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Abstract
In this paper, we extend the Kirchhoff–Love model to thermal buckling and post-buckling analysis of functionally graded 
structures. The kernel idea of the proposed model consists of the consideration of large displacements and finite rotation to 
accurately model the thermal effects on buckling and post-buckling behavior of such structures. Both uniform and nonuni-
form temperature distributions are considered. Material properties of the FG structures are graded in the thickness direction 
and assumed to obey a power law distribution of the volume fraction of the constituents. The effectiveness and usefulness of 
the proposed model are highlighted through different numerical examples, and the effects of the volume fraction exponent, 
thermal loads, length-to-thickness ratio, boundary conditions and geometrical parameters on the buckling and post-buckling 
behavior of FGM structures are also examined.

Keywords Thermal load · Buckling · Post-buckling · Functionally graded material · Finite rotation · Four-node shell 
element

1 Introduction

Buckling and post-buckling characteristics are one of the 
major design criteria for plates/panels for their optimal 
usage. Therefore, it is important to study the buckling and 
post-buckling characteristics of such structures under ther-
mal loading for accurate and reliable design. Thin plates and 
shells are often used in many engineering applications such 
as aerospace, civil engineering and automobiles and nota-
bly curved panels, which are gained attention in rockets and 
hypersonic airplane where the thermal loading is a key fac-
tor. Furthermore, thermal stresses developed due to elevated 
temperature will lead to buckling failure of these slender 
structural members. Hence, the introduction of multifunc-
tional materials which work under high-temperature load-
ings is one of the most challenging issues for both industrial 
and scientific communities. Recently, functionally graded 

materials known as (FGMs) have been regarded as a conven-
ient strategy to handle thermal buckling and post-buckling 
problems due to their superior mechanical and thermal prop-
erties and their lightweight compared to other conventional 
engineering materials and structures. Typically, FGMs are 
made from a mixture of ceramic and metal and they are 
characterized by a gradual variation in their mechanical and 
thermal properties from one surface to the other. They have 
many gained applications in rocket engine components, 
space plan body, nuclear reactor components, first wall of 
fusion reactor, engine components, turbine blades and other 
engineering and technological applications. A detailed dis-
cussion on their design, processing and applications can be 
found in Koizumi [39, 40] Suresh and Mortensen [59] and 
Miyamoto et al. [47]. Equally, they present a good way of 
heat resistance such that they are able to withstand ultra-
high temperature and extremely large thermal gradients. 
Such kinds of properties motivated many researchers to 
choose them as a promising candidates for multifunctional 
materials, especially that the material constitutive law is a 
key factor in the modeling process of shell analysis [5, 15, 
25–27, 33, 34, 46, 69, 70, 72, 73]. On the other hand, and 
with the rapid progress of computer methods, the finite ele-
ment method (FEM) is now the most widely used numerical 
tool, which constitutes an efficient method to model as well 
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as to analyze the mechanical and thermal behavior of various 
shapes of structures. In particular, the modeling of thermal 
behavior of shell structures has attracted, over the past dec-
ades, the attention of many researchers using different FEM 
models. The first model, known as classical plate theory 
(CPT), is established based on the Kirchhoff–Love assump-
tions. The second model, labeled first-order shear deforma-
tion theory (FSDT), is developed by Mindlin, and it incor-
porates the effect of shear deformations. The third model, 
known as high-order shear deformation theory (HSDT), 
includes the Reddy’s and refined kinematic models and takes 
into account the parabolic distribution of transverse shear 
stresses. Each model allows a vast range of analysis, and 
according to the type of the studied structure (thin, mod-
erately thick or thick) and its applicability domain (linear, 
nonlinear, static, dynamic, free vibration, buckling or post-
buckling), one can choose the appropriate model to assess 
the desired investigation. The detailed information on these 
models can be found in the literature [10, 44, 54, 58, 62, 68]. 
The accuracy and computational costs of such models are 
still a great concern for many researchers, especially if the 
shell structure undergoes large displacements and finite rota-
tions. For low computational effort and accurate results, the 
classical model constitutes a suitable choice favored by its 
simple implementation in the most finite element codes. A 
comparison between two-dimensional and three-dimensional 
finite element procedures, classical and refined generalized 
quadrature methods and analytical solution was presented in 
Tornabene et al. [62] for the free vibration investigations of 
composite cylindrical and spherical shells. Subsequently, a 
combination of the shear deformation theory and the modi-
fied couple stress theory was proposed by Civalek et al. to 
study the thermal vibration of microbeams [2] and nano-
beams [13]. In view of this, the study of thermal buckling 
and post-buckling behavior of FGM structures has received, 
recently, a considerable attention in the literature. The major 
works related to this subject are briefly presented in the next 
paragraph.

Javaheri and Eslami provided exact solutions for thermal 
buckling of FGM plates using the CPT theory [36] or the 
HSDT theory [24, 37]. Also, an analytical investigation of 
thermal post-buckling of FG plates is presented by Shen 
[56] using the HSDT theory. Furthermore, many investiga-
tions dealing with thermal buckling and post-buckling of FG 
plates using the numerical procedure can be reported in Park 
and Kim [51], Zhao et al. [77], Tran et al. [65], Kandasamy 
et al. [41], Van Do and Lee [66], Zhang [75], Duc and Tung 
[19], Duc and Cong [16]. For the sake of completeness, 
it should be mentioned that many alternative numerical 
approaches, such as the generalized differential quadrature 
method or the isogeometric analysis, are applied success-
fully in the recent literature for shell structures under ther-
mal loadings with complex shapes and based on high-order 

