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Abstract
Shell elements are extensively used by engineers for modeling the behavior of shell structures. Among common shell ele-
ments, triangular shell elements are not influenced by element warping. This paper proposes a new three-node triangular flat 
shell element with six degrees of freedom per each node, named TMRFS. The element is formed by assemblage of new bend-
ing and membrane elements. The bending element is formulated based on the hybrid displacement function element method 
and Mindlin–Reissner plate theory. In this element, an assumed displacement function is employed as the trial function. 
The membrane component is an unsymmetric triangular membrane element with drilling vertex rotations. The membrane 
element employs two different types of displacement fields as the test and trial functions. The test function is a displacement 
field which is the same as one used in well-known Allman triangular element. Meanwhile, instead of displacement field, the 
analytical stress field is considered as the trial function. Numerical tests show that the accuracy of the proposed flat shell 
element is reasonable in comparison with some popular triangular elements and its performance is insensitive to geometry, 
load and boundary conditions. Moreover, the proposed element preserves the advantages of its formulation including free 
of membrane locking, shear locking and stiffness matrix singularity problems.

Keywords  Flat shell element · Unsymmetric finite element method · Hybrid displacement function element method · Shell 
structures · Membrane element · Plate bending element

1  Introduction

Finite element method is an efficient approach for numerical 
analysis of shell structures. Over last decades, a number of 
studies have been done to develop an efficient shell element 
with simple formulation [1–3]. There are three types of shell 
element that can be employed in shell analysis: (1) flat shell 
element which is formed by superposition of membrane 
and plate bending elements; (2) degenerated shell element 

which is formulated based on solid-shell theory; and (3) 
curved shell element which is defined based on classical 
shell theory. Among these elements, the flat shell element 
avoids complicated forms of shell equations that can be used 
easily by engineers. It should be noted, curved shell element 
is more capable in curved geometry modeling, but using the 
classical shell theory leads to complex formulation of this 
element that is not attractive for engineers. Triangular and 
quadrilateral flat shell elements are conventional in finite 
element analysis of shell structures. The remarkable advan-
tage of triangular elements is that they are not influenced by 
element warping. This study is focused with the develop-
ment of an efficient triangular flat shell element.

During recent decades, significant studies have been done 
on Mindlin–Reissner plate bending elements. The main 
drawback of these elements is the over stiffness problem in 
thin plate caused by shear locking. To meet this challenge, 
different methods have been introduced, such as the hybrid-
mixed variational method [4], using shear strain interpo-
lation obtained by Timoshenko’s beam functions [5], the 
smoothed finite element method [6], the combined hybrid 
method [7], the discrete shear gap method [8], the enhanced 
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assumed strain method [9], polygonal finite element method 
[10], and node-variable plate theory [11]. Beside the shear 
locking problem, the performance of bending element 
should be insensitive to geometry (sometimes problem 
geometry leads to irregular mesh pattern) and the error of 
estimated solution must be lower. In 1988, Zienkiewicz 
and Lefebvre [12] proposed a new triangular plate bending 
element through independent interpolations for displace-
ments and shear forces. Using assumed shear strain fields 
and Mindlin–Reissner plate theory, Katili [13] presented 
a new discrete Kirchhoff–Mindlin element. By employing 
the Timoshenko’s beam functions and refined nonconform-
ing element method, Wanji and Cheung [14] introduced a 
new triangular Mindlin–Reissner plate bending element. 
Using the cell-based strain smoothing technique and dis-
crete shear gap method, Nguyen-Thoi et al. [8] presented a 
three-node triangular plate bending element. Although these 
bending elements had better accuracy than the other ones, 
their performance was sensitive to problem geometry. To 
overcome this challenge in plane element, Cen et al. [15, 
16] presented the hybrid stress-function element method 
which was based on the minimum complementary energy. 
The resulting element performance was acceptable even for 
complex geometry. The trial function in hybrid stress-func-
tion element method was a stress field that satisfied the ele-
ment governing equations. Using this concept, an extended 
hybrid-Trefftz method was proposed by Jirousek et al. [17, 
18]. The hybrid-Trefftz method which was developed by Jir-
ousek and Leon [19] is a convenient approach to introduce 
lower-order bending elements with simple formulation such 
as, four- and eight-node quadrilateral plate bending elements 
[20, 21]. However, most of the hybrid-Trefftz bending ele-
ments possess spurious zero modes. As a solution, using 
Mindlin–Reissner plate theory Cen et al. [22] presented 
the hybrid displacement function element method which 
was formulated based on the extended hybrid-Trefftz stress 
element method. In this method an assumed displacement 
function was employed as variational functional of comple-
mentary energy and the displacements along each element 
edge were determined by the Timoshenko’s beam theory. 
Afterward, Shang et al. [23] investigated the performance 
of the hybrid displacement function element method on the 
edge effect of Mindlin–Reissner plate caused by specific 
boundary conditions. Furthermore, using generalized con-
forming theory they improved this method [24] for ortho-
tropic Mindlin–Reissner plate. For free vibration analysis 
of Mindlin–Reissner plate, Huang et al. [25] proposed a 
triangular bending element by employing hybrid displace-
ment function element method. The results of these studies 
proved the efficiency of the hybrid displacement function 
element method.

As for membrane element over the past decades, a number 
of studies have carried out on introducing high performance 

