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Abstract
In this paper, for the first time active vibration control of rotating laminated composite truncated conical shells containing 
magnetostrictive layers by employing first-order shear deformation theory is investigated. The active vibration control task 
is done through magnetostrictive layers employing velocity feedback control law. The effects of initial hoop tension and cen-
trifugal and Coriolis forces are considered in extraction of the partial differential equations through Hamilton principle. The 
ordinary differential equations are derived by employing modified Galerkin method. This study agrees with the mentioned 
results of the literature. Finally, the effects of several parameters on the vibration suppression are investigated.

Keywords  Rotating laminated conical shell · Modified Galerkin method · First-order shear deformation theory · 
Magnetostrictive layers · Active vibration control

1  Introduction

Undesirable vibration could cause bad effects on structural 
systems such as fatigue, noise and even severe damage. 
Therefore, one of the design parts of the modern structures 
should be vibration control. In this way, active vibration con-
trol which could be done through smart materials seems to 
be promising choice for this purpose. Shape memory alloys, 
piezoelectric and magnetostrictive materials are examples 
for smart materials which could be used as sensors and 
actuators [1]. In this paper, Terfenol-D which is a magneto-
strictive material is selected for active vibration control of 
rotating conical shells. Magnetostriction is a phenomenon 
which takes place in ferromagnetic materials in a way that 
they undergo deformation in response to the change in their 
magnetic state [1]. Terfenol-D has great density of energy, 
wide bandwidth as well as comparatively great displace-
ment [2]. Magnetostrictive materials especially Terfenol-D 
can have applications in micro-positioners, active damping 

systems, fluid injectors as well as helicopter blade control 
systems [3]. In order to learn more about the background of 
using smart materials in conical structures, in the following 
some of the papers are introduced.

Li et al. [4] have investigated active vibration control of 
clamped-free conical shells through laminated piezoelectric 
actuators. Li et al. [5] have controlled vibration of a conical 
shell via a diagonal piezoelectric sensor/actuator pair based 
on optimal approach. Shah and Ray [6] have presented the 
active vibration control responses of thin composite lami-
nated conical shells through piezoelectric composite materi-
als. Li et al. [7] have investigated active vibration control of 
conical shells with piezoelectric patches via velocity feed-
back and linear quadratic regulator approaches. Li et al. [8] 
have investigated optimal vibration control of conical shells 
with clamped-free boundary conditions via distributed heli-
cal piezoelectric sensor/actuator pairs. Kumar and Ray [9] 
have presented responses for active vibration control of thin 
rotating composite laminated conical shells via piezoelectric 
composite materials. Fan et al. [10] have developed vibra-
tion of piezoelectric functionally graded carbon nanotube-
reinforced composite conical panels based on first-order 
shear deformation theory using Rayleigh–Ritz method. Sun 
et al. [11] have investigated vibration control of conical 
shells via piezoelectric ceramics using a multimodal fuzzy 
sliding mode controller. Hajmohammad et al. [12] have 
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studied vibration and smart control of laminated sandwich 
conical shells containing piezoelectric layers based on lay-
erwise first-order shear deformation theory by means of dif-
ferential quadrature method. Chan et al. [13] have presented 
the nonlinear dynamic and vibration responses of function-
ally graded conical panel with piezoelectric actuators rest-
ing on elastic foundations in thermal environment based on 
Galerkin and Runge–Kutta methods. Mohammadrezaza-
deh and Jafari [14] have presented active vibration control 
of isotropic conical shells with magnetostrictive layers. 
Moghaddam and Ahmadi [15] have studied active vibration 
control of functionally graded conical shells in conjunction 
with piezoelectric layers using a semi-analytical approach 
while the shell is under harmonic excitation.

Rotating conical shells are widely used in industrial and 
engineering applications. The vibration behavior of rotating 
conical shells is investigated by several researchers. Lam and 
Hua [16] have employed the first approximation of the Love 
theory to investigate the free vibration of a rotating conical 
shell. Hua [17] has used Love first approximation theory 
and Galerkin method to find the free vibration responses of 
a rotating layered conical shell. Ng et al. [18] have studied 
the orthotropic influence of composite materials on frequency 
characteristics of rotating thin laminated composite conical 
shells. Civalek [19] has investigated the free vibration of rotat-
ing conical shells using a discrete singular convolution method. 
Talebitooti et al. [20] have presented an analytical solution 
for studying the free vibration of a rotating composite conical 
shell having stringers and rings. Malekzadeh and Heydarpour 
[21] have considered the effects of centrifugal and Coriolis 
forces to study the free vibration of a rotating functionally 
graded conical shell under different boundary conditions. 
Heydarpour et al. [22] have analyzed the influences of cen-
trifugal and Coriolis forces on the free vibration of rotating 
carbon nanotube-reinforced composite conical shells. Nejati 
et al. [23] have studied the static and free vibration of rotating 
functionally graded conical shells reinforced with carbon nano-
tubes. Civalek [24] has investigated free vibration responses 
of rotating truncated conical shells, circular shells and panels. 
Sarkheil and Foumani [25] have presented improved formu-
lation for free vibration of a rotating conical shell. Dai et al. 
[26] have studied the vibration of rotating conical shells using 
Love first approximation theory and the Haar wavelet method. 
Shakeri et al. [27] have investigated the free vibration of rotat-
ing sandwich conical shells. Talebitooti [28] has employed an 
approximate solution to study the effects of thermal load on the 
frequency of ring-stiffened rotating functionally graded coni-
cal shells. Dung et al. [29] have analyzed the free vibration 
of functionally graded rotating conical shells reinforced with 
rings and stringers. Shakouri [30] has investigated vibration 
of rotating conical shells from functionally graded materials 
considering their temperature dependency features. Singha 
et al. [31] have dealt the effect of elevated temperature and 

also moisture absorption on the vibration responses of rotating 
pretwisted sandwich conical shells.

