions

BC Method n

1 2 3 4 5

F–F FEM 0.0029 0.0226 0.0643 0.1182 0.1802
Present method 0.0029 0.0230 0.0649 0.1192 0.1817

F–C FEM 1.4665 0.9176 0.5967 0.4089 0.3272
Present method 1.4676 0.9201 0.5986 0.4171 0.3344

C–F FEM 1.2193 0.7500 0.4865 0.3346 0.2686
Present method 1.2204 0.7529 0.4901 0.3377 0.2755

C–C FEM 3.1493 2.9417 2.8462 2.7666 2.7207
Present method 3.1685 2.9370 2.8408 2.7532 2.7203

Fig. 11  Variation of the frequency parameters ω* for a three-layered 
[0°/90°/0°] laminated spherical shell with circumferential wave num-
ber n 

Fig. 10  Vibration of bifurcation of frequency parameter ω* for a 
three-layered [0°/90°/0°] laminated conical shell as a function of the 
rotating speed Ω
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laminated shells will be transformed into a standard system 
of linear equations. The correctness of the current model is 
verified by comparing with the existing literature. Consider-
ing that the results for rotating laminated conical shells and 
laminated spherical shells have not been published before, 
therefore, the work of this paper can be used as reference 
data for future research.

Fig. 12  Frequency for a three-layered [0°/90°/0°] laminated spherical 
shell with one edge clamped, while the other edge restrained by one 
set of variable stiffness spring
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The ‘diag’ represents a diagonal matrix.
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