membrane element which can provide acceptable accuracy 
in complex geometry, such as the hybrid-EAS method [9], 
the spline element method [26], the quadrilateral area coor-
dinate method [27], the overlapping element method [28] 
and so on. In 1956, Turner et al. [29] developed the constant 
strain triangle (CST) element which was the first triangular 
membrane element that extensively used in finite element 
analysis. Another widely used triangular membrane ele-
ment is the linear strain triangle (LST) element introduced 
by Veubeke [30]. The major drawback of these elements 
is lack of drilling degrees of freedom. Drilling degrees of 
freedom in membrane element enhance the displacement 
field order without increasing element nodes. Moreover, 
membrane element with drilling rotations avoids stiffness 
matrix singularity problem in flat shell element. Allman [31] 
introduced the first triangular membrane element with drill-
ing degrees of freedom. In this element the drilling rotations 
were obtained through an interpolation along each element 
edge. Since then, several studies have been carried out on 
membrane element with drilling rotations specifically All-
man-type ones, namely Choo et al. [32] proposed a new tri-
angular membrane element with drilling degrees of freedom 
through the hybrid-Trefftz method and Allman-type drilling 
rotations. Huang et al. [33] proposed a modified Allman’s 
triangular membrane element with drilling vertex rotations. 
Using hybrid variational principle and analytical solution 
Rezaiee-Pajand and Karkon [34] presented an efficient 
hybrid stress membrane element with Allman-type drilling 
rotations. However, the performance of these elements is 
not reasonable. The unsymmetric finite element method is 
a promising approach to introduce membrane element with 
insensitivity to problem geometry. In addition, the unsym-
metric membrane element is free of membrane locking and 
has explicit stiffness matrix in Cartesian coordinates. In this 
method two different types of displacement fields are used 
as the test function and trial function. In 2003, Rajendran 
and Liew [35] developed the first unsymmetric membrane 
element using the test and trial functions in isoparametric set 
and metric set, respectively. Although the obtained results 
proved its performance, this element suffers from rotational 
frame dependence and the completeness condition that 
caused by metric-based trial function. To eliminate these 
defects, Cen et al. [36] proposed an improved unsymmet-
ric finite element method by employing the analytical trial 
function method. Using this improved method, Cen et al. 
[37, 38] introduced two quadrilateral membrane elements 
for geometrically linear and nonlinear analysis of structures. 
The trial functions of these elements were based on the dis-
placement approximations in Cartesian coordinates that 
satisfy elements governing equations. In 2018 Shang and 
Ouyang [39] proposed a new version of unsymmetric finite 
element method by using stress field as the trial function. 
Through this way and Allman-type drilling rotations, they 
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introduced the first unsymmetric quadrilateral element with 
drilling degrees of freedom.

Great efforts have been made on triangular flat shell ele-
ments with drilling vertex rotations to propose an element 
with acceptable performance; nevertheless, more studies are 
still needed. Providas and Kattis [40] proposed a triangular 
flat shell element by using a constant strain triangular ele-
ment with drilling rotations. In this flat shell element the 
added rotation stiffness had minimum contribution to the 
element strain energy. Moreover, the drilling rotations were 
obtained through an independent approximation of rotation 
field. By employing the Timoshenko’s beam function and 
quasi-conforming technique, Wang and Hu [41] presented 
two triangular flat shell elements with different string net 
functions that can maintain their accuracies even in com-
plex geometry. Zengjie and Wanji [42] introduced flat tri-
angular shell elements which were formed by combining 
refined triangular discrete Mindlin plate element and either 
the constant strain membrane element with drilling rotations 
and linear strain membrane element. The obtained results 
illustrated the poor performance of the proposed elements. 
Zhang et al. [43] presented a triangular flat shell element 
using the refined nonconforming method-based bending 
element and ANDES-based membrane element with drill-
ing vertex rotations and then evaluated its performance 
by experimental test. In a similar study Shin and Lee [44] 
developed a triangular flat shell element in which the free 
parameters were included in the membrane component for-
mulation. Although the obtained numerical results proved 
the accuracy of the proposed shell element, its performance 
was highly sensitive to the free parameters and defining the 
free parameters was the main challenge in this element.

This study presents a novel three-node triangular flat 
shell element with 6 degrees of freedom per each node 
(three translational and three rotational degrees of freedom) 
named TMRFS. The proposed shell element is obtained by 
combining newly introduced membrane and plate bending 
elements. The membrane component is an unsymmetric 
three-node triangular element with drilling vertex rota-
tions formulated based on the unsymmetric finite element 
method. The element’s test function coincides with well-
known Allman [31] triangular membrane element. The ele-
ment’s trial function is defined based on the stress polyno-
mial approximations derived from the Airy stress function 
in Cartesian coordinates, same as the one used for the hybrid 
stress-function elements [15, 16]. The presence of drilling 
degrees of freedom in membrane component can avoid the 
stiffness matrix singularity that appears when all elements 
are coplanar. The bending component is a three-node trian-
gular Mindlin–Reissner bending element which is formu-
lated based on the hybrid displacement function element 
method [22]. In this method, the variational functional of 
complementary energy is an assumed displacement field and 

the Timoshenko’s beam functions are used to define the dis-
placements along each element edge. To assess the proposed 
triangular flat shell element, some classic benchmark exam-
ples are employed and their results are compared with some 
popular triangular elements. The obtained results prove that 
the proposed TMRFS element passes all patch tests, avoids 
locking problems and provides acceptable accuracy in com-
plex geometry.

2 � Formulation

As discussed earlier, a flat shell element is obtained by 
assemblage of membrane and plate bending elements. For 
the proposed TMRFS element, the membrane part is a new 
three-node unsymmetric triangular membrane element with 
two translations (ui and vi) and one drilling vertex rotation 
(�zi) per each element node. The bending part is a new tri-
angular hybrid displacement function bending element with 
one translation (wi) and two bending rotations (�xi and �yi) . 
Accordingly, the degrees of freedom for each node of the 
proposed flat shell element can be expressed as follows

For the proposed TMRFS flat shell element, the element 
equation can be written as follows

where � is the nodal displacements, � is the element load 
vector and �s is the stiffness matrix of the TMRFS flat shell 
element which is formed by combining the membrane stiff-
ness and bending stiffness matrices, as follows

where �m is the membrane stiffness matrix and �p is the 
plate bending stiffness matrix. Above equations illustrate 
element stiffness matrix, load vector and displacement vec-
tor in global coordinate systems. If the local axes for the 
proposed element are not parallel to the global ones, the axes 
transformation should be applied. The matrix form of axes 
transformation can be written as follows

in which li, mi and ni are the cosines of angles between 
global and local axes, Ref. [45] provides more details about 
the evaluation procedure of these matrix elements. The 
global form of stiffness matrix, load vector and displacement 

(1)dT
i
=
{
ui vi wi �xi �yi �zi

}
, (i = 1 ∼ 3).