It is obvious that vibration in rotating truncated conical 
shells is usually undesirable and can cause unwanted phe-
nomena. In this way in this paper for the first time, active 
vibration control of rotating laminated composite truncated 
conical shells through magnetostrictive layers based on first-
order shear deformation theory is studied. The velocity feed-
back control method is employed for extracting the control 
law. The vibration equations are obtained using Hamilton 
principle taking into consideration the effects of Coriolis and 
centrifugal forces and also initial hoop tension. The modi-
fied Galerkin method is used for obtaining ordinary differ-
ential equations from partial differential equations of the 
rotating conical shell. The correctness and accuracy of the 
study are obtained by comparison of some results with the 
results of open literature. The effects of several parameters 
such as circumferential wave number, rotational velocity, 
length, large edge radius, semi-vertex angle, the distance of 
magnetostrictive layers from middle surface, the thickness 
of magnetostrictive and orthotropic layers and the value of 
control gain on the active vibration control characteristics 
of these rotating conical shells are shown and illustrated.

2 � Problem formulation

2.1 � Basic formulations

In this paper, active vibration control of a rotating lami-
nated composite truncated conical shell containing two 
magnetostrictive layers on its inner and outer surfaces is 
considered. The rotating shell with the reference coordinate 
system x − θ − z is shown in Fig. 1. The terms x, θ and z 
are employed, respectively, for longitudinal, circumferen-
tial and thickness directions. The origin of the coordinate 
system is located on the middle surface of the small edge. 
The rotating laminated composite truncated conical shell 
consists of N layers, while 2 layers are from magnetostrictive 
smart material which used for vibration control. The vari-
ables L, α, hm h, Ω, R1 and R2 are, respectively, used for the 
length, semi-vertex angle, magnetostrictive layer thickness, 
orthotropic layer thickness, constant rotational velocity of 
the shell about symmetric axis and the middle radiuses of 
small and large edges of the shell, respectively. In addition, 
the whole thickness of the shell is introduced by hT.

Using first-order shear deformation theory leads to the 
displacement components of the shell as below [32]:

where u, v and w are referred, respectively, to displacement 
of an arbitrary point on the shell along x, θ and z directions. 

(1)u = u0 + z�x, v = v0 + z�� , w = w0
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In addition, ψx and ψθ denote total angular rotations about 
θ and x directions. In addition, u0, v0 and w0 are used for 
displacement of a point on the middle surface of the rotat-
ing conical shell along x, θ and z directions. The relations 
of strains with displacements and rotations are obtained as 
follows [32]:

while the membrane strains ( �0x, �0� , �0x� ) and curvatures 
( kx, k� , kx� ) are given by [32]:

It should be mentioned that the radius of each point on 
the middle surface of the rotating truncated conical shell 
is a function of the situation of the point along x axis 

(2)
�x = �0x + zkx, �� = �0� + zk� , �x� = �0x� + zkx� ,

�0xz =
�w0

�x
+ �x, �0�z =

1

R(x)

�w0

��
−

v0 cos �

R(x)
+ ��

(3)
�0x =

�u0

�x
, �0� =

1

R(x)

�v0

��
+

u0 sin �

R(x)
+

w0 cos �

R(x)
, �0x� =

�v0

�x
+

1

R(x)

�u0

��
−

v0 sin �

R(x)

kx =
��x

�x
, k� =

1

R(x)

(
���

��
+ �x sin �

)
, kx� =

���

�x
+

1

R(x)

��x

��
−

�� sin �

R(x)

( R(x) = R1 + x sin � ). The relation of stresses of each ortho-
tropic or magnetostrictive layer with strains is given by [33]:

In Eq. (4), H and also superscript k, respectively, denote the 
magnetic field and the number of the layers. It should be 
mentioned that the second part of Eq. (4) which contains 

H is only for magnetostrictive layers and does not exist for 
ordinary orthotropic layers. Furthermore, Q̄ij denote the trans-
formed reduced stiffnesses which are defined as follows [34]:

(4)

⎧⎪⎪⎨⎪⎪⎩

𝜎x
𝜎𝜃
𝜎𝜃z
𝜎xz
𝜎x𝜃

⎫⎪⎪⎬⎪⎪⎭

(k)

=

⎡⎢⎢⎢⎢⎢⎣

Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66

⎤⎥⎥⎥⎥⎥⎦

(k)⎧⎪⎪⎨⎪⎪⎩

𝜀x
𝜀𝜃
𝜀𝜃z
𝜀xz
𝜀x𝜃

⎫⎪⎪⎬⎪⎪⎭

−
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ē31
ē32
0

0

ē36

⎫⎪⎪⎬⎪⎪⎭

(k)

H

(5)

Q̄11 = Q11 cos
4 𝜁 + Q22 sin

4 𝜉 + 2(Q12 + 2Q66) sin
2 𝜉 cos2 𝜉

Q̄12 = Q12(sin
4 𝜉 + cos4 𝜉) + (Q22 + Q11 − 4Q66) sin

2 𝜉 cos2 𝜉

Q̄22 = Q11 sin
4 𝜉 + Q22 cos

4 𝜉 + 2(2Q66 + Q12) sin
2 𝜉 cos2 𝜉

Q̄16 = (Q12 + 2Q66 − Q22) cos 𝜉 sin
3 𝜉 + (Q11 − 2Q66 − Q12) cos

3 𝜉 sin 𝜉

Q̄26 = (Q12 + 2Q66 − Q22) cos
3 𝜉 sin 𝜉 + (Q11 − 2Q66 − Q12) cos 𝜉 sin

3 𝜉

Q̄66 = (Q22 + Q11 − 2Q66 − 2Q12) cos
2 𝜉 sin2 𝜉 + Q66(cos

4 𝜉 + sin4 𝜉)