models [48, 67]. Although there are many researches con-
ducted on thermal buckling and post-buckling of FGM 
plates, the number of studies related to this subject for FGM 
skew plates and notably for curved panels is rather limited. 
The thermal and mechanical buckling and post-buckling 
responses of skew plates using finite element procedure 
were obtained by Prabhu and Durvasula [52], Ganapathi and 
Prakash [30], Ganapathi et al. [31], Prakash et al. [53] and 
Jaberzadeh et al. [35]. Thermal buckling of cylindrical pan-
els has been studied by Bhagat et al. [8], Bhagat and Jeyaraj 
[7]. Shen [57] obtained the analytical solutions for thermal 
post-buckling of FG cylindrical panels using the HSDT the-
ory. In addition, Duc and his co-authors presented several 
works on the analysis of the nonlinear behavior of shells in 
thermal environment [17, 18, 21]. From some publications 
of Duc et al. [20, 22, 23], the nonlinear static and dynamic 
response of FG cylindrical panels in thermal environment 
can be improved by using stiffening components. Also, Anh 
el al. studied the nonlinear buckling response of thin FGM 
annular spherical shells subjected to external pressure and 
thermal loads [3]. Akbari et al. [1] studied the thermal buck-
ling of FG conical shells using the classical shell theory. 
In [49], Nguyen et al. also studied the nonlinear response 
of carbon nanotube-reinforced composite truncated conical 
shells in thermal environment. Chan el al. [11] took non-
linearity into account and evaluated the dynamic response 
and vibration of FG truncated conical panel in thermal envi-
ronments. Panda and his collaborators [43, 50] derived a 
finite element solutions of the buckling and post-buckling 
responses of FG shell panels in thermal environment. In 
addition, Liew et al. presented a finite element procedure to 
investigate the thermal buckling [76] and the post-buckling 
[45] behavior of the FGM cylindrical panels. Arefi et al. [4] 
analyzed the static behavior of a FG-CNTRC cylindrical 
pressure vessels subjected to pressure and thermal loadings 
by using the FSDT theory. Recently, Trabelsi et al. [63, 64] 
investigated the thermal buckling and post-buckling of FG 
plates and shells using a modified FSDT theory. As can be 
remarked from this report of the open literature, most of the 
papers used the FSDT or HSDT theories to predict thermal 
buckling and post-buckling behavior of FGM structures. 
Even these theories provide accurate results, and they require 
generally a prohibitive computational time due to the intro-
duction of shear correction factors in FSDT theory and vari-
ous kinematics variables in HSDT theory. So, to analyze thin 
structures, the Kirchhoff shell theory constitutes a suitable 
choice which can assure notably the compromise between 
good accuracy and low computational costs. Motivated by 
its simplicity and usefulness regarding thin shell structures, 
we have performed, in the present paper, its applicability for 
buckling and post-buckling analysis of FGM square, skew 
plates and curved panels under thermal loadings in the sense 
of nonlinear problem. Uniform and nonuniform temperature 
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distributions through the thickness direction are considered. 
The material properties of FGM structures are determined 
via a power law distribution. Convergence studies and com-
parisons are carried out for the isotropic case in order to vali-
date the efficiency of the present model. Then, parametric 
studies are conducted leading hence to perform the effects 
of power law index, length-to-thickness ratios, aspect ratios, 
thermal fields, boundary conditions on thermal buckling and 
post-buckling behavior of FGM structures.

2  Modeling of FGM structures

2.1  Effective material properties

FGM structures are typically made from a mixture of 
ceramic and metal constituents. In fact, the ceramic phase 
provides the high temperature resistance due to its low ther-
mal conductivity, while the ductile metal phase prevents 
fracture caused by stresses due to high temperature gradient 
in a very short period of time. Furthermore, the manufac-
turing process of a mixture of ceramic and metal constitu-
ents with a continuous variation in the volume fraction can 
be easily obtained. As a result, the volume fractions of the 
ceramic Vc and metal Vm phases can be expressed, according 
to a power law distribution as follows [55]:

where z is the thickness coordinate ( z ∈ [−h∕2, h∕2] ), h is 
the total thickness of the shell structure and p is the power 
law index which takes values greater than or equal to zero. 
The effective material properties of FGM structures, such as 
the modulus of elasticity E, the coefficient of thermal expan-
sion � and the thermal conductivity K, which varies in the 
thickness direction z, can be expressed as:

(1)Vc(z) =
(
z

h
+

1

2

)p

, Vc + Vm = 1.

where Pm and Pc denote the effective material properties of 
the metal and ceramic phases, respectively. According to the 
distribution of the temperature through the thickness, differ-
ent profiles of temperature are considered as shown in Fig. 1.

The temperature dependence of the material properties of 
the metal or ceramic phases is given by:

where P0,P−1,P1,P2 and P3 are the temperature coefficients 
and T is the temperature parameter in K. It should be noted 
that the Young’s modulus E and the thermal expansion coef-
ficient � are considered as temperature dependent, while the 
Poisson’s ratio � is assumed to be constant.

2.2  Uniform, nonuniform and linear temperature 
rises through the thickness direction

In order to accurately describe the effect of temperature rise 
through the thickness, uniform and nonuniform distributions 
are considered, in this investigation.

2.2.1  Uniform temperature rise

For an uniform distribution of the temperature rise, the initial 
temperature Ti is uniformly raised to a final temperature Tf  for 
which the shell structure is buckled. Hence, the critical buck-
ling temperature rise can be given by the following expression:

2.2.2  Nonuniform and linear temperature rises

In the case of nonuniform temperature distribution, the one-
dimensional steady-state equation of heat transfer is solved as:

(2)P(T , z) = (Pc − Pm)Vc(z) + Pm.

(3)P(T) = P0

(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3
)
,

(4)ΔTcr = Tf − Ti,

Fig. 1  Temperature distribu-
tions through the thickness 
direction
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K(z) is the thermal conductivity of the shell structure, and 
Tc and Tm denote the temperature changes at the ceramic 
and metal sides, respectively. Similar to the coefficients of 
Young’s modulus and thermal expansion, the coefficient of 
thermal conductivity can be also written as a power form in 
function of z coordinate:

Equation  (5) can be solved using the Gauss integration 
method as follows:

where Tc and Tm refer to ceramic-rich surface and metal-
rich surface, respectively, and �(z) is evaluated, numerically, 
by the Gauss numerical integration procedure. It should be 
mentioned that the linear temperature rise is obtained as a 
particular case by setting p = 1.

3  Governing equations

The extension of the Kirchhoff shell model to thermal buck-
ling and post-buckling analysis of FGM structures with geo-
metrical nonlinearity type is presented here. The kinematics 
of the shell is briefly described. The initial and the deformed 
configurations are denoted by C0 and Ct , respectively.