(2)�s� = �s

(3)Ks =

[
�m 0

0 �p

]
,

(4)� =

⎡⎢⎢⎣

l1 m1 n1
l2 m2 n2
l3 m3 n3

⎤⎥⎥⎦
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vector can be defined by employing the axes transformation 
matrix, as follows:

where

in which �loc, �loc and �loc are the stiffness matrix, displace-
ment vector and load vector in local coordinate systems, 
respectively.

2.1 � The bending component

The bending component of the proposed flat shell element 
is a novel three-node triangular bending element formulated 
based on the hybrid displacement function element method 
[22] and Mindlin–Reissner plate theory. In hybrid displace-
ment function element method, an assumed displacement 
function F is employed as the variational functional of com-
plementary energy. Then, the resultant forces that satisfy 
the equilibrium equations are obtained using the assumed 
displacement function and the nodal displacements are 
defined along each element edge through the Timoshenko’s 
beam theory. Finally, the stiffness matrix of bending element 
can be computed by employing the minimum complemen-
tary energy principle. Figure 1 shows the proposed Mind-
lin–Reissner plate element that its mid-surface is defined on 
(x, y) plane and z axis is along the element thickness.

(5)� = �T�loc�,

(6)� = �T�loc�,

(7)� = �T�loc�,

(8)� =

⎡⎢⎢⎢⎢⎢⎢⎣

� ⋯ 0

�

� ⋮

⋮ �

�

0 ⋯ �

⎤⎥⎥⎥⎥⎥⎥⎦
18×18

In the Mindlin–Reissner plate theory, the displacements 
at any point can be expressed as follows

in which h is the plate thickness. The governing equations of 
the Mindlin–Reissner plate theory are the equilibrium equa-
tions and strain–displacement equations. For a uniformly 
distributed load q, the equilibrium equations can be written 
as follows

in which Mx and My are the bending moments, Mxy is the 
twisting moment, Qx and Qy are the shear forces, as shown 
in Fig. 1. For linear plate, by employing the approximation 
of small displacements, the strain–displacement equations 
can be expressed as

where �x and �y are the shear strains and �x, �y and �xy are the 
curvatures. The elasticity matrix Dp for the proposed bend-
ing element is given by

with

(9)u = −z�x, v = −z�y, w = w(x, y),
(
−
h

2
≤ z ≤ h

2

)
,

(10)

�Mx

�x
+

�Mxy

�y
− Qx = 0,

�Mxy

�x
+

�My

�y
− Qy = 0,

�Qx

�x
+

�Qy

�y
+ q = 0,

(11)
�x = −

��x

�x
, �y = −

��y

�y
, �xy = −

(
��x

�y
+

��y

�x

)
,

�x =
�w

�x
− �x, �y =

�w

�y
− �y,

(12)Dp =

⎡
⎢⎢⎢⎢⎢⎣

D �D 0 0 0

�D D 0 0 0

0 0
1−�

2
D 0 0

0 0 0 C 0

0 0 0 0 C

⎤
⎥⎥⎥⎥⎥⎦

,

Fig. 1   Triangular Mindlin–
Reissner plate bending element
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in which � is the Poisson’s ratio, E is the Young’s modulus 
and G is the shear modulus. Matrix �p is computed by the 
following equation:

where �H is the material matrix (Hook’s matrix) in plane 
stress condition. Accordingly, the constitutive relations can 
be defined as

where R and E are defined as follows

Based on the hybrid displacement function element 
method, the deflection and rotations of bending element can 
be obtained by a displacement function F, as follows

in which the displacement function F should satisfy the fol-
lowing equation:

Substitution of Eq. (17) into Eq. (11) yields

By substituting Eq. (17) in Eq. (15), the resultant forces 
are determined in terms of displacement function F, as 
follows

(13)D =
Eh3

12(1 − �2)
, C =

5

6
Gh,

(14)�p = ∫
h∕2

−h∕2

z2�Hdz,

(15)R = DpE,

(16)
R = [Mx My Mxy Qx Qy ]

T,

E = [ �x �y �xy �x �y ]
T.

(17)w = F −

(
h2

5(1 − �)

)
∇2F, �x =

�F

�x
, �y =

�F

�y
,

(18)D∇2∇2F = q.

(19)
�x = −

�2F

�x2
, �y = −

�2F

�y2
, �xy = −2

�2F

�x�y
,

�x = −
D

C

(
�∇2F

�x

)
, �y = −

D

C

(
�∇2F

�y

)
.

(20)

Mx = −D

(
�2F

�x2
+ �

�2F

�y2

)
,

My = −D

(
�2F

�y2
+ �

�2F

�x2

)
,

Mxy = −D(1 − �)

(
�2F

�x�y

)
,

Qx = −D

(
�∇2F

�x

)
,

Qy = −D

(
�∇2F

�y

)
.

The displacement function F is the solution of Eq. (18) 
that can be divided into homogeneous (Fh) and particular 
(Fp) parts, as follows

in which Fh is the solution of homogeneous biharmonic 
equation ∇2∇2F = 0 that can be assumed as

With

where �i(i = 1 ~ 11) are undetermined coefficients and Fi

(i = 1 ~ 11) are the polynomial approximations for homo-
geneous part of displacement function. These polynomial 
approximations should be selected at least from the second-
order terms and possess completeness of selected order in 
Cartesian coordinates; the details of the derivation of these 
polynomial approximations can be found in Ref. [46].

Cen et al. [16] assessed the performance of hybrid stress-
function elements that in their trial functions different num-
ber of polynomial approximations were used. In a similar 
way, for the proposed bending element the first seven (third-
order), eleven (forth-order) and fifteen (fifth-order) polyno-
mials are considered. For each of them the element perfor-
mance is evaluated by numerical problems. The obtained 
results show all cases have acceptable performance; moreo-
ver, the bending element with the first eleven polynomials 
(forth-order completeness) provides better performance 
when combined with the considered membrane element than 
the other cases. The main difference between the proposed 
bending element and the one presented by Huang et al. [25] 
is the order of considered polynomial approximations in the 
trial function. These polynomials are illustrated in Table 1.

