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Abstract
The present concept is related to the two-dimensional deformation in an initially stressed fiber-reinforced orthotropic ther-
moelastic model in the context of Green–Naghdi type III (GN III) theory as a result of the application of an inclined load. 
Normal and shear loads are assumed to be linear. The full expressions for the displacement components, temperature field and 
stresses are obtained by using normal mode technique. Comparisons are made in an orthotropic, transversely isotropic and 
an isotropic medium to illustrate the effects of fiber reinforcement on these physical quantities. The effects of initial stress, 
Green–Naghdi theories (type III and type II), inclination angle of load and time on the field variables are also considered.

Keywords  Green–Naghdi theories · Fiber-reinforced thermoelastic composites · Orthotropic · Initial stress · Inclined load · 
Normal mode technique

1  Introduction

A fiber-reinforced composite is a structural material that 
consists of mainly three components: the fibers or the dis-
continuous or dispersed phase, the matrix as the continu-
ous phase and the fine interphase region, also known as the 
interface. The parts made with fiber-reinforced composite 
materials have a higher material index than traditional mate-
rials and therefore competent to minimum mass design and 
have remarkable advantages such as lightweight with high 
strength, good corrosion resistance, rational impact resist-
ance, dimension stability, durability and easy mold ability. 
Mallick [1] pointed out the applications of fiber-reinforced 
composites in medical science field, automotive field, 
defense marine, aerospace, motorsports, pipelines, pres-
sure vessels, breathing tanks, gas cylinders, wind turbine 
blades, boats, architectural shapes, automobile parts, beams 
and girders used in roof structures, bridges and helicopter 
rotor shafts.

Abbas [2] showed that the mechanical behavior of many 
fiber-reinforced composite materials can be adequately mod-
eled by the theory of linear elasticity for anisotropic materi-
als. Hashin and Rosen [3] introduced the elastic moduli for 
fiber-reinforced composites. For the last few decades, the 
analysis of stress and deformation of fiber-reinforced com-
posites has been a substantial topic in the solid mechanics. 
Pipkin [4] and Rogers [5] discussed a continuum theory of 
finite plane deformations of composites consisting of materi-
als reinforced by strong fibers. The composite is assumed to 
be incompressible, and the fibers are treated as inextensible 
and continuously distributed. Belfield et al. [6] introduced 
continuous self-reinforcement at each point of an elastic 
medium and derived an exact solution of a boundary value 
problem for an annulus circumscribed by concentric circles. 
Singh [7] studied the plane wave propagation in a fiber-
reinforced anisotropic generalized thermoelastic medium. 
Othman and Lotfy [8] solved a two-dimensional problem of 
fiber-reinforced thermoelastic medium under the effects of 
gravitational, rotational and magnetic fields in the context of 
coupled, Lord–Shulman and Green–Lindsay theories. Kalkal 
et al. [9] investigated the thermal disturbances in a diffusive 
fiber-reinforced transversely isotropic thermoelastic half-
space in the context of Green–Lindsay (GL) theory. Deswal 
et al. [10] investigated the effects of initial stress and grav-
ity in a fiber-reinforced transversely isotropic thermoelastic 
half-space with diffusion.
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Biot [11] developed the coupled theory of thermoelastic-
ity which admits an infinite velocity of propagation for ther-
mal signals. To remove this physically impossible phenom-
enon, Lord and Shulman [12] formulated the generalized 
thermoelasticity theory involving one thermal relaxation 
time. Green and Lindsay [13] developed a temperature rate-
dependent thermoelasticity theory that includes two thermal 
relaxation times and does not violate the classical Fourier’s 
law of heat conduction. Later on, by providing sufficient 
basic modifications in the constitutive equations, Green and 
Naghdi [14–16] produced an alternative theory for thermoe-
lastic materials consisting of three models, namely GN I, 
GN III and GN II, respectively. When these theories are 
linearized, GN I theory reduces to the classical heat conduc-
tion theory and GN III and GN II theories permit thermal 
signals to propagate with finite speed. GN II theory does not 
contain the thermal conductivity parameter, and the internal 
rate of production of entropy is taken to be identically zero, 
implying no dissipation of thermal energy. GN III includes 
the previous two theories as special cases and admits dis-
sipation of energy in general. However, these theories do not 
account for the relaxation time.