Q̄44 = Q55 sin
2 𝜉 + Q44 cos

2 𝜉

Q̄45 = (Q55 − Q44) sin 𝜉 cos 𝜉

Q̄55 = Q44 sin
2 𝜉 + Q55 cos

2 𝜉

Fig. 1   The schematic of the 
rotating laminated composite 
truncated conical shell and its 
reference coordinate system 
[16]
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while ξ is the angle of each layer with longitudinal axis. The 
reduced stiffnesses Qij are defined as [34]:

The variables E1, E2, vij, G12, G23 and G13 are, respectively, 
used for Young’s moduli in x and θ directions, Poisson’s 

(6)

Q11 =
E1

1 − �12�21
, Q12 =

�12E2

1 − �12�21
, Q22 =

E2

1 − �12�21

Q66 = G12, Q44 = G23, Q55 = G13

where Ks = 5/6 [34] and according to Ref. [33], the following 
relations exist:

while ckc is defined in Sect. 2.2.

2.2 � Active vibration control law

The smart magnetostrictive layers which are placed in the 
rotating laminated composite conical shell are employed in 
order to control vibration actively. Induced magnetic field 
H is the result of passing current I from the magnetic coils. 
The relation between magnetic field and electric current is 
given as [33, 35]:

In Eq. (12), nc, bc and rc denote number of turns in the coil, 
coil width and coil radius, respectively. In order to control 
vibration of the shell actively, velocity feedback control law 
with the following equation is applied [33, 35]:

Multiplying C by kc leads to the control gain value which is 
shown by ckc ( ckc = C × kc).

(10)

(
Aij,Bij,Dij

)
=

N∑
k=1

Q̄
(k)

ij ∫
z

(
1, z, z2

)
dz i, j = 1, 2, 6

Aij =

N∑
k=1

Q̄
(k)

ij
(zk+1 − zk) i, j = 4, 5

(11)
(
A31,A32,A36,B31,B32,B36

)
= −ckc

N∑
k=m1,m2,…

zk+1

∫
zk

(
ē31, ē32, ē36, zē31, zē32, zē36

)
dz

(12)
H = kcI, kc =

nc√
b2
c
+ 4r2

c

(13)I = −Cẇ

Fig. 2   The curves of strain with magnetic field, a general quasi-static diagram, b diagram of Terfenol-D magnetostrictive material [1]

ratio, shear moduli in the x − θ, θ − z and x − z surfaces [34]. 
In addition, the magnetostrictive material coefficients ēij are 
extracted as given by the following relations [33, 35]:

The in-plane forces ( Nx,N� ,Nx� ), moments ( Mx,M� ,Mx� ) 
and shear forces ( Q� ,Qx ) are derived by the following for-
mulations [33]:

(7)

ē31 = e31 cos
2 𝜉 + e32 sin

2 𝜉

ē32 = e32 cos
2 𝜉 + e31 sin

2 𝜉

ē36 = (e31 − e32) sin 𝜉 cos 𝜉

(8)
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⎪⎪⎪⎬⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

⎤⎥⎥⎥⎥⎥⎥⎦

⎧
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Figure 2a depicts a general quasi-static strain with mag-
netic field curve, while Fig. 2b shows the behavior of Terfe-
nol-D magnetostrictive material.

These figures illustrate symmetric behavior for positive 
and negative magnetic fields [1]. In addition, Fig. 2a, b 
shows that the curves saturate at great field values [1]. When 
magnetic field gets moderate values, the slope of the curves 
is comparatively constant [1]. It can be concluded from these 
figures that bipolar input magnetic field does not result in 
bipolar output strain [1]. In order to obtain bipolar output 
strain, it is necessary to operate around a bias point which 
is the midpoint of the linear section of the curve as shown 
in Fig. 2a [1]. Therefore, a steady magnetic field Hb must be 
accomplished to the magnetostrictive material. Therefore, 
the total magnetic field Ht is obtained as:

Figure 3 shows the control diagram which includes actuator 
and sensor.

(14)Ht = H + Hb

2.3 � Extraction of vibration equations

Hamilton principle is utilized in order to derive the vibra-
tion equations of the rotating laminated composite truncated 
conical shell by the following relation [36]:

where the variable t denotes time. In addition, T [36], Uε 
[36] and δUh [37] denote, respectively, kinetic energy, strain 
energy and the variation of work carried out on the shell due 
to centrifugal force. These variables are obtained through the 
following relations:

where for conical shell mkh = 1 and os = 0 and for cylindrical 
shell mkh = 0 and os = 1. Besides ρk is mass density of each 
layer of the rotating laminated composite truncated conical 

(15)

t2

∫
t1

(
�T − �U� − �Uh

)
dt = 0

(16)T =

N∑
k=1

�k

2 ∫
z

∫
�

∫
x

{� ⋅ �}R(x)dxd�dz

(17)

U� =
1

2 ∫
z

∫
�

∫
x

(
�x�x + ���� + �x��x� + �xz�xz + ��z��z

)

R(x)dxd�dz

(18)�Uh = ∫
�

∫
x

N0
�

R(x)2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
R(x) cos �

�w0

�x
−

�2u0

��2

�
�u0

+

⎛⎜⎜⎜⎝

v0 sin
2 � − R(x)

�2u0

�x��
− sin �

�u0

��

−R(x) sin �
�v0

�x

⎞⎟⎟⎟⎠
�v0

+

�
mkhR(x) cos �

�u0

�x
+ os

�v0

��
−

�2w0

��2

�
�w0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R(x)dxd�

Fig. 3   Schematic of the control 
system with sensor and actuator
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shell. In addition, N0
�
 and V express, respectively, initial hoop 

tension [37] and the shell velocity [36] which are given as:

Substituting Eq. (20) into Eq. (16) leads to the following 
relation for δT:

(19)N0
�
= I1R(x)

2�2

(20)
V = �̇ +

(
−𝛺 cos 𝛼�̂ +𝛺 sin 𝛼�̂

)
× �, � = u�̂ + v�̂ + w�̂

(21)

𝛿T = ∫
𝜃

∫
x

I1

⎧
⎪⎨⎪⎩

�
−ü0 + 2𝛺 sin 𝛼v̇0 +𝛺2u0 sin

2 𝛼 +𝛺2w0 cos 𝛼 sin 𝛼
�
𝛿u0

+
�
−v̈0 − 2𝛺 sin 𝛼u̇0 − 2𝛺 cos 𝛼ẇ0 +𝛺2v0

�
𝛿v0

+
�
−ẅ0 + 2𝛺 cos 𝛼v̇0 +𝛺2w0 cos

2 𝛼 +𝛺2u0 cos 𝛼 sin 𝛼
�
𝛿w0

⎫
⎪⎬⎪⎭
R(x)dxd𝜃

+ ∫
𝜃

∫
x

I2

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

+
�
−𝜓̈x + 2𝛺 sin 𝛼𝜓̇𝜃 + 𝜓x𝛺

2 sin2 𝛼
�
𝛿u0

+
�
−ü0 + 2𝛺 sin 𝛼v̇0 + u0𝛺

2 sin2 𝛼 + w0𝛺
2 cos 𝛼 sin 𝛼

�
𝛿𝜓x

+
�
−𝜓̈𝜃 − 2𝛺 sin 𝛼𝜓̇x + 𝜓𝜃𝛺

2
�
𝛿v0
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�
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2
�
𝛿𝜓𝜃

+
�
2𝛺 cos 𝛼𝜓̇𝜃 + 𝜓x𝛺
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�
𝛿w0

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

R(x)dxd𝜃

+ ∫
𝜃

∫
x

I3

�
+
�
−𝜓̈x +𝛺 sin 𝛼𝜓̇𝜃 +𝛺2𝜓x sin

2 𝛼 +𝛺 sin 𝛼𝜓̇𝜃

�
𝛿𝜓x

+
�
−𝜓̈𝜃 −𝛺 sin 𝛼𝜓̇x +𝛺2𝜓𝜃 −𝛺 sin 𝛼𝜓̇x

�
𝛿𝜓𝜃

�
R(x)dxd𝜃

While mass moments of inertias are calculated using the 
following formulation [38]:

Substituting relations (4), (8) and (9) into Eq. (17) and doing 
some mathematical simplifications leads to the following 
formulation for δUε:
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N��v0 + Nx��u0 +M���� +Mx���x + Q��w0

����
2�
0
dx
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Finally, by substituting Eqs. (18), (21) and (23) into Eq. (15), 
the partial differential equations for the vibration of the 
rotating laminated composite truncated conical shell are 
extracted in the following forms:

Substituting Eqs.  (2), (3), (8), (9), (12) and (13) into 
Eqs. (24)–(28) leads to the following matrix relationship:

The elements of matrix L which denote differential operators 
are given in “Appendix” for cross-ply symmetric laminates. 
In addition, the geometric and natural boundary conditions 
for simply supported conical shells are, respectively, as 
shown in Eqs. (30) and (31) [32, 38]:

(24)

𝜕Nx

𝜕x
R(x) + sin 𝛼

(
Nx − N𝜃

)
+

𝜕Nx𝜃

𝜕𝜃
+

N0
𝜃

R(x)

[
𝜕2u

𝜕𝜃2
− R(x) cos 𝛼

𝜕w

𝜕x

]

+ I1R(x)
{
−ü0 + 2𝛺 sin 𝛼v̇0 +𝛺2u0 sin

2 𝛼 +𝛺2w0 cos 𝛼 sin 𝛼
}

+ I2R(x)
{
−𝜓̈x + 2𝛺 sin 𝛼𝜓̇𝜃 + 𝜓x𝛺

2 sin2 𝛼
}
= 0

(25)

cos 𝛼Q𝜃 + R(x)
𝜕Nx𝜃

𝜕x
+ 2 sin 𝛼Nx𝜃 +

𝜕N𝜃

𝜕𝜃
+ I2R(x)

{
𝜓𝜃𝛺

2 − 𝜓̈𝜃 − 2𝛺 sin 𝛼𝜓̇x

}

+ I1R(x)
{
−v̈0 − 2𝛺 sin 𝛼u̇0 − 2𝛺 cos 𝛼ẇ0 +𝛺2v0

}

+
N0
𝜃

R(x)

[
R(x)

𝜕2u

𝜕x𝜕𝜃
+ sin 𝛼

𝜕u

𝜕𝜃
+ R(x) sin 𝛼

𝜕v

𝜕x
− v sin2 𝛼

]
= 0

(26)

𝜕Qx

𝜕x
R(x) − N𝜃 cos 𝛼 + Qx sin 𝛼 +

𝜕Q𝜃

𝜕𝜃
+ I2R(x)

{
2𝛺 cos 𝛼𝜓̇𝜃 + 𝜓x𝛺

2 cos 𝛼 sin 𝛼
}

+ I1R(x)(2𝛺 cos 𝛼v̇0 − ẅ0 +𝛺2w0 cos
2 𝛼 +𝛺2u0 cos 𝛼 sin 𝛼)

+
N0
𝜃

R(x)

[
𝜕2w

𝜕𝜃2
− mkhR(x) cos 𝛼

𝜕u

𝜕x
− os

𝜕v

𝜕𝜃

]
= 0

(27)
R(x)