Then, the resultant forces of homogenous solutions can 
be defined by using Eq. (20) as follows

in which Mh
x
, Mh

y
, Mh

xy
, Qh

x
andQh

y
 are defined in Table 1. The 

particular part of displacement function Fp can be defined 
from Eq. (18). For instance, if the applied load q is a uni-
formly distributed force, the particular part of displacement 
function can be written as follows

(21)F = Fh + Fp,

(22)Fh = Ŝ𝛽,

(23)
Ŝ =

[
F1 F2 … F11

]
,

𝛽 =
[
𝛽1 𝛽2 … 𝛽11

]T
,

(24)

R
h
=

⎧⎪⎪⎨⎪⎪⎩

Mh
x

Mh
y

Mh
xy

Qh
x

Qh
y

⎫⎪⎪⎬⎪⎪⎭

= Ŝ𝛽 =

⎡⎢⎢⎢⎢⎢⎣

Mh

x1
Mh

x2
… Mh

x11

Mh

y1
Mh

y2
… Mh

y11

Mh

xy1
Mh

xy2
… Mh

xy11

Qh

x1
Qh

x2
… Qh

x11

Qh

y1
Qh

y2
… Qh

y11

⎤⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝛽1
𝛽2
⋮

⋮

⋮

𝛽11

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,
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Accordingly, the particular solutions of resultant forces 
can be obtained by using Eq. (20) as follows

Now the stiffness matrix of bending element can be 
determined using the defined displacement function F. For 
a Mindlin–Reissner plate bending element, the complemen-
tary energy functional [47] can be written as

in which R is the total resultant force vector that is equal to 
the sum of the homogenous and particular parts of resultant 
forces (R = Rh + Rp),R̄ denotes the value of total result-
ant force vector along the element edges, and d̄ is the value 
of deflections and rotations along the element boundaries 
which can be expressed as follows

where qp is the displacement vector of bending element 
and N̄p is an interpolation function matrix that should be 
defined for each element edge separately by employing the 
Timoshenko’s beam function. The evaluation procedure of 
matrix �̄p is detailed in “Appendix”. Then, using the total 
resultant forces and Eq. (24) the complementary energy 
functional can be expressed as

in which

(25)Fp =
q

48D
(x4 + y4).

(26)Rp =

⎧
⎪⎪⎨⎪⎪⎩

M
p
x

M
p
y

M
p
xy

Q
p
x

Q
p
y

⎫
⎪⎪⎬⎪⎪⎭

=

⎧
⎪⎪⎨⎪⎪⎩

−q

4
(x2 + �y2)

−q

4
(�x2 + y2)

0
−q

2
x

−q

2
y

⎫
⎪⎪⎬⎪⎪⎭

.

(27)
∏
c

= ∬A

(
1

2
RTD−1

p
R
)
dA + ∫S

(R̄d̄)ds,

(28)d̄ = N̄pqp,

(29)

𝛱c = ∬A

1

2
(Ŝ𝛽 + Rp)TD−1

p
(Ŝ𝛽 + Rp)dA + ∫S

(Ŝ𝛽 + Rp)N̄qpds

=
1

2
(𝛽TM𝛽 + 𝛽TMp + (Mp)T𝛽 + T) + 𝛽THqp + Vqp,

Using the stationary condition of complementary energy, 
the undetermined coefficient vector can be defined as

Accordingly, by using Eqs. (31), (29) can be rewritten 
as follows

Finally, by employing the principal of minimum energy, 
the stiffness matrix Kp and nodal load vector Pp for the pro-
posed bending element can be defined as follows

2.2 � The membrane component

The membrane component of TMRFS element is a new 
three-node triangular membrane element with drilling 
degrees of freedom. The membrane element is formulated in 
the framework of unsymmetric finite element method devel-
oped by Shang and Ouyang [39]. The element’s test func-
tion is a conventional displacement field which was used in 
well-known Allman [31] triangular membrane element. The 
trial function of the proposed membrane element is a stress 
field which is defined based on the polynomial approxima-
tions in Cartesian coordinates. These polynomials satisfy the 
Airy stress-function similar to the one used in hybrid stress-
function elements [15, 16]. Then, to define the relationship 
between the trial function and nodal degrees of freedom the 
quasi-conforming technique [48, 49] is employed. Finally, 
the membrane stiffness matrix can be derived using the 

(30)

M = ∬A

Ŝ
T
D−1

p
ŜdA, Mp = ∬A

Ŝ
T
D−1

p
RpdA, T = ∬A

(Rp)TD−1
p
RpdA,

H = ∫S

Ŝ
T
N̄pds,V = ∫S

(Rp)TN̄pds.

(31)� = −M−1(Mp +Hqp).

(32)

�c = −
1

2
�T
m
�T�−1��m −

1

2
(�p)T�−1�p +

1

2
�

− (�p)T�−1��m + ��m,

(33)
Kp = HTM−1H,

Pp = VT −HTM−1Mp.

Table 1   The first eleven polynomial approximations for the homogenous part and their resultant forces

i 1 2 3 4 5 6 7 8 9 10 11

−DFi x2 xy y2 x3 x2y xy2 y3 x3y xy3 x4 − y4 6x2y2 − x4 − y4

Mh

xi
2 0 2� 6x 2y 2�x 6�y 6xy 6�xy 12(x2 − �y2) 12(1 − �)(y2 − x2)

Mh

yi
2� 0 2 6�x 2�y 2x 6y 6�xy 6xy 12(y2 − �x2) 12(1 − �)(x2 − y2)

Mh

xyi
0 1 − � 0 0 2(1 − �)x 2(1 − �)y 0 3(1 − �)x2 3(1 − �)y2 0 24(1 − �)xy

Qh

xi
0 0 0 6 0 2 0 6y 6y 24x 0

Qh

yi
0 0 0 0 2 0 6 6x 6x − 24y 0
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virtual work principle. Figure 2 shows the proposed unsym-
metric membrane element with drilling vertex rotations.