3.1  Geometry and kinematics

The position vectors of any material point q within the shell 
body in both reference C0 and current Ct configurations using 
convective curvilinear coordinates � = (�1, �2, �3 = z) read:

where Xp and D denote the position vector of an arbitrary 
point p of the mean reference surface in the initial configu-
ration C0 and the initial shell vector, respectively. h is the 
thickness of the shell and d represents the shell director 
vector.

(5)

⎧
⎪⎨⎪⎩

d

dz

�
K(z)

dT

dz

�
= 0, − h∕2 ≺ z ≺ h∕2

T = Tc, z = h∕2

T = Tm, z = −h∕2

,

(6)K(z) = (Kc − Km)
(
z

h
+

1

2

)p

+ Km.

(7)

⎧⎪⎨⎪⎩

T(z) = Tm + ΔT ⋅ �(z)

ΔT = Tc − Tm

�(z) =
∫ z

−h∕2

dz

K(z)

∫ h∕2

−h∕2

dz

K(z)

,

(8)Xq(�
1, �2, z) = Xp(�

1, �2) + zD(�1, �2), z ∈
[
−
h

2
,
h

2

]
,

(9)xq = xp + zd.

As a result, the Green–Lagrangian strain tensor E can be 
given as follows Dammak et al. [12]:

e�� ,��� and �� represent the membrane, the bending and the 
shear strains, respectively. Their corresponding variations 
are given as indicated in Dammak et al. [12]. In matrix nota-
tion, these components are expressed as follows:

According to the Kirchhoff hypothesis, the transverse shear 
strains are vanished. This assumption is considered under 
integral form on the element boundaries [12].

3.2  Variational formulation

Finite element formulation is derived from the variational 
principle for which the weak form of equilibrium is given 
by:

�e and �� represent the variations of the shell strains, and 
N and M represent the membrane and bending stress result-
ants. Their expressions are given as follows:

The components of stress resultants N and M are given by:

where S�� are the components of the second Piola–Kirchhoff 
stress tensor. For the generalized resultant of stress R and 
strain � vectors, they can be written as follows:

Therefore, the weak form of equilibrium can be rewritten as:

where � = (u, d) contains the displacement and shell vec-
tors. Furthermore, Eq. (16) reflects a geometrical nonlinear 
problem which can be solved using the Newton iterative 

(10)
{

E�� = e�� + z���

2E�3 = ��
,

(11)e =

⎡
⎢⎢⎣

e11
e22
2e12

⎤
⎥⎥⎦
, � =

⎡
⎢⎢⎣

�11

�22

2�12

⎤
⎥⎥⎦
, � =

�
�1
�2

�
.

(12)G = ∫A

(N ⋅ �e +M ⋅ ��)dA − Gext = 0,

(13)N =

⎡⎢⎢⎣

N11

N22

N12

⎤⎥⎥⎦
, M =

⎡⎢⎢⎣

M11

M22

M12

⎤⎥⎥⎦
.

(14)(N�� ,M�� ) = ∫
h∕2

−h∕2

(1, z)S��dz, (�, �) = (1, 2).

(15)R =

[
N

M

]
, � =

[
e

�

]
.

(16)G(�, ��) = ∫A

��T
⋅ RdA − Gext(�, ��) = 0.
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algorithm. The consistent tangent operator for the Newton 
solution procedure can be constructed by the directional 
derivative of the weak form in the direction of the incre-
ment Δ� = (Δu,Δd) . For geometrically nonlinear analysis, 
it is convenient to divide the tangent operator into geometric 
and material parts, denoted by DGG ⋅ Δ� and DMG ⋅ Δ� , 
respectively, as follows:

3.3  Material part

The variations in the generalized resultant of stress R with 
maintaining a constant strain lead to the definition of the mate-
rial part of the tangent operator, which can be expressed as 
follows:

As a result, the material part of tangent modulus can be 
rewritten as:

For the thermal generalized resultant of stress 
Rth =

[
Nth Mth

]T , its components are given by:

where �(T , z) is the coefficient of thermal expansion and ΔT  
is the temperature change. The submatrix H represents the 
in-plane elastic contribution of the constitutive equations in 
the material part, and its expression is given by:

E(T, z) and � denote the Young’s modulus and the Poisson’s 
ratio, respectively.

3.4  Geometrical part

The geometrical part results from the variation in the virtual 
strains while holding stress resultants constant. Its form can 
be given as:

(17)DG ⋅ Δ� = DGG ⋅ Δ� + DMG ⋅ Δ�

(18)DMG ⋅ Δ� = ∫A

(��T
⋅ ΔR)dA,

(19)

ΔR = HTΔ� − Rth, HT =

[
H11 H12

H12 H22

]
,

(
H11,H12,H22

)
= ∫

h∕2

−h∕2

(
1, z, z2

)
Hdz.

(20)

Nth = ∫ h∕2

−h∕2
H�(T , z)ΔT

⎡⎢⎢⎣

1

1

0

⎤⎥⎥⎦
, Mth = ∫ h∕2

−h∕2
zH�(T , z)ΔT

⎡⎢⎢⎣

1

1

0

⎤⎥⎥⎦
,

(21)H =
E(T , z)

1 − �2

⎡⎢⎢⎣

1 � 0

� 1 0

0 0
1−�

2

⎤⎥⎥⎦
,

The partition of this part into membrane and bending parts 
yields:

In the following, the discretization of the weak form of 
equilibrium as well as the material and geometrical parts is 
presented in detail.

4  Finite element approximations

4.1  Approximation of the displacement field

By neglecting the contribution of the shear strains, the 
geometry and the displacements are discretized by an 
isoparametric interpolation as Frikha et al. [28, 29] and 
Zghal et al. [71, 74]:

NI are the standard isoparametric shape functions at nodal 
level I as indicated in Dhatt and Touzot [14] and Batoz and 
Dhatt [6]. Their expressions and the ones of PK are given, 
respectively, in Table 1 with ( � = �1, � = �2 ). K and ��k refer 
to the midpoint of the element boundaries and the variables 
associated with �d on the boundaries, respectively. Its cor-
responding position is illustrated in Fig. 2. The direction 
of vector tK , which is unit, is defined by the position of the 
nodes couple (I, J) as:

where LK is the I − J side length. Considering the concept 
of Kirchhoff–Love under integral form on the element 
boundaries, Δ�K will be expressed in terms of the incre-
ment Δ� = (Δu,Δd) [12].