𝜕Mx

𝜕x
+ sin 𝛼

(
Mx −M𝜃

)
+

𝜕Mx𝜃

𝜕𝜃
− QxR(x)

+ I3R(x)
{
𝛺2𝜓x sin

2 𝛼 − 𝜓̈x + 2𝛺 sin 𝛼𝜓̇𝜃

}

+ I2R(x)
{
−ü0 + 2𝛺 sin 𝛼v̇0 + u0𝛺

2 sin2 𝛼 + w0𝛺
2 cos 𝛼 sin 𝛼

}
= 0

(28)R(x)
𝜕Mx𝜃

𝜕x
+ 2 sin 𝛼Mx𝜃 +

𝜕M𝜃

𝜕𝜃
− Q𝜃R(x) + I3R(x)

{
−𝜓̈𝜃 − 2𝛺 sin 𝛼𝜓̇x +𝛺2𝜓𝜃

}

+ I2R(x)
{
−v̈0 − 2𝛺 sin 𝛼u̇0 − 2𝛺 cos 𝛼ẇ0 + v0𝛺

2
}
= 0

(29)�

⎧
⎪⎪⎨⎪⎪⎩

u0
v0
w0

�x

��

⎫
⎪⎪⎬⎪⎪⎭

=

⎧
⎪⎪⎨⎪⎪⎩

0

0

0

0

0

⎫
⎪⎪⎬⎪⎪⎭

, � =

⎡
⎢⎢⎢⎢⎢⎣

L11 L12 L13 L14 L15
L21 L22 L23 L24 L25
L31 L32 L33 L34 L35
L41 L42 L43 L44 L45
L51 L52 L53 L54 L55

⎤⎥⎥⎥⎥⎥⎦

 Natural boundary conditions of the shell which introduced 
in Eq. (31) can be rewritten as follows:

It should be mentioned that the elements of matrix P for 
symmetric cross-ply laminates are introduced in “Appendix”.

2.4 � Problem solution

The trial function which satisfies geometric boundary condi-
tions of Eq. (30) is introduced as follows:

(30)
v0(0, �, z) = 0, w0(0, �, z) = 0, ��(0, �, z) = 0

v0(L, �, z) = 0, w0(L, �, z) = 0, ��(L, �, z) = 0

(31)
−NxR(x)

|||(0,�,z) = 0, −MxR(x)
|||(0,�,z) = 0

−NxR(x)
|||(L,�,z) = 0, −MxR(x)

|||(L,�,z) = 0

(32)

�

⎧
⎪⎪⎨⎪⎪⎩

u0(x, �, t)

v0(x, �, t)

w0(x, �, t)

�x(x, �, t)

��(x, �, t)

⎫
⎪⎪⎬⎪⎪⎭

= �, x = 0, L, � =

⎡
⎢⎢⎢⎢⎢⎣

P11 P12 P13 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 P44 P45

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
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while

where m and n denote longitudinal and circumferential wave 
numbers, respectively, and MT denotes bounding value for lon-
gitudinal wave number. It should be mentioned that definitions 
of u0, v0 and w0 in Eqs. (33) and (34) are similar to reference 
[39]. It is important to mention that in this study the inputs 
are considered in a way that the function of θ is not written in 
series forms. Galerkin method [32] can be employed in order 
to convert the differential equations into ordinary differential 
equations. The trial function of Galerkin method is necessary 
to satisfy both geometric and natural boundary conditions 
[32]. Since the introduced trial function in Eq. (33) only satis-
fies geometric boundary conditions, according to Hamilton 
principle and Eq. (23), the following modified formulation is 
introduced, named modified Galerkin method:

(33)

⎧
⎪⎪⎨⎪⎪⎩

��
��
��

��

��

⎫
⎪⎪⎬⎪⎪⎭

=
�
��

�
⎧
⎪⎪⎨⎪⎪⎩

���(t)

���(t)

���(t)

����(t)

����(t)

⎫
⎪⎪⎬⎪⎪⎭

+
�
��

�
⎧
⎪⎪⎨⎪⎪⎩

���(t)

���(t)

���(t)

����(t)

����(t)

⎫
⎪⎪⎬⎪⎪⎭

(34)
�
��

�
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑MT

m=1
cos

�
m�x

L

�
cos n�

∑MT

m=1
sin

�
m�x

L

�
sin n�

∑MT

m=1
sin

�
m�x

L

�
cos n�

∑MT

m=1
cos

�
m�x

L

�
cos n�

∑MT

m=1
sin

�
m�x

L

�
sin n�

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,
�
��

�
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−
∑MT

m=1
cos

�
m�x

L

�
sin n�

∑MT

m=1
sin

�
m�x

L

�
cos n�

−
∑MT

m=1
sin

�
m�x

L

�
sin n�

−
∑MT

m=1
cos

�
m�x

L

�
sin n�

∑MT

m=1
sin

�
m�x

L

�
cos n�

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

, n = 1, 2,…

(35)

L

∫
0

2�

∫
0

(
�
{
��, ��,��,��,��

}T
)
{�}d�dx−

2�

∫
0

((
�
{
��, ��,��,��,��

}T
)
{�}

)|||
L

0
= �

while

where

(36){�} = {cc,−cs, ss, sc, sc,−ss, cc,−cs, ss, sc}

Table 1   Frequency parameter 
results obtained for a non-
rotating isotropic truncated 
conical shell

n α = 45° α = 60°

Present Ref. [40] Ref. [41] Ref. [42] Present Ref. [40] Ref. [41] Ref. [42]