Based on the unsymmetric finite element method for the 
proposed membrane element, two different types of dis-
placement fields are used as the test and trial functions. The 
test function coincides with the displacement field of All-
man [31] triangular membrane element, in which the drill-
ing degrees of freedom were defined by using displacement 
interpolation along each element boundary, as follows

with

and bi, ci are defined as

in which �� is the membrane element displacement vec-
tor, �i are the triangular area coordinates, i = (1,2,3), 
j = mod(i/3) + 1 and k = mod((i + 1)/3) + 2. Thus, the corre-
sponding strain matrix �̄ is deduced by the considered test 
function �̄ as follows

With

where A is the area of the membrane element. As described 
above instead of using displacements, the element’s trial 
function can be independently assumed in unsymmetric 

(34)�̄ = �̄m�m,

(35)

�̄m =

[
…

𝜉i 0
1

2
(bk𝜉i𝜉j − bj𝜉k𝜉i)

0 𝜉i
1

2
(ck𝜉i𝜉j − cj𝜉k𝜉i)

…

]
, (i = 1 ∼ 3),

(36)
bi = yi − yk,

ci = xk − xj,

(37)�̄ = �̄�m,

(38)�̄ =
1

2A

⎡⎢⎢⎢⎣

bi 0
1

2
bi(bk𝜉j − bj𝜉k)

… 0 ci
1

2
ci(ck𝜉j − cj𝜉k) …

ci bi
1

2
(𝜉j(bkci + bick) − 𝜉k(bicj + bjci))

⎤⎥⎥⎥⎦
, (i = 1 ∼ 3),

finite element method. For the proposed membrane element, 
the trial function is a stress field which can be defined as

where

in which � is the undetermined coefficient vector and L is 
the stress matrix which is defined based on the analytical 
approximations of Airy stress function in Cartesian coordi-
nates, as follows

In matrix L, each column is one set of analytical stress 
approximations of plane problem [15, 16] (�x, �yand�xy). 
These analytical stresses are determined using the polyno-
mial approximations that satisfy the Airy stress function. 
As should be noted, these solutions must be selected at least 
from second-order completeness. Similar to proposed bend-
ing element, for the membrane component the first seven 
(third-order), eleven (forth-order) and fifteen (fifth-order) 
polynomials are evaluated, the obtained results prove that 
the first eleven polynomials lead to appropriate performance 
of proposed TMRFS shell element in analysis of shell struc-
tures. These polynomial approximations (pi) and the result-
ant analytical stresses are listed in Table 2.

Now the main challenge is the relationship between the 

nodal displacement vector �m and trial function �̂ because 
there are eleven undetermined coefficients, whereas only 
nine nodal displacements are available. Accordingly, to 
define this relationship the quasi-conforming technique 
[48, 49] which is based on the weighted residual method is 
employed, as follows

where �̂ is the strain related to trial function that can be 
obtained through the following equation

in which �m is the elasticity matrix of membrane element 
which is deduced from the material matrix (Hook’s matrix) 
in plane stress condition, as follows

(39)�̂ = �̂ = �̂�m,

(40)�̂ = ��,

(41)� =

⎡
⎢⎢⎣

�xi
⋯ �yi ⋯

�xyi

⎤
⎥⎥⎦
, (i = 1 ∼ 11),

(42)∭V

�T(�̄ − �̂)dV = 0,

(43)�̂ = �−1
m
�̂ = �−1

m
��,

Fig. 2   Triangular unsymmetric membrane element with drilling ver-
tex rotations
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Accordingly, Eq. (42) can be rewritten as follows

By solving Eq. (45), the relation between the nodal dis-
placement vector �m and undetermined coefficient vector � 
can be defined as follows

with

Accordingly, by substituting Eq. (46) into Eq. (39), matrix 
�̂ can be expressed as follows

By defining the test and trial functions, the membrane 
stiffness matrix can be determined using the virtual work 
principle [35, 39] as follows

where J is the body force and I is the surface force; by using 
Eqs. (37), (43) and (46), Eq. (43) can be rewritten as follows

(44)�m =
E

1 − �2

⎡
⎢⎢⎣

1 � 0

� 1 0

0 0
1−�

2

⎤
⎥⎥⎦
,

(45)

∭V

�T(�̄�m − �
−1

m
��)dV

= ∭V

(�T�̄�m − �T�
−1

m
��)dV

= ∭V

(��m − ��)dV = 0.

(46)� = �−1��m,

(47)
� = ∭V

�T�−1
m
�dV ,

� = ∭V

�T�̄dV .

(48)�̂ = ��−1�.

(49)∭V

𝛿�̄T�̂dV −∭V

𝛿�̄T�dV − ∫
�

𝛿�̄T�d𝛤 = 0,

with

By solving Eq. (50) the following finite element equation 
can be defined

in which �m is the membrane stiffness matrix and �m is the 
load vector of membrane element.

3 � Numerical examples

In order to analyze and evaluate the validity of the proposed 
TMRFS flat shell element, some numerical standard prob-
lems are employed, including patch tests, cantilever beam, 
Cook’s beam, clamped square plate, Razzaque’s skew plate, 
Scordelis–Lo roof, pinched cylinder, hemispherical shell and 
hyperbolic paraboloid shell problems. In each case, 4-point 
Gaussian integration scheme is employed to compute the 
stiffness matrix and load vector of the proposed shell ele-
ment. Moreover, to show the superiority of the proposed 
element the obtained results are compared with the ones 
from following popular triangular elements:

•	 Allman: a triangular membrane element with drilling 
vertex rotations [31] combined with the DKTM [13] 
plate bending element.

(50)

∭
V

𝛿�̄T�m�̂dV −∭
V

𝛿�̄T�dV − ∫
�

𝛿�̄T�d𝛤

= ∭
V

𝛿(�̄�m)
T��−1��mdV −∭

V

𝛿(�̄m�m)
T�dV − ∫

�

𝛿(�̄m�m)
T�d𝛤

= (𝛿�m)
T ∭

V

�̄T��−1��mdV −∭
V

(�̄m)
T�dV − ∫

�

(�̄m)
T�d𝛤

= (𝛿�m)
T(�m�m − �m) = 0,

(51)
�m = ∭V

�̄T��−1��mdV ,

�m = ∭V

(�̄m)
T�dV + ∫

�

(�̄m)
T�d𝛤 .

(52)�m�m = �m,

Table 2   The first eleven 
polynomial approximations and 
resultant stresses

i 1 2 3 4 5 6 7 8 9 10 11

pi x2 xy y2 x3 x2y xy2 y3 x3y xy3 x4 − y4 6x2y2 − x4 − y4

�xi 0 0 2 0 0 2x 6y 0 6xy −12y2 12(x2 − y2)

�yi 2 0 0 6x 2y 0 0 6xy 0 −12x2 −12(x2 − y2)

�xyi 0 −1 0 0 −2x −2y 0 −3x2 −3y2 0 −24xy
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•	 Cook: a stabilized three-node triangular flat shell element 
proposed by Cook [50].