In the past few years, it has been seen that an interest 
is developed to investigate the problems related to initially 
stressed thermoelastic medium due to its many applications 
in diverse fields, such as earthquake engineering, geophys-
ics and seismology. Initial stresses are developed in the 
medium due to many reasons, resulting from the difference 
of temperature, process of quenching, gravity variations and 
many more. The problem of an elastic material under initial 
stress was solved by Biot [17]. For an isotropic medium, 
Montanaro [18] developed the linear theory of thermoelas-
ticity with hydrostatic initial stress. Effect of rotation in a 
generalized thermoelastic medium with hydrostatic initial 
stress under ramp-type loading and heating was studied by 
Ailawalia and Singh [19]. A two-dimensional problem of 
an initially stressed fiber-reinforced anisotropic thermoe-
lastic thick plate was considered by Abbas and Abd-Alla 
[20]. The effect of initial stress on propagation of waves in 
a fiber-reinforced transversely isotropic medium was inves-
tigated in Kumar et al. [21]. The dynamical interactions 
of diffusion, elastic and thermal fields under initial stress 
and two temperatures with the fractional-order generalized 
thermoelasticity were studied by Deswal et al. [22]. Khan 
and Afzal [23] investigated the effects of gravity, viscosity, 
initial stress and magnetic field on reflection and refraction 
of waves at the interface of two viscothermoelastic liquid 
half-spaces. Deswal et al. [24] analyzed the reflection phe-
nomenon of plane waves at an initially stressed surface of a 
fiber-reinforced thermoelastic half-space with temperature-
dependent properties.

The primary objective of the current work is to inves-
tigate the disturbances produced by an inclined load in an 

initially stressed fiber-reinforced orthotropic thermoelastic 
model in the context of GN III theory. Although numerous 
research problems do exist in a fiber-reinforced transversely 
isotropic medium, i.e., a thermoelastic medium with fiber 
reinforcement in one direction only, no attempt has been 
made to access the distributions of various physical fields, 
i.e., normal displacement, normal stress, shear stress and 
temperature distribution in an initially stressed thermoelas-
tic material which is reinforced by fibers in two directions. 
The exact solutions for displacement, temperature field and 
stresses are obtained in the physical domain by adopting 
normal mode analysis. These expressions are computed 
numerically and illustrated graphically in an orthotropic 
medium, transversely isotropic medium as well as in iso-
tropic medium. Effects of Green–Naghdi theories (type III 
and type II), inclination angle of the applied load and time 
duration are also investigated.

2 � Basic equations

The field equations and constitutive relations for an initially 
stressed fiber-reinforced orthotropic thermoelastic medium 
with respect to the reinforcement directions a and b in the 
context of combined form of Green–Naghdi theories (type 
III and type II) are [25]:

where Eq. (1) is the constitutive relation, Eq. (2) is the 
strain–displacement and rotation–displacement relations, 
Eq. (3) is the equation of motion with the assumption of 
absent body forces and Eq. (4) is the heat conduction equa-
tion. The parameter � = 1 makes the heat conduction equa-
tion in the context of GN III theory and � = 0 makes the heat 
conduction equation in the context of GN II theory, � is 
material density, p is the initially existing stress in the 

(1)

�ij = − p(�ij + wij) + �ekk�ij + 2�eij

+ �1(akamekm�ij + aiajekk)

+ �2(bkbmekm�ij + bibjekk) + 2�1(aiakekj

+ ajakeki) + 2�2(bibkekj

+ bjbkeki) + �1akamekmaiaj + �2bkbmekmbibj

+ �3(bkbmekmaiaj

+ akamekmbibj) − �ij��ij,

(2)eij =
1

2
(ui,j + uj,i) and wij =

1

2
(uj,i − ui,j),

(3)𝜎ji,j = 𝜌üi,

(4)K∗

ij
𝜃,ij +𝜂Kij𝜃̇,ij = 𝜌cE𝜃̈ + T0𝛽ijüi,j,
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considered medium, �ij are stress tensor, eij are strain tensor, 
wij are rotation tensor, ui are displacement vector, 
�1, �2, �1, �2, �3,�1 and �2 are reinforcement parameters, � 
and � are Lame’s elastic constants, and �ij is Kronecker delta. 
The � = T − T0 , where T is the absolute temperature and T0 
is the temperature of the material in its natural state assumed 
to be | 𝜃

T0
| ≪ 1. The assumption that the temperature incre-

ment is much smaller than T0 , i.e., | 𝜃

T0
| ≪ 1 , is essential for 

a linear theory. Real applications of the present theory such 
as geological and biological applications satisfy this condi-
tion. The material directions are along normalized vectors 
a= (a1, a2, a3) and b= (b1, b2, b3) . �ij are thermal elastic cou-
pling tensor, cE is the specific heat at constant strain, Kij is 
thermal conductivity such that Kij = Ki �ij , and K∗

ij
 is mate-

rial constant such that K∗
ij
= K∗

i
�ij.

where �1t and �2t are coefficients of linear thermal expansion.
In the above considered equations, a dot denotes partial 

temporal derivative and comma indicates spatial derivative.