2 0.7606 0.6879 0.7642 0.7655 0.6328 0.5722 0.6342 0.6348
3 0.7175 0.6973 0.7211 0.7212 0.6218 0.6001 0.6236 0.6238
4 0.6710 0.6664 0.6747 0.6739 0.6124 0.6054 0.6146 0.6145
5 0.6299 0.6304 0.6336 0.6323 0.6088 0.6077 0.6113 0.6111
6 0.6011 0.6032 0.6049 0.6035 0.6144 0.6159 0.6172 0.6171
7 0.5893 0.5918 0.5928 0.5921 0.6316 0.6343 0.6347 0.6350
8 0.5965 0.5992 0.6005 0.6001 0.6617 0.6650 0.6653 0.6660
9 0.6227 0.6257 – 0.6273 0.7045 0.7084 – 0.7101

Substituting Eq. (36) into Eq. (35) and doing some math-
ematical effort leads to the following formulation:

where M and K denote mass and stiffness matrices, respec-
tively. Furthermore, Cdampling is the result of the damping 
characteristics caused by magnetostrictive layers. In addi-
tion, the components of Crotation are related to the rotation 
speed of the rotating shell. In order to solve Eq. (38), state 
space form can be used [32]:

(37)

cc =

MT∑
m=1

cos
(
m�x

L

)
cos n�, cs =

MT∑
m=1

cos
(
m�x

L

)
sin n�

ss =

MT∑
m=1

sin
(
m�x

L

)
sin n�, sc =

MT∑
m=1

sin
(
m�x

L

)
cos n�

(38)

𝐌𝐱̈ +
(
𝐂𝐝𝐚𝐦𝐩𝐢𝐧𝐠 + 𝐂𝐫𝐨𝐭𝐚𝐭𝐢𝐨𝐧

)
𝐱̇ +𝐊𝐱 = 𝟎,

𝐱 =
{
𝐮𝐭𝟏, 𝐮𝐭𝟐, 𝐯𝐭𝟏, 𝐯𝐭𝟐,𝐰𝐭𝟏,𝐰𝐭𝟐,𝛙𝐱𝐭𝟏,𝛙𝐱𝐭𝟐,𝛙𝛉𝐭𝟏,𝛙𝛉𝐭𝟐

}T

(39)�̇ = ��, � = [�, �̇]T
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where

Two eigenvalues �b = −�b ± �b and �f = −�f ± �f exist for 
matrix A, while βb and βf are backward and forward damping 
coefficients. Furthermore, ωb and ωf express, respectively, 
backward and forward frequencies. It should be mentioned 

(40)� =

[
� �

−�−1� −�−1
(
�������� + ���������

)
]

that the absolute value of backward wave is generally larger 
than forward wave’s absolute value [37]. In addition, when 
the shell does not rotate (Ω = 0) backward and forward 
waves get the same values ( � = −� ± i� ), while β and ω are, 
respectively, referred to damping coefficient and frequency 
for the stationary conical shell. Doing some mathematical 
simplifications, the time response is obtained as follows:

where Y, [λi] and y0, respectively, denote matrix of right 
eigenvectors, diagonal matrix of eigenvalues and the vector 
of initial values, where

where

Substituting Eq. (41) into Eq. (33) and then substituting the 
result in Eq. (1) leads to the displacement of each point of 
the rotating shell.

(41)� = � exp(
[
�i
]
t)�−1��

(42)�� =

{
���
���

}

(43)

��� =
{
���(0), ���(0), ���(0), ���(0),���(0),���(0),����(0),

����(0),����(0),����(0)
}T

(44)

��� =
{
�̇��(0), �̇��(0), �̇��(0), �̇��(0), �̇��(0), �̇��(0), �̇���(0),

�̇���(0), �̇���(0), �̇���(0)
}T

Table 2   Non-dimensional backward and forward waves ( �∗
b
,�∗

f
 ) for a 

[0°/90°/0°] laminated rotating cylindrical shell with different values 
of rotation speed

Ω (rps) n �∗
b

�∗
f

Present Ref. [XXX] Present Ref. [XXX]

0.1 1 1.061725 1.061429 1.061435 1.061140
2 0.804729 0.804214 0.804409 0.803894
3 0.599574 0.598476 0.599286 0.598187
4 0.452761 0.450270 0.452513 0.450021
5 0.350922 0.345363 0.350708 0.345149

0.4 1 1.062158 1.061862 1.061001 1.060706
2 0.805211 0.804696 0.803930 0.803415
3 0.600014 0.598915 0.598860 0.597762
4 0.453153 0.450662 0.452158 0.449667
5 0.351282 0.345724 0.350428 0.344870

1 1 1.063023 1.062728 1.060132 1.059836
2 0.806182 0.805667 0.802979 0.802464
3 0.600918 0.599820 0.598035 0.596937
4 0.454004 0.451513 0.451517 0.449027
5 0.352148 0.346593 0.350013 0.344459

(a) (b)

Fig. 4   Variation of backward and forward damping coefficients with circumferential wave number for different values of rotational velocity
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3 � Results and discussion

In this paper, active vibration control of rotating laminated 
composite truncated conical shells embedded with two mag-
netostrictive layers is investigated. It should be mentioned 
that all of the results included in this section are for the 
shells with simply supported boundary conditions. At first, 
in order to validate this study, it is necessary to make com-
parison between some results of this study with published 
results of the literature. In this way, Table 1 presents the 
frequency parameter results ( �∗ = �R2

√(
1 − �2

12

)
�
/
E1 ) of 

this study and also literature for a non-rotating isotropic 

truncated conical shell with �
12

= 0.3, L sin �∕R
2
= 0.25,

hT∕R2 = 0.01 while α = 45° and α = 60°. It should be men-
tioned that ρ is density. Table 1 reveals that there is good 
adaptation between the results of this study with the corre-
sponding results of the literature. This fact demonstrates the 
correctness and validity of the present study. In order to 
show the validity of this study for rotating shells, Table 2 
shows the non-dimensional backward and forward waves 
results ( �∗

b(f )
= �b(f)R2

√
�∕E2 ) obtained for a [0°/90°/0°] 

laminated rotating cylindrical shell which rotates with three 
different rotation speeds Ω = 0.1  rps, Ω = 0.4  rps and 
Ω = 1 rps (rps, revolutions per second) and compares the 

(a) (b)

Fig. 5   Variation of backward and forward frequencies with circumferential wave number for different values of rotation speed

(a) (b)

Fig. 6   The effect of the length on the diagrams of backward and forward waves with rotational velocity, a damping coefficients, b frequencies
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results of this study with the open literature. The constants 
of this rotating shell are considered to be:

The results in Table 2 show good agreement between this 
study and literature results which corroborates the validity 
of this study.

