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Abstract
In this paper, the elastic shakedown analysis of porous materials is performed by means of meshless methods using mixed 
approximations. Based on a mixed variational principle for shakedown analysis and using a yield function for porous mate-
rials, two meshless methods are adapted to perform mixed approximations of the stress and velocity fields for the solution 
of the discrete shakedown problem. These two new methods are named mixed moving least squares method and mixed 
Shepard’s method and are used to solve some numerical examples. The numerical results obtained showed a good agreement 
with available analytical solutions and published results by the finite element method. The proposed mixed methods can be 
applied in the analysis of structural and machine parts made of porous materials and subjected to variable loads.
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1  Introduction

Shakedown analysis enables to find the safe condition of 
operation for structures under variable loads and has been 
used in the design of several applications, such as pres-
sure vessels and components for aerospace industry. The 
first studies on this subject started in the 1920s. Weichert 
and Ponter [33] presented a comprehensive historical intro-
duction on shakedown theory and pointed out that the first 
contribution to an embryonic idea of shakedown was due 
to Gruning in the mid-1920s. Bleich and Melan’s later con-
tributions gave rise to the lower-bound shakedown theorem 
[22], and subsequently Koiter established the upper-bound 
theorem [16] in the context of ideal plasticity.

Over the years, shakedown theory has been refined and 
expanded to solve more complex problems with the aid of 
numerical methods. In particular, the finite element method 

(FEM) is one of the most used techniques. Belytschko [2] 
was the first to apply the FEM for the solution of a shake-
down problem. He obtained the numerical solution for the 
shakedown of a plate with a circular hole in a state of plane 
stress, which became a benchmark for this subject. However, 
despite its successful application, the finite element method is 
not the only method used for the numerical shakedown solu-
tion. Based on the meshless local Petrov–Galerkin (MLPG) 
method, Chen et al. [7] presented a solution procedure for the 
lower-bound shakedown analysis and Ruiz and Silveira [27] 
proposed a generalization of the moving least squares method 
[3] to solve shakedown problems using mixed approxima-
tions. Along with the methods for spatial discretization, several 
procedures and algorithms have been proposed to solve the 
shakedown problems numerically. Mathematical program-
ming has been widely used in numerical shakedown analysis. 
The pioneering works in this field are due to Maier [19, 20], 
who introduced linear programming in the limit and shake-
down analysis problems. Several interior point methods with 
different iteration schemes have been successfully proposed 
[11, 23, 38]. Makrodimopoulos [21] and Krabbenhøft et al. 
[17] applied conic programming to solve shakedown prob-
lems. Apart from mathematical programming methods, other 
types of approaches have been used successfully. Chen and 
Ponter [6] developed the linear matching method (LMM), 
which performs a sequence of linear solutions with spatially 
varying moduli to match the linear behavior to the nonlinear 
plastic behavior. More recently, Peng et al. [25, 26] developed 

Technical Editor: João Marciano Laredo dos Reis.

 *	 Jose Luis Silveira 
	 jluis@mecanica.ufrj.br

	 Carlos C. de La Plata Ruiz 
	 delaplataruiz@uol.com.br

1	 Department of Mechanical Engineering, Universidade 
do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

2	 Department of Mechanical Engineering, Universidade 
Federal do Rio de Janeiro, Rio de Janeiro, Brazil

http://orcid.org/0000-0002-5595-064X
http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-020-02386-3&domain=pdf


	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:303

1 3

303  Page 2 of 13

a numerical procedure called stress compensation method 
(SCM) suitable for shakedown analysis of realistic engineer-
ing structures subjected to variable loads.

Most numerical solutions for shakedown analysis have been 
applied to solve problems involving dense materials. Recently, 
the numerical solution for the shakedown of porous materials 
has received a growing attention. Zhang et al. [35] consid-
ered a hollow sphere model to obtain shakedown solutions of 
porous materials under cyclic loads. Using variational prin-
ciples and the finite element method, Ruiz and Silveira [28] 
presented numerical solutions for the shakedown analysis of 
porous materials.

The constitutive behavior of the porous materials should 
be described by a suitable yield function for the shakedown 
analysis. Several authors proposed yield functions for this type 
of material [8, 9, 12, 14, 24, 28, 30].