4.2  Nodal transformation

The shape function derivatives N
I

,�
 ( � = 1, 2 ) in local Car-

tesian system and their corresponding ones in elementary 
system are given by:

(22)DGG ⋅ Δ� = ∫A

(Δ��T
⋅ R)dA,

(23)DGG ⋅ Δ� = DGGm ⋅ Δ� + DGGb ⋅ Δ�,

(24)�u =

4∑
I=1

NI�uI , �d =

4∑
I=1

NI�dI +

8∑
K=5

PK��K tK ,

(25)Δu =

4∑
I=1

NIΔuI , Δd =

4∑
I=1

NIΔdI +

8∑
K=5

PKΔ�K tK ,

(26)tK = (xJ − xI)∕LK , LK = ‖‖xJ − xI
‖‖,
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where J is the Jacobian transformation which relates the 
local Cartesian system to the parametric ones, with base 
vectors 

{
n0
1
, n0

2
, n0

}
 , as follows:

A1 and A2 are the covariant base vectors of the mid-surface. 
The normal field to the mid-surface n0 in the initial configu-
ration C0 is expressed by:

The construction of the nodal transformation yields:

where the vectors ��I and �UI are defined as follows:

(27)

{
N

I

,1

N
I

,2

}
= [J]−1

{
NI
,�

NI
,�

}
,

(28)J =

[
n0
1
⋅ A1 n0

2
⋅ A1

n0
1
⋅ A2 n0

2
⋅ A2

]
,

(29)n
0 = A1 ∧ A2∕

‖‖A1 ∧ A2
‖‖,

(30)��I = �I ⋅ �UI ,�I =

[
I 0

0 �

]
, I = 1,… , 4.

(31)��I =
[
�u �d

]T
I
, �UI =

[
�u ��

]T
I

The transformation � leads generally to a spatial description 
with 6DOF/node or a material description with 5DOF/node, 
and it can be expressed as follows:

The expressions of the directors and the rotations updating 
at nodes for both spatial and material descriptions are given 
in Table 2.

The discretization of the displacement field can be written 
at the global level as follows:

All numerical examples given in Sect. 5 are obtained with 
the material description and 5DOF/node.

4.3  Approximation of the strain field

The finite element discretization of the membrane and bending 
parts of the strain field yields:

where Bm and Bb are the discrete strain–displacement matri-
ces. Their corresponding expressions are given in Table 3.

As a result, the variation in the generalized strain �� can 
be given as:

4.4  Eigenvalue problem for thermal buckling 
analysis

The determination of the critical buckling temperature is 
achieved via the resolution of the eigenvalue problem, which 
can be written as follows:

(32)� =
[
−d2 d1

]
3×2

.

(33)��n = �n ⋅ �Un, �n =

⎡⎢⎢⎢⎣

�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

⎤⎥⎥⎥⎦
.

(34)�e = Bm�Un, �� = Bb ⋅ �Un,

(35)�� =

{
�e

��

}
= B ⋅ �Un, B =

[
Bm

Bb

]
.

(36)(KM + �crKG)Un = 0.

I

JL

M
K

tK

N

P

E

Fig. 2  Position of the nodes couple (I, J)

Table 1  Shape functions NI and 
PK for the quadrilateral element NI N1 = 1∕4(1 − �)(1 − �)

N2 = 1∕4(1 + �)(1 − �)

N3 = 1∕4(1 + �)(1 + �)

N4 = 1∕4(1 − �)(1 + �)

PK P5 = 0.5(1 − �2)(1 − �)

P6 = 0.5(1 + �)(1 − �2)

P7 = 0.5(1 − �2)(1 + �)

P8 = 0.5(1 − �)(1 − �2)

Table 2  Nodal updates

Spatial description with 
6DOF/node

Material description with 5DOF/node

Δd = Δ� ∧ d
k

Δd = �
k

��

d
k+1 = cos(Δd)dk

+
sin(Δd)

Δd
Δd,Δd = ‖Δd‖

d
k+1 = cos(Δd)dk +

sin(Δd)

Δd
Δd,Δd = ‖Δd‖

�
k+1

= −d̃
k+1

Δ� = d
k ∧ Δd,�

k+1
= exp(Δ�)�

k
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where KM and KG represent the linear stiffness matrix and 
the geometric stiffness matrix, respectively, and �cr is the 
critical temperature buckling parameter. The construction of 
the matrices KM and KG is carried out through the definition 
of the material and geometrical tangent operators, respec-
tively. For that, we start with the material tangent operator 
which is given by the following expression:

In addition, the element residual r can be deduced from the 
weak form of equilibrium Eq. (14) as:

The geometric tangent operator can be expressed in matrix 
form as follows:

where KG represents the global geometric tangent operator, 
which regroups the membrane and the bending contribu-
tions. For a couple of nodes (I, J), the expression of the 
matrix KG is given by:

UUM and (UUF,UBF,BBF) correspond to membrane and 
bending parts, respectively. Their expressions are as indi-
cated in Table 4.

After the determination of the critical temperature buck-
ling parameter via the resolution of the nonlinear eigen-
value problem described in Eq. (36), the post-buckling 

(37)KM = ∫A

B
T
HTBdA.

(38)r = ∫A

B
T
RdA.

(39)
DGG ⋅ ΔΦ = �ΦT

⋅ KG ⋅ ΔΦ = �UT

n
⋅�

T

n
⋅ KG ⋅�n ⋅ ΔUn.

(40)KGIJ =

[
UUMIJI + UUFIJ UBFIJ

BUFIJ BBFIJ

]
,

equilibrium path is obtained using the iterative and incre-
mental procedure via the Newton–Raphson method.