After the validation of this study, it is time to dem-
onstrate the effects of various parameters on the active 

(45)

m = 1, h∕R2 = 0.002, L∕R2 = 1,

E2 = 7.6GN
/
m2, E1∕E2 = 2.5,G12 = 4.1GN

/
m2,

�12 = 0.26, � = 1643 kg
/
m3

vibration control of the rotating laminated compos-
ite truncated conical shell. In this way, a rotating lami-
nated composite truncated conical shell with the lamina-
tion scheme of [mag/90°/0°/90°/0°]s is considered, while 
the expression mag is used for magnetostrictive layers. 
Hence, the shell consists of 10 layers which are sym-
metrically placed according to middle surface, while all 
8 orthotropic layers are from CFRP material unless men-
tioned otherwise and 2 layers are from Terfenol-D which 
is a smart magnetostrictive material. The active vibration 
control task lies with Terfenol-D magnetostrictive layers 
using velocity feedback control law. The rotating laminated 

(a) (b)

Fig. 7   The effect of the large edge radius on the curves of backward and forward waves with rotation speed, a damping coefficients, b frequen-
cies

(a) (b)

Fig. 8   Variation of backward and forward waves with semi-vertex angle for different values of rotation speed, a damping coefficients, b frequen-
cies
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composite truncated conical shell’s constants are considered 
to be: � = 30

◦
, L = 0.5 m,R

2
= 1 m, h = 1 mm, hm = 1 mm,

MT = 4, n = 4, ckc = 104 unless mentioned other values.
The variation of backward and forward damping coef-

ficients (βb and βf) with circumferential wave number n 
for several values of rotation speed is shown in Fig. 4a, 
b, respectively. The results of Fig. 4a, b are obtained for 
L = 0.1 m, MT = 3. Figure 4 shows that for a constant value 
of rotational velocity, the values of βb and βf decrease with 
increase in n. In addition for a fixed value of n, the change of 
βb and βf values with increase in rotation speed is negligible.

Figure 5a, b depicts, respectively, the variation of back-
ward and forward frequencies with n for different values 
of rotation speed. Figure 5a, b is for a conical shell with 
L = 0.1 m, MT = 3. Figure 5a, b demonstrates that for a fixed 
value of n in the range of n > 6, the absolute values of ωb and 
ωf increase with the increase in rotation speed. In addition, 
the values of both ωb and ωf in the range of n < 5 decrease 
with increase in circumferential wave number n for each 

rotational velocity; while in the range of n > 6, the values of 
ωb and ωf become larger with increase in n for each rotation 
speed.

Figure 6a, b shows, respectively, the variation of back-
ward and forward damping coefficients and frequencies 
with rotation speed for different values of the rotating trun-
cated conical shell’s length. One can conclude from Fig. 6a 
that for a fixed value of rotational velocity, the values of 
both backward and forward damping coefficients decrease 
with increase in the shell length. In addition for a constant 
value of length, the value of backward damping coefficient 
increases as the rotation speed becomes larger. On the other 
hand, the forward damping coefficient gets smaller value 
with increase in rotation speed. Figure 6b demonstrates 
that for a constant rotation speed, the values of backward 
and forward frequencies take smaller values with increase 
in the length. Besides, for a fixed value of the length, the 
increase in rotation speed leads to greater value for backward 
frequency.

The effect of the large edge radius of the rotating coni-
cal shell on the curves of backward and forward damping 
coefficients with rotational velocity is shown in Fig. 7a. 
Figure 7a demonstrates that for a constant rotational veloc-
ity, increase in large edge radius leads to increase in the 
backward and forward damping coefficients. In addition, for 
a fixed value of R2, the increase in rotation speed leads to 
increase in backward damping coefficient and decrease in 
forward damping coefficient; thus, the deference between 
the values of backward and forward damping coefficients 
in higher rotation speeds is greater. Figure 7b depicts the 
diagrams of backward and forward frequencies with rotation 

Table 3   The effect of the magnetostrictive layers’ position from mid-
dle surface on the backward and forward damping coefficients and 
frequencies

Lamination scheme βb (rad/s) ωf (rad/s) βf (rad/s) ωf (rad/s)

[mag/90
o∕0o∕90o∕0o]

s
22.2893 1484.8716 21.3348 1443.6934

[90o∕mag/0
o∕90o∕0o]

s
22.2852 1488.0017 21.3313 1446.8151

[90o∕0o∕mag/90
o∕0o]

s
22.2843 1494.8530 21.3314 1453.6600

[90o∕0o∕90o∕mag/0
o]

s
22.2823 1496.4091 21.3296 1455.2119

[90o∕0o∕90o∕0o∕mag]
s

22.2820 1498.6824 21.3297 1457.4830

(a) (b)

Fig. 9   The effect of the magnetostrictive layer thickness on the curves of a displacement in thickness direction with time and b the magnetic 
field H with time
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speed for different values of the large edge radius. According 
to Fig. 7b, it can be realized that for a fixed value of Ω, as the 
large edge radius R2 becomes higher, the values of backward 
and forward frequencies become smaller. In addition, for a 
constant value of the large edge radius, the increase in rota-
tion speed leads to increase in backward frequency.