In this paper, the mixed moving least squares method pro-
posed by Ruiz and Silveira [27] is applied to the shakedown 
analysis of porous materials. In the next section, a yield func-
tion for porous material is presented [28]. This yield func-
tion is used in the numerical solution of the mixed variational 
principle for shakedown analysis of porous material pre-
sented in Sect. 3. Two meshless methods are used to solve the 
shakedown problem, namely the mixed moving least squares 
method developed in Sect. 4 and the mixed Shepard’s method 
presented in Sect. 5. Finally, some numerical examples are 
solved in Sect. 6.

2 � A yield function for porous material

The yield function used in the shakedown analysis of porous 
material presented in this paper is based on a previous proposal 
[8, 28], as shown in the following:

where R is the relative density of the material; T is the stress 
tensor; Y0 is the yield limit of the base material; J2 is the 
second invariant of the stress deviator tensor; I1 is the first 
invariant of the stress tensor; and A and B are given by the 
following expressions:

In this paper, n and �(R) are given by the expressions pro-
posed by Alves et al. [1]:

(1)f (T ,R) = A(R) J2(T) + B(R) I2
1
(T) − �(R)Y2

0
≤ 0

(2)A(R) = 2 + Rn

(3)B(R) =
(1 − Rn)

3

(4)n = 4.15Ri − 1.23

where Ri is the initial relative density of the porous mate-
rial and the relative density R is given by the expression 
proposed by Heckel [15]:

where p is a compressive hydrostatic pressure acting in the 
material and k is given by Heckel [15]:

The compressive hydrostatic pressure p can be computed by 
the following expression, from the trace of the residual stress 
tensor T r obtained by the shakedown analysis [28]:

Therefore, from Eq. (8), the expression (6) proposed by 
Heckel [15] becomes a function of the residual stress T r . 
Consequently, Eqs. (2), (3) and (5) become functions of the 
residual stress: A(T r) , B(T r) and �(T r).

In the solution of the shakedown problem, as shown in 
Sect. 3, the stress T is given by the contribution of a residual 
and an elastic part, represented by Te and T r , respectively:

In view of Eqs. (6), (8) and (9), the yield function (1) can 
be rewritten as:

It’s worth mentioning that the previous expression was 
developed for a stress state at a point. This yield condition 
can be considered as a modified von Mises yield function, 
which includes the influence of the hydrostatic stress. For 
each point in the body, given a hydrostatic stress value, the 
yield function is represented by the graph of an ellipsis, 
which limits a convex set in the stress space [18]. The con-
vexity of the yield function allows the assumption of associ-
ate plasticity, which is used in the solution of the shakedown 
analysis [28].

In the next section, a version of the yield function (10) in 
terms of stress fields will be used, as given by:

where �e represents the elastic stress field and �r is the resid-
ual stress field in the porous body.

(5)�(R) =
0.343R2.988

i
R

0.343R2.988
i

+ (1 − R)

(6)R = 1 − e
−
[
k p+ln

(
1

1−Ri

)]

(7)k ≅
1

3Y0

(8)p = −
1

3
tr(T r)

(9)T = Te + T r

(10)
f (Te, T r) = A(T r) J2(T

e + T r)

+ B(T r) I2
1
(Te + T r) − �(T r)Y2

0
≤ 0

(11)
f (�e + �r) = A(�r) J2(�

e + �r) + B(�r) I2
1
(�e + �r)

− �(�r)Y2
0
≤ 0
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3 � Shakedown analysis of porous materials

3.1 � Notation for kinematics and equilibrium

In this paper, V represents the space of velocity fields � and W 
is the space of strain rate fields 𝜀̇ . A kinematically compatible 
velocity field � ∈ V is related to a strain rate field 𝜀̇ ∈ W by 
the following relation:

The operator D represents the linear deformation operator 
and is defined by:

Let B be the region in ℝ3 occupied by a body subjected to 
surface tractions � specified in the portion �� of the bound-
ary of B. The space of stress fields � is represented by W ′ ; 
moreover, a stress field � ∈ W � , in equilibrium with the 
external loads, satisfies the following relation:

where � is the body force field.
In a more compact form, Eq. (14) can be written as:

where the internal and external powers are expressed, 
respectively, by:

A self-equilibrated stress field �r is defined as the stress field 
that equilibrates a null external load; therefore, it can by 
described by the following equation:

In the next section, the yield function for porous materials 
presented in Sect. 2 will be used in the development of a 
mixed variational principle for the shakedown analysis of 
porous materials.