•	 Providas and Kattis: three-node triangular flat shell ele-
ment with drilling stiffness presented by Providas and 
Kattis [40].

•	 ANDES: three-node triangular flat shell element with 
optimal membrane element based on the ANDES for-
mulation proposed by Felippa [51].

•	 QCS31: three-node triangular flat shell element formu-
lated based on the quasi-conforming technique presented 
by Wang and Hu [41].

•	 Shin and Lee: three-node triangular flat shell element 
using strain smoothing technique introduced by Shin and 
Lee [44].

•	 MITC3 +: three-node triangular shell element based on 
the mixed interpolation of tensorial component proposed 
by Lee et al. [52].

•	 T3: three-node triangular bending element with full inte-
gration presented by Hughes and Taylor [53].

•	 T3-R: three-node triangular bending element with 
reduced integration proposed by Pugh and Zienkiewicz 
[54].

•	 DKT: three-node triangular bending element based on 
the discrete Kirchhoff theory proposed by Batoz et al. 
[55].

•	 RDKTM: a refined three-node triangular bending ele-
ment based on the Mindlin-Reissner plate theory intro-
duced by Wanji and Cheung [14].

3.1 � Patch tests

Membrane and bending patch tests are well-known problems 
for evaluating the convergence and numerical implementa-
tion of the proposed TMRFS shell element. The membrane 
patch test is a numerical constant stress problem with five 
elements, Fig. 3a.

The membrane patch test is performed by enforcing the 
following analytical displacements

(53)u = 10−3(x + y∕2), v = 10−3(y + x∕2)

For the boundary nodes, these displacements are con-
sidered as the boundary conditions. Accordingly, the cor-
responding stresses for the inner nodes should be equal to 
the following values

The obtained results in Table 3 prove that the proposed 
element gives the exact solution for membrane patch test.

For bending patch test, a numerical constant moment 
problem with five elements is employed, Fig. 3b. The ana-
lytical displacements corresponding to constant moment 
patch test are as follows

According to the considered analytical displacements, the 
moment values are

Table 4 presents the values of the moments for inner 
nodes by enforcing the analytical displacements as the 
boundary conditions at boundary nodes. The obtained 
results depict that the proposed shell element passes the 
bending patch test.

3.2 � Cantilever beam problem

A clamped beam, as shown in Fig. 4, is loaded by a shear 
force at free edge. This is a stringent test to assess the mem-
brane behavior of the proposed TNRFS shell element.

(54)�x = �y = 1333.333, �xy = 400.0

(55)w =
1

2
(x2 + xy + y2), �x =

1

2
(y + 2x), �y =

1

2
(2y + x),

(56)
Mx = My = −0.011111,Mxy = −0.00333,Qx = Qy = 0

Fig. 3   Geometry and mate-
rial definition of patch tests. a 
Membrane patch test. b bending 
patch test

(a) (b)

Table 3   Numerical results for membrane patch test

Node u v �x �y �xy

5 0.00005 0.00004 1333.333 1333.333 400.0
6 0.000195 0.00012 1333.333 1333.333 400.0
7 0.0002 0.00016 1333.333 1333.333 400.0
8 0.000115 0.000125 1333.333 1333.333 400.0
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The normalized vertical deflection at the free end of can-
tilever beam (point A) for all of the considered elements 
is presented in Table 5. The results are obtained through 
N × 4N(N = 1, 2, 4 and 8) element meshes and normalized 
by the corresponding analytical reference value 0.3558 
[46]. The obtained results prove that the accuracy and con-
vergence of the proposed TMRFS flat shell element are 
reasonable.

3.3 � Cook’s beam problem

Figure 5 shows a clamped trapezoidal beam loaded by a 
distributed shear force at free end. This is a standard test to 
evaluate the membrane behavior of the proposed shell ele-
ment in a problem with irregular mesh pattern.

Table 6 presents the normalized displacement at point C 
for the proposed TMRFS element and the other ones. The 

results are computed using N × N(N = 2, 4, 8 and 16) ele-
ment meshes and normalized by the reference value 23.95 
[56].

The obtained results show that the proposed flat shell 
element is effective in this test. Although the element intro-
duced by Shin and Lee is more accurate, by considering the 
results of other problems the performance of the proposed 
element is satisfactory.

Table 4   Numerical results for 
bending patch test

Node w �x �y Mx My Mxy Tx Ty

5 0.00140 0.050 0.040 − 0.011111 − 0.011111 − 0.00333 0 0
6 0.01935 0.195 0.120 − 0.011111 − 0.011111 − 0.00333 0 0
7 0.02240 0.200 0.160 − 0.011111 − 0.011111 − 0.00333 0 0
8 0.00960 0.120 0.120 − 0.011111 − 0.011111 − 0.00333 0 0

Fig. 4   Cantilever beam problem (E = 3 × 104, � = 0.25, h = 1,

W = 12, L = 48 and P = 40)

Table 5   The normalized results of cantilever beam problem

Model Mesh

1 × 4 2 × 8 4 × 16 8 × 32

Allman 0.850 0.954 0.987 0.998
Cook 0.658 0.895 0.978 0.996
Providas and Kattis 0.253 0.552 0.826 0.949
ANDES 1.048 1.019 1.003 1.000
Shin and Lee 0.785 0.972 1.005 1.003
TMRFS 0.763 0.940 0.993 1.000

Fig. 5   Cook’s beam problem (E = 1, h = 1, W = 44, L = 16,

I = 48, P = 1 and � = 1∕3)

Table 6   The normalized results of Cook’s beam problem

Model Mesh

2 × 2 4 × 4 8 × 8 16 × 16

Allman 0.821 0.936 0.979 0.994
Cook 0.832 0.959 0.980 0.994
Providas and Kattis 0.501 0.763 0.919 0.978
ANDES 0.858 0.937 0.978 0.994
Shin and Lee 0.794 0.964 0.994 0.999
TMRFS 0.754 0.928 1.000 1.003
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3.4 � Clamped square plate problem

Clamped square plate is a suitable test to evaluate the 
bending behavior of the proposed element in dealing 
with the presence of shear locking. Figure 6 illustrates a 
square plate under uniform distributed load (P) which 
is bounded by clamped boundary conditions. Owing 
to symmetry, one-quarter of the plate is analyzed. For 
the considered region the boundary conditions are: 
u = �y = �z = 0 along AB, v = �x = �z = 0 along AD and 
u = v = w = �x = �y = �z = 0 along BC and DC.