Figure 8a depicts the variation of backward and for-
ward damping coefficients with the semi-vertex angle α for 
different values of rotational velocity. It can be observed 
from Fig. 8a that for a fixed value of semi-vertex angle, 
the values of backward and forward damping coefficients 
become, respectively, greater and smaller as the rotation 

speed increases. Furthermore, for a determined value of 
rotation speed, backward and forward damping coefficients 
get smaller values as semi-vertex angle increases. Figure 8b 
demonstrates the curves of backward and forward frequen-
cies with semi-vertex angle for different values of rotational 
velocity. According to Fig. 8b, one can conclude that when 
rotation speed is fixed, the values of backward and forward 
frequencies become smaller with increase in semi-vertex 
angle. Besides, for a constant value of semi-vertex angle, 
the increase in rotation speed leads to greater values for 
backward frequency.

(a) (b)

Fig. 10   The influence of the CFRP layer’s thickness on the curves of a displacement w with time, b magnetic field H with time

(a) (b)

Fig. 11   The effect of the control gain on the curves of a displacement response w with time, b magnetic field H with time
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The effect of magnetostrictive layers distance from mid-
dle surface on the values of backward and forward damping 
coefficients and frequencies is presented in Table 3, while 
Ω = 10 rps and L = 0.6 m. According to Table 3, it can be 
realized that as the distance of magnetostrictive layers from 
middle surface increases the backward and forward frequen-
cies get smaller values; but in general, the results in Table 3 
demonstrate that the effect of the magnetostrictive layers’ 
location on the backward and forward damping coefficients 
and frequencies is small and negligible.

At the rest of this paper, the effect of several parameters 
on the diagrams of displacement in the thickness direction 
with time is investigated, while the values of rotation speed 
and initial velocity in thickness direction ( ẇ(0) ) are con-
sidered to be 10 rps and 3 mm/s, respectively. It should be 
mentioned that the displacement in thickness direction is for 
a point with position of x = 0.5L and θ = 0.

Figure 9a demonstrates the effect of the magnetostrictive 
layer’s thickness on the displacement of the conical shell in 
thickness direction. One can conclude from this figure that 
the vibration suppression rate increases with the increase 
in the magnetostrictive layer thickness. Figure 9b depicts 
the diagram of magnetic field H with time t for different 
values of the magnetostrictive layer’s thickness. This figure 
shows that the absolute value of magnetic field H is less than 
40 Ampere/m. Figure 2b shows that in this range around 
the bias point ( |H| < 40 Ampere/m ) the behavior of the 
Terfenol-D magnetostrictive material is linear and matches 
the linear model that is considered in this study (Eq. 4); 
therefore, the selection of control gain and modeling of the 
control system is done correctly. In addition, Fig. 9b illus-
trates that the value of H becomes smaller for small values 
of time as the value of the thickness for magnetostrictive 
layer become higher.

Figure 10a depicts the effects of CFRP layer’s thick-
ness on the curves of displacement in thickness direction 
with time. This figure demonstrates that the increase in the 
CFRP layer’s thickness leads to slower vibration suppres-
sion. Figure 10b shows the curves of magnetic field H with 
time for different values of the orthotropic layer’s thickness. 
Figure 10b indicates that the absolute value of H is less than 
50 Ampere/m. According to Fig. 2b, it can be concluded 
that this range around the bias point ( |H| < 50 Ampere/m ) 
belongs to linear region.

The effect of the control gain value ckc on the suppression 
of the displacement w of the rotating laminated composite 
conical shell is shown in Fig. 11a. When ckc = 0, the sup-
pression does not take place, whereas the increase in control 
gain leads to faster suppression of the displacement in thick-
ness direction. Figure 11b displays the curves of magnetic 

field H with time for different values of the control gain. 
This figure shows that the value of magnetic field H is zero 
for zero value of the control gain. On the other hand, the 
increase in the control gain leads to increase in the magnetic 
field H for small values of time; however, the magnetic field 
H is in the range that guarantees linear behavior according to 
Fig. 2b ( |H| < 300 Ampere/m ). As shown in Fig. 11a, when 
ckc = 104, vibration suppression takes place almost in 0.2 s. 
According to this reason and also the fact that the increase 
in control gain leads to increase in magnetic field H for small 
times according to Fig. 11b, one can infer that the selection 
of ckc = 104 is adequate. In addition, in references [33] and 
[35], the absolute value of ckc is considered to be 104.

4 � Conclusion

In this paper, the active vibration control of rotating lami-
nated composite truncated conical shells embedded with two 
magnetostrictive layers is studied. Feedback velocity con-
trol law is used for the purpose of active vibration control. 
The vibration equations of the rotating laminated composite 
truncated conical shell are extracted considering the effects 
of initial hoop tension and centrifugal and Coriolis forces 
by means of Hamilton principle based on first-order shear 
deformation theory. The task of reducing the differential 
equations into ordinary ones lies with modified Galerkin 
method. The validation of this study is investigated by com-
parison of some results with the results of other studies. 
Good agreement of this study’s results with the literature 
confirms the reliability of this study. The effects of several 
parameters such as circumferential wave number, rotation 
speed, length, large edge radius, semi-vertex angle, the loca-
tion of magnetostrictive layers from middle surface, magne-
tostrictive and also orthotropic layers thickness and control 
gain value on the vibration attenuation of the rotating lami-
nated composite conical shell are investigated.

Appendix

The differential operators of matrix L which is introduced in 
Eq. (29) are defined as the following for symmetric cross-ply 
lamination scheme:
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The elements of matrix P which is presented in Eq. (32) can 
be obtained in the following types for cross-ply symmetric 
laminate scheme:
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