(12)𝜀̇ = D � � ∈ V and 𝜀̇ ∈ W

(13)D =
1

2
(∇ ⋅ +∇T

⋅)

(14)
∫B

� ⋅ D� dB = ∫B

� ⋅ � dB

+ ∫
��

� ⋅ � d�� ∀ � ∈ V

(15)⟨�,D�⟩ = ⟨F, �⟩ ∀ � ∈ V

(16)⟨�,D�⟩ = ∫B

� ⋅ D� dB

(17)⟨F, �⟩ = ∫B

� ⋅ � dB + ∫
��

� ⋅ � d��

(18)⟨�r,D�⟩ = 0 ∀ � ∈ V

3.2 � A mixed variational principle for shakedown 
of porous material

Based on previous works [28, 31, 36, 37], a mixed variational 
principle for the shakedown analysis of porous materials is 
presented in this section. This mixed principle allows to obtain 
the maximum amplification factor � for a polyhedral domain 
of load variation, such that the material shakes down elasti-
cally under any load variation contained within the polyhedral 
domain.

For � mechanically independent loads acting on a body, 
the load domain is composed by a convex polyhedron with m 
vertices, where m = 2� and the following mixed variational 
principle can be written:

where �e� represents the unlimited elastic stress field for 
each vertex � , �r is a residual stress field, D is the linear 
deformation operator, and � is a kinematically compatible 
velocity field.

A discrete form for the variational principle (19) can be 
written as follows:

where �̂r and �̂ are approximations for the residual stress 
and velocity fields, respectively, and �̂e𝛼 is an approximated 
unlimitedly elastic stress field, which can be obtained by a 
numerical or an analytical solution.

The velocity and residual stress fields can be approximated 
as follows:

where � represents a matrix of velocity shape functions, � 
is a matrix of stress shape functions, and v and T are the vec-
tors with the nodal values of velocities and residual stresses, 
respectively.

Substituting Eqs. (21) and (22) into (20), the following 
mixed discrete principle is obtained:

where Te� represents a vector whose components correspond 
to the values of unlimitedly elastic stress field at the nodal or 
base points and � is a matrix given by the following:

(19)

� = sup
�∗,�r

inf
�

�
�∗ + ⟨�r,D�⟩����f (�

∗�e� + �r) ≤ 0 � = 1…m

(20)

𝜔 = max
𝜔∗,�̂r

min
�̂

[
𝜔∗ + �B

�̂r
⋅ D�̂ dB

]||| f (𝜔
∗�̂e𝛼 + �̂r) ≤ 0 𝛼 = 1…m

(21)�̂ =𝛷v

(22)�̂r = 𝛩T

(23)
� = max

�∗,T
min
v

[
�∗ + T ⋅ �v

]|||f (�
∗Te� + T) ≤ 0

� = 1…m
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Among the several possible ways to build the matrix � , two 
forms are presented in this paper: the first, named mixed 
moving least squares method, is developed in Sect. 4; and 
the second, named mixed Shepard’s method, is presented 
in Sect. 5.

4 � Mixed moving least squares method

In this section, a generalization of the moving least squares 
(MLS) method proposed by Belytschko et al. [4] is presented. 
Based on Belytschko’s proposal, Ruiz and Silveira [27] gen-
eralized the moving least squares method through a mixed 
approximation for the velocity and stress fields.

For a shakedown numerical solution by the mixed moving 
least squares method (MixMLS), the approximate velocity and 
stress fields are given, respectively, by the relations (21) and 
(22). In this method, � represents the matrix of velocity shape 
functions �i(�) given by Eq. (25) and � is the matrix of stress 
shape functions �i(�) given by Eq. (26), as follows:

where w is a radial basis function.
Many radial basis functions are possible to solve shake-

down problems. Some of these functions have been tested (not 
shown in the paper), and the two of them, which showed the 
best results, are presented:

•	 the exponential radial basis function [3], given by: 

•	 and the expression proposed by Wu [34]: 

where c in Eq. (27) is a characteristic length related to the 
distance between the nodal points.