5  Numerical results and discussion

In this section, numerical analysis of buckling and post-
buckling responses of FG square, skew plates and cylindrical 
panels under thermal loadings is performed using the pro-
posed four-node shell element with 5DOF/node (SQAD45). 
Validation study is firstly presented for both isotropic plates 
and cylindrical panels to check the accuracy of the present 
model in the prediction of the critical buckling temperature 
and the post-buckling responses of these structures subjected 
to different forms of temperature distributions. Then, the 
obtained results of FGM studied structures are examined in 
order to outline the capability of the present model to draw 
the thermal buckling and post-buckling responses of such 
structures with good accuracy.

5.1  Validation study

5.1.1  Isotropic square plate

For the verification of the thermal buckling response 
obtained from the present model, an isotropic square plate 
is first considered. The plate is meshed using 32 × 32 of 
SQAD45 finite element, and its material properties are 
given as: Young’s modulus E = 1 GPa, Poisson’s coefficient 
� = 0.3 and thermal expansion coefficient � = 2 × 10−6∕◦C . 
The geometric properties of this plate are: the aspect ratio 
a∕b = 1 and the length-to-thickness ratio a∕h = 100 as 
shown in Fig. 3. The plate is assumed to be under two types 
of thermal loadings: uniform temperature rise and linear 
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temperature distribution through the thickness. Table 5 pre-
sents the solutions of the critical buckling temperature ΔTcr 
(in K) of the isotropic plates under different temperature 
distributions and for various boundary conditions obtained 
from the present formulation, as well as those provided from 
analytical method [32] and finite element methods [60]. The 
definition of the boundary condition is given as follows:

• S i m p l y  s u p p o r t e d  ( S ) : {
u=w=Θ1 = 0 for side (AD) and (BC),

v=w=Θ2 = 0 for side (AB) and (DC),

• Clamped (C)∶ u = v = w = Θ1 = Θ2 = 0,

The obtained results reveal a good agreement, and they are 
more closer to the analytical solution than the one derived 
from the finite element procedure, which affirms the 

capability of the present model in the prediction of thermal 
buckling behavior of square plates. In addition, the effect of 
the aspect ratio (a/b) on the critical buckling temperature of 
a simply supported isotropic plate under uniform temperature 
distribution is depicted in Fig. 4. The obtained results are pre-
sented in terms of nondimensional critical buckling tempera-
ture ΔT∗

cr
= � × ΔTcr × 104 , and they are compared to those 

available in the literature [9]. As can be seen from Fig. 4, a 
good agreement between the present results and those given 
by Bouazza et al. [9] is revealed. From Fig. 4, it can be also 
remarked that the nondimensional critical buckling tempera-
ture increases by the increase in the aspect ratio (a/b). In fact, 
as the aspect ratio (a/b) increases, the plate becomes less 
larger and hence more sensitive to the temperature parameter.

Table 4  Geometrical tangent matrix components

Membrane term
UUMIJ = ∫
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(
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(
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tm and dm are the unit vectors defined by the segment of the element with center m
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Rotation terms{
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Table 5  Comparison study of critical buckling temperature ΔTcr (in 
K) for isotropic square plates under different temperature distribu-
tions and for clamped (CCCC) and simply supported (SSSS) bound-
ary conditions

BC Results Uniform tem-
perature rise

Linear tem-
perature 
rise

CCCC Present 168.172 336.345
Gowda and Pandalai [32] 168.71 337.42
Thangaratnam et al. [60] 167.70 332.50

SSSS Present 63.326 126.653
Gowda and Pandalai [32] 63.27 126.54
Thangaratnam et al. [60] 63.33 126.00

x

y

a

a

A B

C
D

Fig. 3  Schematic of the square plate
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5.1.2  Isotropic skew plate

The effectiveness of the present model and its ability in the 
prediction of thermal buckling behavior of isotropic skew 
plates subjected to uniform temperature rise are now exam-
ined. The geometrical characteristics of the skew plate are 
depicted in Fig. 5 where a∕b = 1 and a∕h = 1000 as indi-
cated in Prabhu and Durvasula [52] and Kant and Babu 
[42]. Its material properties such as Young’s modulus, the 
Poisson’s ratio and the thermal expansion coefficient are : 
E = 1 GPa, � = 0.3 and � = 1 × 10−6∕◦ C, respectively. The 
definition of the boundary conditions for simply supported 
(S) or clamped (C) edges is given as mentioned earlier in 
Sect. 5.1.1. The comparison study is carried out using the 
present SQAD45 finite element for various skew angles 
( � = 0◦, 15◦, 30◦ and 45◦ ). The nondimensional critical 
buckling temperatures ( ΔT∗

cr
= E�b2hΔTcr∕�

2D with 
D = Eh3∕12(1 − �2)) of the clamped isotropic skew plate 
are listed in Table 6, as well as the corresponding results 
given by Prabhu and Durvasula [52] and Kant and Babu 
[42]. The present results are very closer to those obtained 
from the references Prabhu and Dur-vasula [52], Kant and 
Babu [42], which leads to validate the present formulation. 
Therefore, the current model is convenient for thermal buck-
ling analysis of thin skew plates.

5.1.3  Isotropic cylindrical panel

An isotropic cylindrical panel subjected to uniform tem-
perature distribution is studied. The panel is meshed 
using 32 × 20 of SQAD45 finite elements. Its geometry 
is illustrated in Fig. 6, and the corresponding properties 
are given as: the thickness h = 1 mm, the thickness ratio 
A∕h = 100 , the curvature ratio R∕A = 2 , the aspect ratio 
A∕L = 1 and the angle � = 15◦ . The material properties are 
given as follows Bhagat et al. [8]: E = 210 GPa, � = 0.3 

and � = 12.6 × 10−6∕◦ C. The critical buckling tempera-
ture ΔTcr (in K) of the isotropic cylindrical panel under 
uniform temperature distribution is computed for various 
thickness ratios (A/h) and for different boundary condi-
tions and compared to those given by Bhagat et al. [8]. A 

Fig. 4  Nondimensional critical 
buckling temperature ΔT∗

cr
 

versus the aspect ratio a/b of 
the isotropic square plate under 
uniform temperature distribu-
tion with the geometrical ratio 
( a∕h = 100)

x

y

�

a

b

A
B

CD

Fig. 5  Schematic and geometrical characteristics of the skew plate

Table 6  Comparison study of nondimensional critical buckling tem-
perature ΔT∗

cr
 for the isotropic skew plate under uniform temperature 

distribution

Skew angle ( ◦) Present Ref FSDT (Kant and 
Babu [42])