Table 7 shows the transverse deflection at the center of 
the plate (point A) for all of the considered elements. The 
results are obtained using different element meshes and nor-
malized by the analytical reference value 0.1265 [57]. The 
obtained results show that the performance of the proposed 
element is competitive among the considered shell elements.

3.5 � Razzaque’s skew plate problem

Figure 7 shows a plate with skew angle of 60° under a uni-
formly distributed unit load bounded by simply supported 
boundary conditions at two opposite edges while the other 
two opposite edges are free. This is a severe test to assess the 
bending behavior of the proposed element in a problem with 
irregular mesh pattern. For the considered plate, the bound-
ary conditions are: u = v = w = 0 along AB and DC edges.

For all the considered shell elements, Table 8 presents 
vertical deflection at center of the skew plate (point E). The 
results are computed using various element meshes and nor-
malized by the reference value 0.7945 [58]. The results in 
Table 8 illustrate that the accuracy and convergence of the 
proposed TMRFS element are appropriate when compared 
with other elements. Element T3 has the worst accuracy (for 
12 × 12 elements the reported value is 0.0006) and conver-
gence among the considered elements.

3.6 � Scordelis–Lo roof problem

Figure 8 shows a roof structure that is supported by clamped 
boundary conditions and loaded by its self-weight. This is 
a benchmark test to evaluate the element performance in 

Fig. 6   Square plate problem (E = 1.092 × 103, h = 0.01, L = 1,

P = 1 and � = 0.3)

Table 7   The normalized results of clamped square plate problem

Model Mesh

2 × 2 4 × 4 8 × 8 16 × 16

T3 0.0063 0.0221 0.0798 –
T3-R 0.0158 0.0553 0.1802 –
RDKTM 1.2252 1.0671 1.0189 –
DKT 1.2229 1.0648 1.0173 1.0071
MITC3+ – 0.9321 0.9817 0.9947
TMRFS 0.8412 0.9582 0.9889 0.9961

Fig. 7   Razzaque’s skew plate problem (E = 1.092 × 105, h = 0.1,

L = 100, and � = 0.3)

Table 8   The normalized results of Razzaque’s skew plate problem

Model Mesh

4 × 4 6 × 6 8 × 8 12 × 12

T3 0.0001 0.0001 0.0002 0.0006
T3-R 0.0002 0.0006 0.0011 0.0025
RDKTM 0.9473 0.9744 0.9845 0.9919
DKT 0.9473 0.9744 0.9845 0.9919
QCS31 0.9488 0.9748 0.9837 0.9903
TMRFS 0.9688 0.9811 0.9832 0.9921
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combined membrane-bending behavior. Utilizing symme-
try, one-quarter of the roof is analyzed. For ABCD region 
the boundary conditions are: u = w = �y = 0 along AD, 
v = �x = �z = 0 along BC and u = �y = �z = 0 along AB.

For all the considered shell elements, the normalized dis-
placement at point C is provided in Table 9. The results are 
obtained using different element meshes and normalized by 
the reference value 0.3024 [59]. The obtained results prove 

that the proposed TMRFS shell element is more accurate 
than the other ones and rapidly converges to the correspond-
ing reference solution.

3.7 � Hemispherical shell problem

Figure 9 shows a hemispherical shell with a hole that is 
subjected to two opposite pairs of point loads along two per-
pendicular directions. This is a severe test to assess the pro-
posed shell element in dealing with the effect of membrane 
locking, inextensible bending modes and rigid body motion 
of shell element. Taking advantage of symmetry, one-quarter 
of the hemispherical is modeled with the following bound-
ary conditions: u = �y = �z = 0 along BC, v = �x = �z = 0 
along AD and w = 0 at point A.

Table 10 presents the normalized displacement along the 
applied load at point A. The results are presented for various 
element meshes and normalized by the reference value 0.093 
[60]. The results of Table 10 show, although the proposed 
element converges slowly to the reference solution, it has 
acceptable performance.

Fig. 8   Scordelis–Lo roof problem (E = 4.32 × 108, h = 0.25,

L = 50, density � = 360, g = 1, R = 25 and � = 0.0)

Table 9   The normalized results of Scordelis–Lo roof problem

Model Mesh

4 × 4 6 × 6 8 × 8 16 × 16

Allman 1.004 0.987 0.987 0.988
Cook 0.907 0.929 0.950 0.981
Providas and Kattis 0.734 0.815 0.873 0.967
ANDES 1.083 1.030 1.014 0.990
Shin and Lee 1.379 1.023 1.004 –
MITC3+ 0.669 – 0.857 0.955
TMRFS 0.924 0.963 0.974 0.998

Fig. 9   Hemispheri-
cal shell problem 
(E = 6.825 × 107, h = 0.04,

P = 2, R = 10 and � = 0.3)

Table 10   The normalized results of hemispherical shell problem

Model Mesh

4 × 4 8 × 8 16 × 16 32 × 32

Allman 0.203 0.377 0.871 0.984
Cook 0.662 0.945 0.982 0.989
Providas and Kattis 0.999 0.990 – –
ANDES 0.084 0.502 0.929 0.989
QCS31 1.002 1.001 0.996 0.995
Shin and Lee 0.987 0.989 0.988 0.992
MITC3+ 1.099 1.027 1.004 1.003
TMRFS 0.157 0.364 0.877 0.996
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3.8 � Pinched cylinder problem

This is a benchmark test to investigate the ability of the 
proposed TMRF element in handling both complex mem-
brane and inextensible bending state of stresses. As shown 
in Fig. 10, a cylinder is bounded by rigid diaphragm at both 
ends and subjected to a pair of opposite point loads at the 

middle of the cylinder. Due to symmetry, one-eighth of the 
cylinder is examined with the following boundary condi-
tions: w = �x = �y = 0 along DC, v = �x = �z = 0 along BC, 
u = w = �y = 0 along AD and u = �y = �z = 0 along AB.