The distance di used in the previous expressions is defined 
by:

where ‖� − �i‖ is the distance between the point � and the 
base point �i and r represents the support radius of the radial 
basis function. According to Guedes [13], for equally spaced 

(24)� = ∫B

�TD�dB

(25)�i(�) =w(di)�(�) ⋅ �
−�(�)�(�i)

(26)�i(�) = w(di)�(�) ⋅ �
−�(�)�(�i)

(27)w(di) =
e−(di∕c)

2

− e−(1∕c)
2

1 − e−(1∕c)
2

(28)

w(d
i
) =(1 − d

i
)7(5 + 35d

i
+ 101d

2

i
+ 147d

3

i

+ 101d
4

i
+ 35d

5

i
+ 5d

6

i
)

(29)di =
1

r
‖� − �i‖

nodal points, the value of r can be taken between 2 and 6 
times the nodal distance.

The vector � in Eq. (25) and the vector � in Eq. (26) are 
composed by monomial basis functions components. In the 
present paper, for a two-dimensional space analysis, � and � 
are given by the following vectors:

where x and y refers to the Cartesian coordinates of any point 
� in the two-dimensional space.

The matrices � in Eq. (25) and � in Eq. (26) are given, 
respectively, by the following relations:

where, for n base points, � is a diagonal matrix n × n given 
by:

The matrices � and � are, respectively, given by:

According to expression (24), the matrix � in the mixed 
variational principle (23) is obtained by the integration of 
the product of the stress approximation matrix � and the 
matrix D� of the derivatives of the velocity shape functions. 
Therefore, the derivatives of the velocity shape functions 
are required.

For an analysis in the plane, the matrix � and the matrix 
D�(x, y) are given by the following:

In the previous matrix, �i,x and �i,y represent the partial 
derivatives of the velocity shape functions �i(�) with respect 
to x and y, respectively, and are given by:

(30)�(�) = �(x, y) =
[
1 x y x2 xy y2

]T

(31)�(�) = �(x, y) =
[
1 x y

]T

(32)� = �T��

(33)� = �T��

(34)� = diag[w(di)]

(35)� =
[
�(�1) �(�2) �(�3) … �(�n)

]T

(36)� =
[
�(�1) �(�2) �(�3) … �(�n)

]T

(37)

� =

⎡⎢⎢⎢⎣

�
1

0 0 �
2

0 0 … �
n−1 0 0 �

n
0 0

0 �
1

0 0 �
2

0 … 0 �
n−1 0 0 �

n
0

0 0 �
1

0 0 �
2

… 0 0 �
n−1 0 0 �

n

⎤⎥⎥⎥⎦

(38)

D� =

⎡⎢⎢⎣

�1,x 0 �2,x 0 … �n−1,x 0 �n,x 0

0 �1,y 0 �2,y … 0 �n−1,y 0 �n,y

�1,y �1,x �2,y �2,x … �n−1,y �n−1,x �n,y �n,x

⎤⎥⎥⎦
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where � and � are given by the following expressions [10]:

and the corresponding derivatives of � and � are given by:

where

In expressions (45) and (46), �,x and �,y are diagonal matri-
ces of the derivatives of the weight function w, Eqs. (27) and 
(28), with respect to x and y, respectively:

where

and w,di
 is the derivative of the weight function with respect 

to di.
Upon obtaining the matrix D� , the numerical integra-

tion of the product �TD� yields the matrix � . In Sect. 6, 
some numerical examples are presented for the moving 
least squares method with mixed approximation.

There is a minimum number of nodes for the MixMLS 
method to converge, which depends on the number of 
monomials in the chosen polynomials. In this paper, the 
minimum number of nodes is nine, because a linear poly-
nomial basis function is used to approximate the stress 
field and a quadratic polynomial basis function is used to 
approximate the velocity field.

(39)
�i,x = �,x� + ��,x and

�i,y = �,y� + ��,y

(40)� = w(di)�(�i)

(41)� = �T(�)�−1

(42)
�,x = w(di),x�(�i) and

�,y = w(di),y�(�i)

(43)�,x = �T(�),x�
−1 + �T(�)�−1

,x

(44)�,y = �T(�),y�
−1 + �T(�)�−1

,y

(45)�−1
,x

= − �−1
[
�T�,x�

]
�−1

(46)�−1
,y

= − �−1
[
�T�,y�

]
�−1

(47)w,x = w,di
di,x and w,y = w,di

di,y

(48)di,x =
x − xi

r di
and di,y =

y − yi

r di

5 � Mixed Shepard’s method

The method proposed by Shepard [29] can be considered 
as a particular case of the moving least squares method. 
In this section, a generalization of the Shepard’s method 
is presented, through a mixed approximation for the stress 
and velocity fields. In the mixed Shepard’s (MixS) method, 
the polynomial bases �(�) , Eq. (30), and �(�) , Eq. (31), are 
composed of a single element.