SQAD45 Prabhu and Dur-
vasula [52]

FI SI

0 3.724 3.71 3.714 3.710
15 3.958 3.95 3.952 3.946
30 4.796 4.80 4.815 4.795
45 6.849 – 7.799 6.938
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sequence of letters containing “C” or “F” is used to denote 
fully clamped (C) or free edges (F). Three combinations 
of boundary conditions are considered: CCCC, CCFC and 
CFCF. It should be mentioned that the first and third letters 
indicate the boundary condition applied to curved edge, 
while the latter letters refer to straight edge. From Fig. 7, 
it can be seen that the results obtained by the proposed 
model agree well with the solution of Bhagat et al. [8], 
which leads to verify the aptitude of the present formula-
tion in the prediction of the thermal buckling behavior of 
isotropic cylindrical panels. Also, Fig. 7 shows that the 
critical buckling temperature decreases as the thickness 
ratio A/h increases for all combinations of boundary condi-
tions. In fact, the more thin the cylindrical panel becomes, 
the more the stiffness of the panel is decreased. On the 
other hand, the fully clamped (CCCC) or clamped in three 
edges and free in one edge (CCFC) cylindrical panels lead 
to higher values of critical buckling temperatures com-
pared to the other boundary condition (CFCF). This means 

that the applied boundary conditions have a significant 
effect on the thermal buckling strength of such structures.

5.2  Thermal buckling and post‑buckling analysis 
of FGM structures

5.2.1  Thermal buckling responses of FGM plates 
and cylindrical panels

Here, the thermal buckling behavior of FGM structures is 
investigated. In fact, a series of analyses varying the power 
law index, the aspect ratios, the type of thermal loadings, 
boundary conditions and other geometrical parameters are 
carried out on FGM plates and cylindrical panels in order to 
show the effects of such parameters on the buckling behavior 
of these structures. For that, the thermal buckling of FGM 
square plate under uniform temperature distribution is first 
investigated (Table 7). The plate is made of aluminum (Al) 
and alumina ( Al2O3 ) phases, and the adopted mesh involves 
32 × 32 of SQAD45 finite elements. The material properties 
are listed in Table 8. The geometrical characteristics of the 
plate are the same as mentioned in Kandasamy et al. [41]. 
Figure 8 depicts the obtained critical buckling temperatures 
ΔTcr (in K) versus the power law index p compared to those 
given by Kandasamy et al. [41] under uniform temperature 
distribution with fully clamped (CCCC) and fully simply 
supported (SSSS) boundary conditions. A good agreement 
between the results implies that the present model has the 
capacity to reproduce the thermal buckling responses of 
FGM plates. It should be mentioned that the little difference 
between the results in the case of simply supported bound-
ary condition and for p ≥ 1 can be explained by the effect 
of shear deformations which is neglected in our approach. 
For the purpose of the validation of the present formula-
tion with analytical and finite element methods [38, 41], 
further numerical results of the critical buckling temperature 
ΔTcr (in K) of the FGM (Al/Al2O3 ) plates with geometrical 

L

h

�

R

x

z
y

A

Fig. 6  Geometry of the cylindrical panel

Fig. 7  Critical buckling 
temperature ΔTcr (in K) of 
the isotropic cylindrical panel 
under uniform temperature rise 
versus thickness ratio (A/h) for 
different boundary conditions 
(CCCC, CCFC, CFCF)
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characteristics: a∕b = 1 and a∕h = 100 , under uniform tem-
perature distribution and for simply supported boundary 
condition are provided in Table 7. For the different power 
law indexes (p), the present results show an excellent agree-
ment with those published in the literature [38, 41], which 
highlight again the effectiveness and the reliability of the 
present model.

On the other hand, the effects of aspect ratio (b/a) on the 
critical buckling temperature of a clamped (Al/Al2O3 ) plate 
under uniform and nonuniform temperature distributions 
and for different power law index p values with length-to-
thickness ratio ( a∕h = 100 ) are shown in Fig. 9a, b. Based 
on these plots, it can be noted that the critical temperature 

parameter increases as the aspect ratio (b/a) increases and 
this is for both types of temperature distributions. In addi-
tion, the thermal buckling parameter decreases as the power 
law index p increases, which implies a rise in the stiffness of 
the FGM square plate.

In the second example, the thermal buckling analysis is 
performed for (Al/Al2O3 ) skew plate under uniform and non-
uniform temperature distributions. The considered mesh is 
the same as mentioned earlier in Sect. 5.1.2. The used geo-
metrical properties are as indicated in Jaberzadeh et al. [35]: 
b∕a = 1, b∕h = 100 . Table 9 compares the critical buckling 
temperatures ΔTcr (in K) of a clamped (CCCC) FGM skew 
plates under two sets of temperature distributions and with 
different power law indexes p. The comparison reveals an 
excellent agreement between the obtained results and those 
cited in Jaberzadeh et al. [35] leading hence to validate again 
the ability of the present model to reproduce with accuracy 
the thermal buckling behavior of FGM skew plates. Accord-
ing to Table 9, the relative error between the present result 
and those given by Jaberzadeh et al. [35] in the case of a 
skew angle ( � = 0◦, 15◦ and 30◦ ) does not exceed 1.3% for 
uniform temperature rise, while it can reach 36% in the case 
of nonuniform temperature distribution. In fact, the solu-
tion of the critical temperature of plate under nonuniform 
temperature rise in Jaberzadeh et al. [35] is achieved using 
the polynomial series method; however, in this study, the 
thermal buckling is computed using the Gauss integration 
method. So, the present method is more convenient for ther-
mal buckling analysis of FGM structures under nonuniform 
temperature distribution. Furthermore, Table 10 illustrates 
the effect of boundary conditions and the power law index 
p on the critical buckling temperature ΔTcr (in K) of the 
(Al/Al2O3 ) skew plate for uniform and nonuniform tempera-
ture rise. It can be seen that ΔTcr increases as the power law 
index p decreases and this is for the two sets of temperature 
and for all the combinations of boundary conditions. In addi-
tion, for CCCC and SCSC boundary conditions, the values 