For the proposed TMRFS shell element and the other 
considered ones, Table 11 presents the vertical displace-
ment at point B. All the results for various element meshes 
are normalized by the reference value 1.8248 × 10−5 [61]. 
The obtained results show that the performance of the pro-
posed element is reasonable and does not differ significantly 
among the considered shell element.

3.9 � Hyperbolic paraboloid shell problem

Figure 11 shows a hyperbolic paraboloid shell which is sub-
jected to its self-weight and bounded by clamped boundary 
conditions at one edge. This is a suitable test to evaluate 
the locking behavior of proposed shell element in bending 
dominated problem. Owing to symmetry, one-half of the 
structure is modeled and analyzed. The boundary condi-
tions are: u = v = w = �x = �y = �z = 0 along AD and 
u = �y = �z = 0 along DC.

For all the shell elements, Table 12 shows the verti-
cal displacement at point C. For various element meshes, 
the obtained results are normalized by reference value 
2.8780 × 10−4 [62]. The results illustrate that the proposed 
shell element converges slowly to the reference value with 
better accuracy

4 � Conclusion

One of the shell elements which is used by engineers in 
finite element analysis of shell structures is flat shell ele-
ment because of the formulation simplicity, computation 
effectiveness and flexibility in applications. This paper 
presents a three-node triangular flat shell element which is 

Fig. 10   Pinched cylinder problem (E = 3 × 106, h = 3,

R = 300, L = 600, P = 1 and � = 0.3)

Table 11   The normalized results of pinched cylinder problem

Model Mesh

4 × 4 8 × 8 16 × 16 24 × 24

Allman 0.590 0.924 1.004 1.005
Cook 0.537 0.897 0.997 1.002
Providas and Kattis 0.453 0.856 0.982 0.995
ANDES 0.630 0.937 1.006 1.005
QCS31 0.493 0.864 – 0.996
Shin and Lee 0.571 0.922 1.011 1.010
MITC3+ 0.407 0.768 0.930 –
TMRFS 0.533 0.857 0.990 0.998

Fig. 11   Hyperbolic 
paraboloid shell problem 
(E = 2 × 1011, h = 0.001, L = 1,

density � = 360, g = 1 and � = 0.3)
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obtained by combining novel membrane and plate bending 
elements, without using mid-side node and fictitious degrees 
of freedom that meet the back trend toward the simplicity 
of formulation. The bending component is a new triangular 
Mindlin–Reissner plate bending element formulated based 
on the hybrid displacement function element method. In 
this method the element’s trial function is expressed as an 
assumed displacement function and the displacements along 
the element edges are defined using Timoshenko’s beam the-
ory. The membrane component of the proposed flat shell ele-
ment is a new triangular element which is formulated based 
on the unsymmetric finite element method. The test func-
tion is a displacement field used in the well-known Allman 
triangular membrane element. The trial function is a stress 
field determined using the analytical approximations of Airy 
stress function in Cartesian coordinates. Based on the parent 
formulation, the proposed element is free of shear locking 
and membrane locking problems. Furthermore, the presence 
of drilling degrees of freedom avoids singularity problem 
of stiffness matrix. In order to investigate the ability of the 
proposed triangular flat shell element called TMRFS, several 
classic benchmark problems are employed. The numerical 
results demonstrate that the proposed shell element provides 
high precision results among the considered triangular ele-
ment in literature and its performance is less sensitive to 
geometry, load and boundary conditions. Furthermore, the 
proposed TMRFS element performs well in problems with 
both membrane and bending behaviors. Therefore, it is being 
effective for complicated problems, in which the both cat-
egories exist or change to each other simultaneously.

Appendix

Matrix �̄p can be defined through the Timoshenko’s 
beam functions and a linear function. Timoshenko’s 
beam functions are employed to determine the deflec-
tion (w) and tangential rotation (�s) and the linear func-
tion is employed to determine normal rotation (�n) , as 
follows

with

in which lij is the length of edge ij, s is the coordinate along 
the edge ij, L1 = 1 − s∕lij and L2 = s∕lij. It should be noted, 
�n and �s are the rotations in the local coordinates that should 
be transformed to global coordinates. The relationship 
between (�n, �s) and (�x, �y) can be defined as follows

where 
(
xi, yi

)
 and (xj, yj) are, respectively, the Cartesian coor-

dinates of nodes i and j located on the edge ij. As was men-
tioned, matrix �̄p is an interpolation function that must be 
defined along each element edge, as follows

In which �h is a 5 × 3 matrix with zero components and the 
components of �k and �f are as follows

(57)

w = (L1 + �L1L2(L1 − L2))wi +
lij

2
(L1L2 + �L1L2(L1 − L2))�si

+ (L2 + �L1L2(L2 − L1))wj +
lij

2
(−L1L2 + �L1L2(L1 − L2))�sj

�s = −(6L1L2∕lij)�wi + L1(1 − 3�L2)�si + (6L1L2∕lij)�wj

+ L2(1 − 3�L1)�sj

�n = (1 − s)�ni + s�nj

(58)�=
5(1 − �)l2

ij

5(1 − �)l2
ij
+ 12h2

,

(59)
{

�n
�s

}
=

1

lij

[
yj − yi xi − xj
xj − xi yj − yi

]{
�x
�y

}

(60)

∙ Along edge 12 ∶ �̄p = [�k�f�h]

∙ Along edge 23 ∶ �̄p = [�h�k�f]

∙ Along edge 31 ∶ �̄p = [�h�k�f]

Table 12   The normalized results of hyperbolic paraboloid shell prob-
lem

Model Mesh

8 × 4 16 × 8 32 × 16 48 × 24

Allman 0.070 0.307 0.829 0.954
Cook 0.563 0.939 0.984 0.991
Providas and Kattis 1.070 1.000 0.985 0.985
ANDES 0.641 0.445 0.914 0.977
Shin and Lee 1.082 1.014 0.996 0.991
MITC3+ 0.958 0.972 0.986 –
TMRFS 0.341 0.706 0.887 0.992
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