3 � Problem formulation

A semi-infinite orthotropic medium in a two-dimensional 
space ( x ≥ 0 , −∞ ≤ y ≤ ∞ ) is considered as shown 
in Fig.  1. The considered medium is initially stressed. 

Also, �11 = (2� + 3�1 + 2� + �1 + 4�1)�1t + (� + �1 + �2 + �3)�2t ,

�22 = (2� + �1 + 2�2 + �3)�1t + (� + 2� + 2�2 + �2 + 4�2)�2t ,

The displacement components in plane problem are 
u = u1 = u(x, y, t) and v = u2 = v(x, y, t) where w = u3 = 0.

The fiber directions are along the x- and y- directions 
such that a= (1, 0, 0) and b= (0, 1, 0) . The stress compo-
nents ( �ij, i, j = 1, 2 ) are reduced according to Eq. (1) to 
the following

where

Upon substituting the stresses in Eq. (5) through (8), into 
the equation of motion (3) with the assumption of plane 
problem, one can obtain the following

(5)�xx = −p + H11

�u

�x
+ H12

�v

�y
− �11�,

(6)�yy = −p + H12

�u

�x
+ H13

�v

�y
− �22�,

(7)�xy = H17

�u

�y
+ H15

�v

�x
,

(8)�yx = H15

�u

�y
+ H17

�v

�x
,

H11 = � + 2� + 2�1 + �1 + 4�1, H12 = � + �1 + �2 + �3,

H13 = � + 2� + 2�2 + �2 + 4�2, H14 = � + �1 + �2,

H15 = −
p

2
+ H14, H17 =

p

2
+ H14.

Fig. 1   Semi-infinite plane sub-
jected to an inclined load
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where

The heat conduction equation (4) is therefore reduced to

The following dimensionless quantities are introduced to 
transform Eqs. (5)–(11) into a nondimensional form

where

Using the nondimensional form, Eq. (5) through (11) can 
be written as

(9)�
�2u

�t2
= H11

�2u

�x2
+ H15

�2u

�y2
+ H16

�2v

�x�y
− �11

��

�x
,

(10)�
�2v

�t2
= H13

�2v

�y2
+ H15

�2v

�x2
+ H16

�2u

�x�y
− �22

��

�y
,

H16 = H12 + H14 +
p

2
.

(11)

K∗

1

𝜕2𝜃

𝜕x2
+ K∗

2

𝜕2𝜃

𝜕y2
+ 𝜂

𝜕

𝜕t

(
K1

𝜕2𝜃

𝜕x2
+ K2

𝜕2𝜃

𝜕y2

)

= 𝜌cE𝜃̈ + T0𝛽11
𝜕ü

𝜕x

+ T0𝛽22
𝜕v̈

𝜕y
.

(12)

(x�, y�, u�, v�) = c0�0(x, y, u, v),

t� = c2
0
�0t, �� =

�11

�c2
0

�,

(��

ij
, p�) =

1

�c2
0

(�ij, p), i, j = 1, 2

�0 =
�cE

K1

, c2
0
=

H11

�
.

(13)�xx = −p +
�u

�x
+ I1

�v

�y
− �,

(14)�xy = I7
�u

�y
+ I5

�v

�x
,

(15)�yx = I5
�u

�y
+ I7

�v

�x
,

(16)�yy = −p + I1
�u

�x
+ I2

�v

�y
− I3�,

(17)
�2u

�t2
=

�2u

�x2
+ I6

�2v

�x�y
+ I5

�2u

�y2
−

��

�x
,

(18)
�2v

�t2
= I5

�2v

�x2
+ I6

�2u

�x�y
+ I2

�2v

�y2
− I3

��

�y
,

where

4 � Normal mode analysis

In the current section, normal mode technique is applied 
to obtain the exact solutions without any presumed con-
straints on the physical fields. It was applied to a wide 
range of problems for different cases (Othman and Lotfy 
[8], Ezzat and Awad [26]). The physical fields under con-
sideration and the components of stress are transformed 
in terms of normal modes, using

where � is the frequency (a complex constant), m is the wave 
number in y-direction, i is the imaginary unit and 
u∗, v∗, �∗, �∗

ij
 and p∗ are the magnitudes of the functions 

u, v, �, �ij and p, respectively.
From Eq. (20), Eqs. (17)–(19) can be written in the 

following form:

where

(19)
I9
𝜕2𝜃

𝜕x2
+ I10

𝜕2𝜃

𝜕y2
+ 𝜂

𝜕

𝜕t

(
𝜕2𝜃

𝜕x2
+ I11

𝜕2𝜃

𝜕y2

)

=
𝜕2𝜃

𝜕t2
+ I12

𝜕ü

𝜕x
+ I8

𝜕v̈

𝜕y
,

(I1, I2, I4) =
1

H11

(H12,H13,H14), I3 =
�22

�11
, I5 = I4 −

p

2
,

I6 = I1 + I4 +
p

2
, I7 = I4 +

p

2
, I8 =

T0�11�22

K1H11�0
,

I9 =
K∗
1

c2
0
�0K1

, I10 =
K∗
2

c2
0
�0K1

, I11 =
K2

K1

, I12 =
T0�

2
11

K1H11�0
.