Table 7  Comparison study of critical buckling temperature ΔTcr (in 
K) for FG simply supported (SSSS) square plates under uniform tem-
perature distribution for different power law index values p 

Results p

0 0.5 1 2 10

Present 17.11 10.12 9.15 9.11 8.62
Kandasamy et al. [41] 17.50 9.9 8.0 7.10 –
Javaheri and Eslami [38] 17.09 – 7.94 7.26 7.46

Table 8  Material properties of aluminum (Al), alumina ( Al2O3 ) and 
zirconia ( ZrO2 ) phases [77]

Material Properties

E (GPa) � Conductivity 
(W mK−1)

Thermal 
expansion  
(/◦C)

Aluminum (Al) 70 0.3 204 23 × 10−6

Alumina ( Al2O3) 380 0.3 10.4 7.4 × 10−6

Zirconia ( ZrO2) 151 0.3 2.09 10.0 × 10−6

Fig. 8  Critical buckling 
temperature ΔTcr (in K) versus 
the power law index p of 
the rectangular plate under 
uniform temperature distribu-
tion for fully clamped (CCCC) 
and simply supported (SSSS) 
boundary conditions and 
with the geometrical ratios 
( a∕h = 100, a∕b = 1)
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of critical buckling temperature are much greater than those 
for the fully simply supported (SSSS) skew plates. Thus, the 
more the plate is constrained, the more higher its rigidity 
becomes, which leads to high critical buckling temperature. 
In addition, the corresponding buckling mode shapes of the 
FGM skew plates are illustrated in Fig. 10.

The variation in buckling temperature versus the skew 
angle for the simply supported FGM skew plate under two 
studied thermal loads and for different power law indexes p 
is shown in Fig. 11a, b, respectively. The results of Fig. 11 
indicate that as the skew angle of the plate increases, the 
critical buckling temperature parameter increases. In fact, 
for a skew angle higher than 30◦ , the increase in the thermal 
buckling parameter is more pronounced. Thus, a high values 
of skew angles induces the concentration of stresses at the 
corner of the FGM plate where its rigidity becomes more 
sensitive to the change in temperature. This observation is 
similar to those for fully clamped FGM skew plate illus-
trated in Fig. 12a, b. Moreover, when comparing the influ-
ence of thermal loading type on critical buckling behavior of 
FGM skew plate, it can be observed that the effect of nonu-
niform thermal load is more prominent than the uniform 

temperature rise. Further conclusions can be deduced from 
Figs. 13 and 14, which depict the effects of length-to-thick-
ness ratio (a/h) and the aspect ratio (b/a) on thermal buck-
ling behavior of clamped FGM skew plates under uniform 
temperature rise for different skew angles and with a power 
law index p = 5 . Figure 13 shows that the increase in the 
length-to-thickness ratio (a/h) induces a decrease in the criti-
cal buckling temperature parameter, and this is for all values 
of skew angles. In fact, the effect of the length-to-thickness 
ratio is more pronounced for FGM skew plate with a skew 
angle � = 60◦ compared to the other values of skew angles. 
This reveals that the skew angle has a significant effect on 
thermal buckling behavior of FGM skew plates. Further-
more, it can be remarked that when the length-to-thickness 
ratio ( a∕h ≥ 50 ) increases, the FGM skew plate behaves as a 
thin structure and becomes hence less sensitive to the change 
in temperature. On the other hand, Fig. 14 illustrates the 
effect of the aspect ratio (b/a) on the critical buckling tem-
perature of the FGM skew plate. It can be seen that the criti-
cal buckling temperature parameter rises with the increase 
in the aspect ratio (b/a) for all values of skew angles of the 
clamped FGM skew plate. This observation reflects that the 

Fig. 9  Critical buckling 
temperature ΔTcr (in K) of 
the FG clamped square plate 
with: a uniform temperature 
distribution and b nonuniform 
for different power law indexes 
p versus the aspect ratio b/a 
with length-to-thickness ratio 
( a∕h = 100)
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variation in this geometrical parameter affects the flexural 
rigidity of the plate and hence the thermal buckling behavior 
of the FGM skew plate.

To illustrate the present approach for thermal buckling 
analysis of FGM shells, a clamped (Al/ZrO2 ) cylindrical 
panel under thermal loadings is considered with the prop-
erties as listed in Table 8. The geometric properties of the 
FGM panel are the same as mentioned in Zhao and Liew 
[76]: L = 0.2,R = 1, h = 0.002 . The considered mesh of the 
panel is 32 × 32 SQAD45 finite elements. Figure 15 pre-
sents the buckling temperature rise ΔTcr (in K) versus the 
power law index p of the clamped FGM cylindrical panel 
under uniform in comparison with Zhao and Liew [76]. It 
is observed that a good agreement has been achieved in this 
comparison study.

Figure 16 presents the buckling temperature rise ΔTcr (in K) 
versus the power law index p of the Al/ZrO2 cylindrical panel 
under uniform and nonuniform temperature distributions with 
the geometrical ratios ( A∕L = 1,R∕A = 2 ). For both thermal 
loadings, the critical temperature decreases when the power 
law index p increases. This is due to the decreases in the stiff-
ness of the panel with a rise in this exponent. In fact, the high 
values of the power law exponent correspond to high portion 

Fig. 10  Buckling mode shapes 
of the FGM skew plates under 
uniform temperature rise with 
clamped edges

Mode 1 Mode 2

Mode 3 Mode 4

Table 9  Critical buckling 
temperature rise ΔTcr (in K) of 
clamped Al/Al2O3 skew plate

Skew angle Temperature 
distribution

Results p

0 0.5 1 2 5

0◦ Uniform Present 45.452 25.766 21.123 18.731 19.324
Jaberzadeh et al. [35] 45.0471 25.6925 21.0670 18.6771 19.2688

Nonuniform Present 90.904 89.862 70.497 54.941 46.442
Jaberzadeh et al. [35] 80.6943 72.0952 53.5903 40.14719 34.6020