Consequently, the matrices A(x), Eq. (32), and C(x), Eq. 
(33), become a scalar given by:

and the shape functions �i(�) , Eq. (25), and �i(�) , Eq. (26), 
can be obtained by the following expression:

In the next section, some numerical examples for the shake-
down analysis of porous materials are presented using the 
mixed moving least squares method and the mixed Shepard’s 
method. The simulations are performed by applying an inte-
rior point algorithm [38], which performs a Newton itera-
tion to solve the nonlinear constrained optimization problem 
given by Eq. (23).

6 � Numerical examples

In this section, the numerical analysis of the shakedown of 
porous material is presented. The yield function described 
by Eq. (11) is used, together with the values of the Young’s 
modulus E, the Poisson’s ratio � , and the thermal expan-
sion coefficient c given by the following expressions:

where E0 , �0 , and c0 are the corresponding material proper-
ties for the base material, i.e., material properties for a rela-
tive density equal 1.0 and the exponents nE , n� , and nc are 
arbitrarily taken as unity.

(49)� = � = [1]

(50)�(�) = �(�) =

n∑
i=1

w(di)

(51)�i(�) = �i(�) =
w(di)∑n

j=1
w(dj)

(52)E = E0R
nE

(53)� = �0R
n�

(54)c = c0R
nc
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In the following examples, when a tensile residual stress 
state occurs, it is assumed that the relative density does not 
present any variation [28].

6.1 � A rod of porous material subjected to axial load 
and temperature variation

In this section, the shakedown analysis of a rod made of porous 
material is presented. The rod is subjected to an axial load and 
a non uniform field of temperature variation. The axial load 
F is applied at an intermediate point along the rod’s length 
L as shown in Fig. 1. The temperature � and the axial load F 
can vary independently. The rod is composed by two separate 
regions, named � and � . The temperature field is restricted 
to the region � of the rod. The rod ends are clamped, and the 
regions � and � have lengths aL and bL, respectively. The cross 
section of the rod is equal to A and the material has a initial 
relative density Ri.

The following non-dimensional parameters for the load and 
temperature are used, respectively:

where Y0 represents the yield stress for the base material, E 
represents the Young’s modulus, and c is the thermal expan-
sion coefficient, given by Eqs. (52) and (54), respectively.

The limits for the variation of the non-dimensional param-
eters p and q are given by:

(55)p =
F

2AY0

(56)q =
E c �

Y0

(57)0 ≤ p ≤ p̄ 0 ≤ q ≤ q̄

where p̄ and q̄ are the maximum values for p and q, respec-
tively. Therefore, the limits for the variation of p and q define 
a quadrilateral domain for the load variation.

Following Silveira and Zouain [31], the elastic stresses 
for the regions � and � are given by:

where the indices 1, 2, 3, and 4 correspond to each vertex of 
the quadrilateral domain for the load variation.

For b ≥ a , the analytical solution for the amplification 
factor is given by [31]:

Figure 2 shows the 15 nodal points distributed along the 
rod and the deformation aspect obtained from the solution 
by the mixed moving least squares (MixMLS) method for a 
rod with a relative density equal 1.0. A quadratic polynomial 
basis function was used to approximate the velocity field and 
a linear polynomial basis function to approximate the stress 
field. The radial basis function (28) proposed by Wu [34] 
was employed with a support radius equal to two and a half 
times the nodal distance in the rod axis direction.

Table 1 compares the numerical results obtained for the 
mixed moving least squares (MixMLS) method and the 
mixed Shepard’s (MixS) method with the numerical results 
obtained by the finite element method (FEM) [28]. The finite 
element mesh used to solve this example has 160 triangular 
elements, with 369 nodes for velocities and 105 nodes for 
stresses. The element used is a mixed triangular finite ele-
ment which is composed by six nodes of velocities and three 
nodes of stresses and is described in detail in Borges et al. 
[5] and Zouain et al. [39].