(20)
[u, v, �, �ij, p](x, y, t)

= [u∗, v∗, �∗, �∗

ij
, p∗](x) exp(�t + imy),

(21)(D2 − J1)u
∗ + J2Dv

∗ − D�∗ = 0,

(22)J2Du
∗ + (I5D

2 − J3)v
∗ − J4�

∗ = 0,

(23)J5Du
∗ + J6v

∗ − (J7D
2 − J8)�

∗ = 0,

D =
d

dx
, J1 = I5m

2 + �2,

J2 = imI6, J3 = I2m
2 + �2,

J4 = imI3, J5 = I12�
2,

J6 = imI8�
2, J7 = I9 + ��,

J8 = m2(I10 + ��I11) + �2.
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Equations (21)–(23) represent a system of linear differential 
equations in terms of the physical variables u∗, v∗ and �∗ . 
Upon simplifying the previous equations, one can get the 
following sixth-order differential equation

where

The above equation can be factorized as

where �2
n
, (n = 1, 2, 3) are the zeros of the following charac-

teristic equation

The solution of Eq. (24), which is bounded as x → ∞ , has 
the following form

where Hn,H
′
n
 and H′′

n
 are parameters that depend on � and m 

and the parameters Hn are determined from imposing bound-
ary conditions. Substitution of Eq. (27) in the system of Eqs. 
(21)–(23) yields

where

With the aid of nondimensional quantities defined in (12) 
and normal mode analysis, the expressions of stresses 
(13)–(16) take the forms

(24)[D6 − QD4 + SD2 − T][u∗, v∗, �∗] = 0,

Q =
A1A7 + A2A6 + I5A5 + A3A4

A1A6 + I5A4

,

S =
A1A8 + A2A7 + A3A5

A1A6 + I5A4

,

T =
A2A8

A1A6 + I5A4

,

A1 = J4 − J2, A2 = J4J1,

A3 = J4J2 + J3, A4 = J2J7,

A5 = J2J8 + J4J5, A6 = J7I5,

A7 = J7J3 + J8I5, A8 = J8J3 − J4J6.

(25)
[(D2 − �2

1
)(D2 − �2

2
)(D2 − �2

3
)][u∗(x), v∗(x), �∗(x)] = 0,

(26)�6 − Q�4 + S�2 − T = 0.

(27)(u∗, v∗, �∗) =

3∑
n=1

(Hn,H
�

n
,H��

n
)(m,�)e−�nx,

(28)(v∗, �∗) =

3∑
n=1

(N1n,N2n)Hn(m,�)e
−�nx,

N1n =
(A1�

2
n
− A2)

�n(I5�
2
n
− A3)

and N2n =
�2
n
+ J2N1n�n − J1

�n
.

where

5 � Application

A fiber-reinforced orthotropic thermoelastic medium with 
an initially presented stress p, occupying the half-space 
( x ≥ 0, −∞ ≤ y ≤ ∞ ), as shown in Fig. 1 is considered. The 
surface of the half-space, i.e., the plane x = 0 , is subjected 
to an inclined load R(R1,R2, 0) with an inclination angle 
� , defined from the negative x-axis as shown in Fig. 1. The 
applied load R is decomposed as a normal load R1 = R cos� 
and shear load R2 = R sin�. The surface of the medium is 
kept at reference temperature T0 ; hence, the boundary condi-
tions can be written as

With the help of normal mode technique, the boundary con-
ditions in terms of the stresses defined in (29) and (30) are 
written as

where R∗

1
= R∗ cos�, R∗

2
= R∗ sin� and R∗ is defined by the 

expression

(29)�∗

xx
= −p∗ +

3∑
n=1

N3n Hn(m,�) e
−�nx,

(30)�∗

xy
=

3∑
n=1

N4n Hn(m,�) e
−�nx,

(31)�∗

yx
=

3∑
n=1

N5n Hn(m,�) e
−�nx,

(32)�∗

yy
= −p∗ +

3∑
n=1

N6n Hn(m,�) e
−�nx,

N3n = −�n + imI1N1n − N2n , N4n = I7im − I5�nN1n,

N5n = I5im − I7�nN1n , N6n = −I1�n + imI2N1n − I3N2n.

(33)�(0, y, t) = 0,

(34)�xx(0, y, t) = −p − R1,

(35)�xy(0, y, t) = −R2.

(36)�∗ = 0,

(37)�∗

xx
= −p∗ − R∗

1
,

(38)�∗

xy
= −R∗

2
at x = 0.
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Using expressions (28)–(30), the boundary conditions 
(36)–(38) yield a nonhomogeneous system of three equa-
tions, which can be expressed in matrix form as

The expressions for Hn, (n = 1, 2, 3) procured by solving the 
system (39) are given as

where

Substitution of Eq. (40) in Eqs. (27)–(32) gives the follow-
ing expressions of displacement, temperature and stress 
components

R = R∗ exp(�t + imy).

(39)
⎡⎢⎢⎣

N21 N22 N23

N31 N32 N33

N41 N42 N43

⎤⎥⎥⎦

⎡⎢⎢⎣

H1

H2

H3

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0

−R∗
1

−R∗
2

⎤⎥⎥⎦
.

(40)H1 =
Δ1

Δ
, H2 =

Δ2

Δ
, H3 =

Δ3

Δ
,

Δ1 = −N22(−R
∗

1
N43 + R∗

2
N33) + N23(−R

∗

1
N42 + R∗

2
N32),

Δ2 = N21(−R
∗

1
N43 + R∗

2
N33) + N23(−R

∗

2
N31 + R∗

1
N41),

Δ3 = N21(−R
∗

2
N32 + R∗

1
N42) − N22(−R

∗

2
N31 + R∗

1
N41),

Δ = N21(N32N43 − N42N33) − N22(N31N43 − N41N33)

+ N23(N31N42 − N32N41).

(41)u(x, y, t) =
1

Δ
[Δ1e

−�1x + Δ2e
−�2x + Δ3e

−�3x] e�t+imy,

(42)
v(x, y, t) =

1

Δ
[N11Δ1e

−�1x + N12Δ2e
−�2x

+ N13Δ3e
−�3x] e�t+imy,

(43)
�(x, y, t) =

1

Δ
[N21Δ1e

−�1x + N22Δ2e
−�2x

+ N23Δ3e
−�3x] e�t+imy,

(44)
�xx(x, y, t) = −p +

1

Δ
[N31Δ1e

−�1x + N32Δ2e
−�2x

+ N33Δ3e
−�3x] e�t+imy,

(45)
�xy(x, y, t) =

1

Δ
[N41Δ1e

−�1x + N42Δ2e
−�2x

+ N43Δ3e
−�3x] e�t+imy,

(46)
�yx(x, y, t) =

1

Δ
[N51Δ1e

−�1x + N52Δ2e
−�2x

+ N53Δ3e
−�3x] e�t+imy,

6 � Particular cases

To validate the theoretical/numerical results of the current 
investigation, different particular cases are considered as 
listed in Table 1.

6.1 � Transversely isotropic medium

To discuss the problem in an initially stressed fiber-rein-
forced transversely isotropic thermoelastic half-space in the 
context of GN III theory (i.e., with parameter � = 1 ), it is suf-
ficient to set the values of fiber reinforcement parameters as: 
�1 = �, �1 = �,� = �T ,�1 = �L − �T ,�2 = �2 = �2 = �3 = 0 . 
In this case, the material is reinforced with the fibers in a 
single direction only, which are randomly distributed in the 
cross sections normal to the fibers. Then, the composite 
material has a single preferred direction (fiber direction) and 
so is transversely isotropic with respect to this direction and 
only five stiffness coefficients will remain in the constitu-
tive relation, to characterize the thermoelastic response of 
transversely isotropic material. Along with these modifica-
tions and setting the parameters � = 0◦ , p = 0 and � = 1 , the 
results obtained in this case match with those of Abbas [2], 
by applying thermal load instead of mechanical load in the 
boundary condition.

6.2 � Isotropic medium

By setting the parameters as: �1 = �, �1 = �,� = �
T
,

�1 = �
L
− �

T
,�2 = �2 = �2 = �3 = 0 , along with � = 0◦ , 

p = 0 and � = 1 , in Eqs. (1)–(4) of this paper, the basic gov-
erning equations for a transversely isotropic medium are 
obtained as follows

(47)
�yy(x, y, t) = −p +

1

Δ
[N61Δ1e

−�1x + N62Δ2e
−�2x

+ N63Δ3e
−�3x] e�t+imy.