The numerical results are obtained for the particular 
case of a rod with L = 1m , A = 0.01m2 , maximum axial 
load F̄ = 1MN , maximum temperature 𝜃̄ = 250 ◦C , 

(58)T1
𝛼
= 2b p̄ Y0 T1

𝛽
= −2a p̄ Y0

(59)T2
𝛼
= (2b p̄ − a q̄)Y0 T2

𝛽
= (−2a p̄ − a q̄)Y0

(60)T3
𝛼
= −a q̄ Y0 T3

𝛽
= −a q̄ Y0

(61)T4
�
= 0 T4

�
= 0

(62)𝜔a =
2

2 p̄ + a q̄

Fig. 1   Clamped rod of porous material subjected to axial load and 
temperature variation

Fig. 2   Nodes distribution and 
deformation aspect for the rod
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E0 = 200GPa  ,  c0 = (14 × 10−6) ◦C−1 ,  Y0 = 800MPa  , 
a = 0.40 , and b = 0.60 . In this table, � is the amplification 
factor for the domain of load variation, T r

xavg
 represents the 

average value for the residual stress component in the x 
direction, and Ravg is the average value for the relative 
density. Additionally, Table 1 shows the amplitudes of 
variation for T r

x
 and R. As can be observed in this table, the 

MixMLS method presented results very close to the FEM. 
Additionally, the results from the MixS method presented 
lower values than those obtained by the MixMLS method 
and the FEM. In all situations, the MixMLS method pre-
sented better results than the MixS method.

The Bree diagram for some values of the initial relative 
density is shown in Fig. 3. For a dense material ( Ri = 1.0 ), a 
comparison of the MixMLS method with the analytical solu-
tion is shown. It can be observed that the numerical solution 
for the MixMLS method is close to the corresponding ana-
lytical solution. For p̄ = 0 , the analytical solution is 𝜔q̄ = 5 
and the corresponding numerical solution is 𝜔q̄ = 4.94 ; 
however, both are identical for q̄ = 0 , i.e., 𝜔p̄ = 1.0 . The 
numerical results obtained by the mixed Shepard’s method, 
for a relative density Ri = 1.0 , showed an increasing dif-
ference from the analytical solution for lower values of the 
axial load.

From Table 1 and Fig. 3, it can be observed that the 
results obtained by the mixed moving least squares method 
are close to the corresponding finite element method results. 
For Ri = 1.0 , the maximum difference between the analytical 
solution and the MixMLS method is 1.24%.

To verify the convergence, numerical simulations were 
performed using 10, 15, and 20 nodal points. For 10 nodes, 
the method obtained an amplification factor of 2.874, 
with an error of − 1.336 in relation to the analytical solu-
tion, i.e., − 31.73% . For 15 nodes, the method obtained an 
amplification factor of 4.178, with an error of − 0.03217 , 
i.e., − 0.764% . For 20 nodes, the method obtained an ampli-
fication factor of 4.184, with an error of − 0.02667 , i.e., 
− 0.633%.

6.2 � A square plate of porous material with a central 
circular hole subjected to a biaxial load

In this section, the shakedown analysis of a square plate 
made of porous material is presented. The square plate has 
a width of 2b and the central hole has a diameter of 2a, 
as shown in Fig. 4. The plate is subjected to a distributed 
compressive load applied in directions x and y, named px 
and py , respectively.

Table 1   Numerical comparison 
for the mixed moving least 
squares, mixed Shepard’s, and 
finite element method for the 
rod made of porous material

R
i

� 𝜔p̄ 𝜔q̄ T
r
xavg

 (MPa) Ampl. T r
x
 (MPa) Ravg Ampl. R

MixMLS 0.7 2.993 0.1871 1.283 179.6 10.9 0.7074 1.51 × 10
−3

MixS 0.7 2.605 0.1628 1.117 147.3 131.2 0.7060 6.05 × 10
−3

FEM 0.7 3.006 0.1878 1.289 180.6 41.8 0.7074 3.02 × 10
−3

MixMLS 0.8 3.499 0.2187 1.960 284.3 41.2 0.8077 3.40 × 10
−3

MixS 0.8 2.986 0.1866 1.672 229.5 259.3 0.8063 8.68 × 10
−3

FEM 0.8 3.517 0.2198 1.970 286.1 47.6 0.8078 2.38 × 10
−3

MixMLS 0.9 3.912 0.2445 2.772 409.3 9.2 0.9055 3.80 × 10
−3

MixS 0.9 3.283 0.2052 2.327 325.1 384.3 0.9044 6.35 × 10
−4

FEM 0.9 3.936 0.2460 2.790 412.5 52.2 0.9056 1.41 × 10
−3

MixMLS 1.0 4.178 0.2611 3.656 542.3 179.6 1.0000 6.58 × 10
−8

MixS 1.0 3.461 0.2163 3.028 425.0 519.2 1.0000 8.51 × 10
−8

FEM 1.0 4.211 0.2632 3.684 547.4 59.9 1.0000 1.66 × 10
−8

Fig. 3   Bree diagram for the rod obtained for several initial relative 
densities
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The loads px and py can vary independently between pre-
scribed limits:

Consequently, the limits for the variation of px and py define 
a quadrilateral domain in the load space.

In polar coordinates, the elastic stresses, corresponding to 
the load px , as a function of the angular position � and the 
radial distance r from the center of the plate [32] are given by 
the following expressions:

The corresponding elastic stresses produced by the load py 
are given by:

(63)0 ≤ px ≤ p̄x 0 ≤ py ≤ p̄y

(64)
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An elastic mapping of the load domain (63) results in a 
quadrilateral domain in the stress space which is defined by 
the following components for each vertex:

Figure 5 shows the distribution of nodes for the shakedown 
analysis of the plate. Due to the symmetry, only one quarter 
of the plate is modeled for the numerical analysis by the 
MixMLS and MixS methods.

The numerical simulations were performed using 25 
nodes and a support radius (in the radial basis function (28)) 
proportional to the radial distance from the center of the 
plate. The side length of the plate is 2b where b is five times 
the radius a of the central hole (Fig. 4).
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Fig. 4   A square plate subjected to a biaxial load
Fig. 5   Distribution of nodes for the shakedown analysis of the plate
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Figure 6 shows the Bree diagram for some values of the 
initial relative density obtained by the MixMLS method. 
Additionally, Fig. 6 shows the numerical results obtained 
by the finite element method [28]. It can be observed that 
both methods (the MixMLS and FEM) presented similar 
results for all initial relative densities. The finite element 
mesh used for the solution of this example has 32 triangu-
lar elements, with 81 nodes for velocities and 25 nodes for 
stresses. The triangular element used in the comparison is a 
mixed finite element, composed by six nodes of velocities 
and three nodes of stresses [5, 39].

Table 2 shows the numerical results obtained by the mixed 
moving least squares, mixed Shepard’s, and finite element 
method for the particular case of a plate with b = 100mm 

and a = 20mm , which is subjected to a biaxial compressive 
load distribution p̄x = p̄y = 600MPa . The plate is made of 
porous material with a yield limit Y0 = 600MPa for the base 
material. The mixed moving least squares method shows 
similar results to the finite element method [28]; however, 
the mixed Shepard’s method presents a slight difference with 
this two methods.

This problem was solved using the exponential radial 
basis function [3] given by Eq. (27), where the parameter c 
in the expression is proportional to the radial distance from 
the center of the plate. Additionally, numerical simulations 
were performed using 9, 25 and 49 nodes. For 9 nodes, the 
MixMLS method was unable to obtain a solution; however, 
for 25 and 49 nodes, the MixMLS method obtained almost 
the same result for the amplification factor, with a difference 
of 8.77 × 10−11.

Figure 7 shows the hydrostatic pressure field, for Ri = 0.8 , 
computed through Eq. (8) from the residual stress field 
obtained by the MixMLS method. Figure 8 shows the rela-
tive density field obtained by Eq. (6). It can be observed in 
Figs. 7 and 8 that the hydrostatic pressure and the relative 
density are higher around the hole.

6.3 � A cantilever beam of porous material

In the following, the shakedown analysis of a cantilever 
beam made of porous material is presented. The beam has 
a length b and is subjected to a variable bending moment M 
and a constant axial compressive load N, as shown in Fig. 9. 
The cross section of the beam has height h and width t.

The domain for the load variation is presented in Fig. 10. 
The bending moment M varies between −M̄ and M̄ , i.e., 
−M̄ ≤ M ≤ M̄  , while the compressive axial load N̄  is 
constant.