(48)

�ij = �ekk�ij + 2�Teij + �(akamekm�ij + aiajekk)

+ �akamekmaiaj + 2(�L − �T )(aiakekj + ajakeki) − �ij��ij,

(49)eij =
1

2
(ui,j + uj,i),

(50)𝜎ji,j = 𝜌üi,
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which are exactly same as Eqs. (2)–(5) in Othman and Atwa 
[27]. Also Eq. (1) of Othman and Atwa [27] implies that 
the geometry of both the cases is exactly same, and corre-
spondingly, the results derived in this case are exactly same 
as obtained in equations (50)–(56) of Othman and Atwa 
[27]. Further setting parameters as: � = � = 0 , �L = �T  , 
K1 = K2,K

∗
1
= K∗

2
, �11 = �22 = (3� + 2�)�t , �1t = �2t = �t 

in formulation of transversely isotropic case of this paper 
and Othman and Atwa [27], one can get the exactly same 
results for an isotropic thermoelastic medium in the context 
of GN III model.

This fully matching of the problem formulation and the 
results derived in particular case of this paper and Oth-
man and Atwa [27] gives a proper validation to the results 
obtained.

6.3 � Absence of initial stress

The relevant expressions of field variables in this particular 
case can be obtained in an orthotropic thermoelastic medium 
in the context of GN III theory if the value of initial stress p 
is set equal to zero in constitutive relations.

6.4 � Green–Naghdi theory type II (GN II)

By setting the parameter � zero, the expressions of physical 
fields can be obtained from the expressions (41)–(47).

7 � Numerical results and discussion

With a view to demonstrate the analytical expressions pre-
sented earlier, some numerical results which depict the 
interpretations of normal displacement field, normal stress 
field, shear stress field and temperature distribution field are 

(51)K∗

ij
𝜃,ij +Kij𝜃̇,ij = 𝜌cE𝜃̈ + T0𝛽ijüi,j,

presented. The numerical computation is performed with 
the help of MATLAB software. For this purpose, the values 
of some relevant physical constants are taken from Abbas 
et al. [28] for a magnesium crystal-like material and these 
material constants are listed in Table 2.

The solution expressed by relation (20) consists of the 
term e(� t+i m y) , where � is the frequency (a complex con-
stant) and can be expanded as � = �1 + i�2 . The expression 
e�t = e�1t ei�2t is approximately equal to e�1t for small val-
ues of time because ei�2t = cos�2t + i sin�2t → 1 as t → 0 . 
Therefore, one can consider � as real (i.e., � = �1 ). The val-
ues of parameters for numerical calculation are considered 
as: � = 1.0, m = 1.1, � = 1 , R∗ = 1.0, � = 30◦ and p = 0.05 . 
Using the above numerical values of the parameters, values 
of the nondimensional field variables have been evaluated 
and results are plotted at different locations of x at t = 0.01 s 
and y = 1.

For convenience, we have classified the figures into four 
different groups: The first group (Figs. 2, 3, 4, 5) examines 
the influence of the fiber reinforcement on various field vari-
ables. In the second group (Figs. 6, 7, 8, 9), all the physical 
fields have been examined for fiber-reinforced thermoelastic 
model in the context of GN III and in the presence of initial 
stress (solid line), in context with GN III and in the absence 
of initial stress (dashed line), in the context of GN II and 
in the presence of initial stress (dotted line) and in context 
with GN II and in the absence of initial stress (dash-dotted 
line). The third group (Figs. 10, 11, 12, 13) is concerned 
with the two-dimensional plots of various physical fields 
to analyze the effect of inclination of load for the assumed 
model by considering four distinct values of angle as � = 0◦ 
(solid line), � = 30◦ (dashed line), � = 60◦ (dotted line) and 
� = 90◦(dash-dotted line). In the last group (Figs. 14, 15, 16, 
17), the variations in physical fields are depicted to exam-
ine the effects of time t on them for three distinct instants 
( 0.01, 0.05 and 0.10).

Table 1   Tabular representation of particular cases of the considered model

Model Specifications of the model

Orthotropic medium An initially stressed thermoelastic medium with fiber reinforcement in two directions in 
the context of GN-III theory

Particular cases
1 Transversely isotropic medium An initially stressed thermoelastic medium with fiber reinforcement in one direction in 

the context of GN-III theory
2 Isotropic medium An initially stressed thermoelastic medium without fiber reinforcement in the context of 

GN-III theory
3 Absence of initial stress A thermoelastic medium with fiber reinforcement in two directions in the context of 

GN-III theory
4 Green–Naghdi theory of type II An initially stressed thermoelastic medium with fiber reinforcement in two directions in 

the context of GN-II theory
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Table 2   Numerical values of 
material parameters

Parameter Units Values Parameter Units Values

� kg m−3 2660 � kg m−1 s−2 5.65 × 1010

� kg m−1 s−2 2.46 × 1010 �1 kg m−1 s−2 3.2 × 1010

�2 kg m−1 s−2 3.3 × 1010 T0 K 293
�1 kg m−1 s−2 −1.28 × 1010 �2 kg m−1 s−2 −1.27 × 1010

�1 kg m−1 s−2 220.9 × 1010 �2 kg m−1 s−2 224.1 × 1010

�3 kg m−1 s−2 227.3 × 1010 c
E J kg−1 deg−1 0.787 × 103

�1t deg−1 0.017 × 10−4 �12 deg−1 0.015 × 10−4

K1 J m−1 s−1 deg−1 0.0921 × 103 K2 J m−1 s−1 deg−1 0.0963 × 103

K
∗
1 J m−1 s−2 deg−1 1.313 × 102 K

∗
2 J m−1 s−2 deg−1 1.540 × 102

Fig. 2   Variation in normal 
displacement for different fiber 
reinforcements at y = 1

Fig. 3   Variation in normal 
stress for different fiber rein-
forcements at y = 1
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Fig. 4   Variation in shear stress 
for different fiber reinforce-
ments at y = 1

Fig. 5   Variation in temperature 
field for different fiber reinforce-
ments at y = 1

Fig. 6   Effect of initial stress and 
Green–Naghdi theories (type III 
and type II) on normal displace-
ment at y = 1
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Fig. 7   Effect of initial stress and 
Green–Naghdi theories (type 
III and type II) on normal stress 
at y = 1

Fig. 8   Effect of initial stress and 
Green–Naghdi theories (type 
III and type II) on shear stress 
at y = 1

Fig. 9   Effect of initial stress and 
Green–Naghdi theories (type III 
and type II) on temperature field 
at y = 1
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7.1 � Effect of fiber reinforcement

Figure 2 depicts the spatial variations in the normal displace-
ment u with distance x for the three different media (ortho-
tropic medium, transversely isotropic medium and isotropic). 
Solution curves for all the cases start with different starting 
values, which shows the significant influence of fiber reinforce-
ment. Figure 3 displays the variations in normal stress with 
distance x. In this figure, all the solution curves have coincident 
beginning point with value −0.4468 and coincident ending 
point with value −0.0500 , which satisfies the boundary condi-
tions, since the initial stress is present already in the medium. 
It reveals the compressive nature of normal stress in the trans-
versely isotropic and isotropic media while the curve corre-
sponding to orthotropic medium spreads more than the others.

Figure 4 clarifies the variations in the shear stress �xy cor-
responding to the three cases: orthotropic, transversely iso-
tropic and isotropic media against the distance x. The figure 
exhibits that shear stress is compressive for the whole range 
of distance x. Variations in temperature � with space coor-
dinate x are displayed in Fig. 5. It is noticed that the tem-
perature distribution has a coincident starting point of zero 
magnitude, which is in well accordance with the boundary 
condition. Also, the values of this field are maximum for the 
orthotropic fiber-reinforced medium and are higher for the 
transversely isotropic fiber-reinforced medium than those 
for an isotropic medium. The figure shows that the presence 
of fiber reinforcement increases the magnitude of tempera-
ture in the entire range.

Fig. 10   Effect of inclination 
angle of load on normal dis-
placement at y = 1

Fig. 11   Effect of inclination 
angle of load on normal stress 
at y = 1
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Fig. 12   Effect of inclination 
angle of load on shear stress at 
y = 1

Fig. 13   Effect of inclination 
angle of load on temperature 
field at y = 1

Fig. 14   Effect of time on nor-
mal displacement at y = 1
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Fig. 15   Effect of time on nor-
mal stress at y = 1

Fig. 16   Effect of time on shear 
stress at y = 1

Fig. 17   Effect of time on tem-
perature field at y = 1
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7.2 � Effect of initial stress and Green–Naghdi 
theories

Figure 6 shows the variations in normal displacement u 
against the location x for the four cases: GN III theory in the 
presence of initial stress, GN III theory in the absence of ini-
tial stress, GN II theory in the presence of initial stress and 
GN II theory in the absence of initial stress. The presence 
of initial stress increases the magnitude of normal displace-
ment for both the theories. Figure 7 reveals the variations 
in normal stress in the context of all the above-mentioned 
four cases. A careful view of the figure emphasizes on the 
point that for a fixed value of initial stress, the magnitude 
of normal stress in the context of GN III theory is higher as 
compared to the normal stress in the context of GN II theory 
in the region 0.01 ≤ x ≤ 3.10 , and the normal stress shows 
reverse behavior in the rest of domain. As expected, for both 
the theories, the solution curves follow similar pattern of 
variations with difference in magnitudes.