Figure 11 shows the 35 nodal points used for the numeri-
cal shakedown analysis of the cantilever beam by the 
MixMLS and mixed Shepard’s methods. The support radius 

Fig. 6   Bree diagram for a square plate made of porous material with 
a central circular hole, subjected to a biaxial load, for some initial rel-
ative densities

Table 2   Numerical comparison 
for the mixed moving least 
squares, mixed Shepard’s, and 
finite element method for the 
plate made of porous material

R
i

� 𝜔
p̄
x

Y0

𝜔
p̄
y

Y0

R
min

R
max

MixMLS 0.7 0.225719 0.225719 0.225719 0.700 0.709
MixS 0.7 0.203662 0.203662 0.203662 0.700 0.713
FEM 0.7 0.225620 0.225620 0.225620 0.700 0.709
MixMLS 0.8 0.310318 0.310318 0.310318 0.800 0.808
MixS 0.8 0.282493 0.282493 0.282493 0.800 0.812
FEM 0.8 0.310191 0.310191 0.310191 0.800 0.808
MixMLS 0.9 0.404634 0.404634 0.404634 0.900 0.905
MixS 0.9 0.376677 0.376677 0.376677 0.900 0.908
FEM 0.9 0.404549 0.404549 0.404549 0.900 0.905
MixMLS 1.0 0.499972 0.499972 0.499972 1.000 1.000
MixS 1.0 0.483048 0.483048 0.483048 1.000 1.000
FEM 1.0 0.499996 0.499996 0.499996 1.000 1.000
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employed in the radial basis function (28) [34] is equal to 2.1 
times the nodal distance in the beam axis direction.

Figure 12 shows the Bree diagram for the MixMLS 
method for some values of the initial relative density. In 

this diagram, Ny and My are, respectively, the limit axial 
load and bending moment for the instantaneous collapse 
of the beam [36] and are given by:

Fig. 7   Hydrostatic pressure field 
for R

i
= 0.8 by the MixMLS 

method using an exponential 
radial basis function

Fig. 8   Relative density field 
for R

i
= 0.8 by the MixMLS 

method using an exponential 
radial basis function
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As can be observed in Fig. 12, for a relative density equal 
to 1.0, the numerical solution using the mixed moving least 
squares method shows a small difference from the analyti-
cal solution for low and high axial load values; however, the 
difference is greater for intermediate loads. The maximum 
difference between the analytical and the numerical solu-
tion by the MixMLS is approximately 6.07%. The mixed 
Shepard’s method failed to obtain a numerical solution for 
the cantilever beam problem.

For the particular case of a beam with a length b = 10m , 
height h = 1m , thickness t = 0.10m , and yield limit for the 

(74)Ny = t h Y0

(75)My =
t h2 Y0

4

base material Y0 = 800 MPa, subjected to a variable bend-
ing moment within the limits −300 kN m and 300 kN m, 
i.e., M̄ = 300 kN m , and a constant compressive axial load 
N̄ = 3MN , the numerical amplification factor � obtained by 
the mixed moving least squares method is 19.93 and the ana-
lytical solution for this case is 20.51 [36], with a difference 
of −0.583 . To verify the convergence, numerical simulations 
were performed using 14, 21, 28, and 35 nodal points. For 
14 nodes, the MixMLS method was unable to obtain a solu-
tion. For 21, 28, and 35 nodes, the method obtained 19.46, 
19.42, and 19.93, respectively, for the amplification factor, 
with the following percentage error: −5.11% , −5.33% , and 
−2.84% , respectively.

7 � Conclusion

In this paper, two meshless methods were presented for the 
numerical solution of the shakedown analysis of porous 
material, namely the mixed moving least squares (MixMLS) 
method and the mixed Shepard’s (MixS) method.

In the presented examples, the MixMLS method showed 
good results when compared with analytical solutions and 
previously published results obtained by the finite element 
method; however, the results obtained by the mixed Shep-
ard’s method were less precise than the results obtained by 
the corresponding MixMLS method and for one example, 
the mixed Shepard’s method failed to obtain the numerical 
solution.

As expected, in all the performed numerical simula-
tions, as the initial relative density approaches the unity, 
the porous material behavior approaches the behavior of the 
dense material.

Fig. 9   Cantilever beam sub-
jected to a bending moment M 
and an axial load N 

Fig. 10   Load domain for the cantilever beam

Fig. 11   Node distribution for 
the MixMLS and mixed Shep-
ard’s methods
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Despite the higher computational cost, the implementa-
tion of the MixMLS method is easier than the other tradi-
tional numerical methods.
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