The distribution of shear stress against the distance x, 
depicted in Fig. 8, attains a similar pattern for all the four 
models. The plot shows that the curves for GN II theory 
and GN III theory overlap, which indicates that GN theories 
exhibit same profile of shear stress. The pattern of distribu-
tion of temperature field with the location x is depicted in 
Fig. 9. Temperature field begins from the coincident starting 
value zero and gets the maximum impact as x approaches 
0.15, and this impact diminishes completely as x ≥ 4.0 . 
Also, the curves attain higher values for GN II theory as 
compared to GN III theory and the initial stress causes an 
increase in the value of temperature distribution.

7.3 � Effect of inclination angle

In Fig. 10, a similar trend of distribution of normal dis-
placement is depicted for three distinct values of inclination 
angle � (i.e., � = 30◦, 60◦ and 90◦ ), whereas for � = 0◦, it 
exhibits reverse behavior. The figure reveals that the value 
of normal displacement corresponding to angle � = 0◦ is 
positive while that corresponding to other values of angle � 
is negative. Also, an increase in the value of � results in an 
increase in the magnitude of displacement field. Figure 11 
exhibits the distribution of normal stress against distance 
x for four different values of � . The behavior of normal 
stress for � = 30◦, 60◦ and 90◦ is almost similar with dif-
ference in magnitudes while the curve corresponding to 
� = 0◦ shows different behaviors. Inclination angle of load 
has significant increasing effect on the normal stress in the 
region 0.01 ≤ x ≤ 3.16 and has different effects in rest of 
the domain.

Figure 12 represents the compressive nature of the shear 
stress �xy against the distance x. The figure shows that cor-
responding to � = 30◦, 60◦ and 90◦ , the shear stress starts 

with negative numerical values and then tends to zero as 
x increases. Corresponding to � = 0◦ , the inclined load 
becomes the normal load, and hence, the plot of shear stress 
starts from zero, and thereafter, it exhibits extremely small 
values in comparison with the other curves. Figure 13 is 
plotted to show the distribution of temperature field against 
distance x for four different values of � . The behavior of 
temperature field is almost similar for � = 30◦, 60◦ and 90◦ , 
whereas the solution curve corresponding to � = 0◦ shows 
reverse pattern. Also, inclination angle has an increasing 
effect on the distribution of temperature field.

7.4 � Effect of time

Figures 14, 15, 16 and 17 represent the distributions of nor-
mal displacement, normal stress, shear stress and tempera-
ture, respectively, against the location x for three distinct 
instants of time t ( 0.01, 0.05 and 0.10 ). A careful view of 
the profiles shows that time is having a noticeable increasing 
effect on the distributions of these physical fields throughout 
the whole domain.

8 � Concluding remarks

The main purpose of current study is to present a new math-
ematical model for an initially stressed fiber-reinforced 
orthotropic thermoelastic medium. The method of normal 
mode analysis is used to study the current problem which 
proves to be a quite successful technique to handle such 
type of problems. This technique gives exact results with-
out any pre-assumed constraints on the actual physical field 
quantities existing in the governing field equations of the 
considered problem. The above analysis gives the following 
conclusions

•	 The normal displacement, normal stress, shear stress and 
temperature field are highly affected by the parameters 
of fiber reinforcement. The magnitude of normal dis-
placement and temperature field in orthotropic medium 
is higher in comparison with transversely isotropic and 
isotropic media while normal stress and shear stress show 
different behaviors.

•	 Significant impact of Green–Naghdi theories (type III 
and type II) is observed on all the field variables. In the 
context of GN II theory, the magnitude of temperature 
field is higher than that of the same field variable under 
GN III theory, while normal displacement exhibits the 
reverse behavior and normal stress exhibits a different 
behaviors. Green–Naghdi theories have no effect on the 
profile of shear stress.
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•	 In the presence of initial stress, the normal displacement 
and temperature field have higher magnitude in compari-
son with the same in the absence of initial stress while 
normal stress and shear stress show different behavior.

•	 All the field variables show similar pattern for different 
values of angle of inclination � of the applied mechanical 
load except for � = 0◦ . The magnitudes of all the field 
variables increase as the angle of inclination increases 
except the normal stress.

•	 Displacement component u, normal stress �xx , shear 
stress �xy and temperature distribution � show almost 
similar pattern for distinct instants of time t, and an 
increase in the value of time causes an increase in the 
magnitudes of all the physical fields, which is quite clear 
from the plots.

•	 All the physical quantities satisfy the considered bound-
ary conditions of the problem.
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