15◦ Uniform Present 48.307 27.386 22.453 19.912 20.541
Jaberzadeh et al. [35] 48.2540 27.3395 22.4175 19.87436 20.5040

Nonuniform Present 96.615 95.514 74.937 58.405 49.369
Jaberzadeh et al. [35] 86.5081 77.8334 58.0947 43.6616 37.5974

30◦ Uniform Present 58.535 33.192 27.222 24.148 24.909
Jaberzadeh et al. [35] 57.8237 32.7614 26.8633 23.8158 24.5703

Nonuniform Present 117.07 115.768 90.858 70.835 59.870
Jaberzadeh et al. [35] 105.6474 96.7241 72.9233 55.2311 47.4583

Table 10  Critical buckling temperature rise ΔTcr (in K) of Al/Al2O3 
skew plate ( b∕a = 1, b∕h = 100, � = 30◦ ) for different boundary con-
ditions and different power law indexes p 

p Temperature 
distribution

CCCC SCSC SSSS

0 Uniform 58.535 61.925 44.261
Nonuniform 117.07 123.851 88.548

0.5 Uniform 33.192 35.22 25.454
Nonuniform 115.768 123.478 93.534

1 Uniform 27.222 29.031 21.526
Nonuniform 90.858 97.548 93.533

5 Uniform 24.909 26.673 20.303
Nonuniform 59.87 64.479 51.87

10 Uniform 25.592 27.273 20.226
Nonuniform 55.303 59.204 45.817
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of metal (Al) in comparison with the ceramic part ( ZrO2 ). In 
addition, the panel under nonuniform temperature rise induces 
higher values of critical buckling temperature compared to 
panel under uniform temperature distribution. Therefore, the 
use of the numerical integration method and the dependency 
of the thermal load on the geometrical parameter can affect 
significantly the thermal buckling behavior of FGM cylindri-
cal panels. Now, the effects of the thickness ratio (A/h) on 
the thermal buckling behavior of the clamped FGM cylindri-
cal panel under the two sets of temperature distributions are 
examined in Fig. 17a, b. It can be observed that the critical 
temperature ΔTcr (in K) decreases as the thickness ratio (A/h) 
increases and this for all thermal loading types. Indeed, the 
increase in the thickness ratio (A/h) induces a flat panel with 
a low values of buckling strength due to the decrease in the 
bending stiffness of the FGM cylindrical panel. In addition, the 
buckling temperature decreases as the power law exponent p 
rises, which leads to an increases in the stiffness of the panel. 
The two first mode shapes of the Al/ZrO2 cylindrical panel are 
plotted in Fig. 18.

5.2.2  Thermal post‑buckling responses of FGM plates 
and cylindrical panels

In order to validate the efficiency of the present formula-
tion for thermal post-buckling analysis, two examples are 
considered for which the thermal post-buckling responses of 
isotropic square and skew plates are compared to the solu-
tions available in the literature. Firstly, an isotropic square 
plate subjected to uniform temperature rise is examined. The 
geometrical and material properties of the plate are taken as 
indicated in Shen [56] where a∕b = 1, a∕h = 10 are the geo-
metrical ratios, E = 1 GPa is the Young’s modulus, � = 0.3 
is the Poisson’s coefficient and � = 10−4∕◦ C is the thermal 
expansion coefficient. The plate is modeled using 32 × 32 of 
SQAD45 finite elements. The obtained results are presented 
in terms of dimensionless critical temperature T = ΔT∕ΔTcr 
with ΔTcr = 119.783 . As can be seen from Fig. 19, a good 
agreement between the obtained results and those provided 
by Shen [56] is revealed which leads to verify the effec-
tiveness of the present model and draw hence its ability to 
predict the thermal post-buckling behavior of plates with 
good accuracy.

Fig. 11  Critical buckling 
temperature ΔTcr (in K) 
versus the skew angle (in ◦ ) 
of the SSSS FGM skew plate 
( b∕a = 1, b∕h = 100 ) subjected 
to: a uniform temperature rise 
and b nonuniform temperature 
rise for different power law 
index p 
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Secondly, the thermal post-buckling path of a clamped 
isotropic skew plate under uniform temperature distri-
bution is analyzed. The material properties and the geo-
metric parameters are: E = 1 GPa, � = 0.3, � = 10−4∕◦ C, 
a∕h = 100 , and the skew angle is taken equal to 45◦ . 
The isotropic skew plate is meshed using 32 × 32 of 
SQAD45 finite elements. Figure 20 depicts the obtained 

nondimensional temperature T∗ ( = E�a2hT∕�2D , with 
D = Eh3∕12(1 − �2) ) compared to the result given by 
Prakash et al. [53]. An excellent agreement between the 
results is highlighted, which demonstrates the aptitude of 
the present formulation to predict the thermal post-buck-
ling behavior of skew plates with good accuracy. It should 

Fig. 12  Critical buckling 
temperature ΔTcr (in K) 
versus the skew angle (in ◦ ) 
of the CCCC FGM skew plate 
( b∕a = 1, b∕h = 100 ) subjected 
to: a uniform temperature rise 
and b nonuniform temperature 
rise for different power law 
indexes p 

Fig. 13  Critical buckling 
temperature ΔTcr (in K) versus 
length-to-thickness ratios (a/h) 
of the clamped (CCCC) FGM 
skew plate under uniform tem-
perature rise for various skew 
angles and with a power law 
index value p = 5
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be mentioned that the difference between the results at 
w

h
= 0 , observed in Figs. 19 and 20, can be explained by 

the different used theories and methods in the resolution 
procedure. In fact, in our paper a finite element method 
is elaborated in the sense of nonlinear analysis with the 

introduction of large displacement and finite rotations 
while in Prakash et al. [53] and Shen [56] an analytical 
method is employed based on von Karman assumptions 
which include only the effect of membrane forces.

Fig. 14  Critical buckling 
temperature ΔTcr (in K) versus 
aspect ratio (b/a) of the clamped 
(CCCC) FGM skew plate under 
uniform temperature rise for 
various skew angles and with a 
power law index value p = 5

Fig. 15  Critical buckling 
temperature rise for an 
Al/ZrO2 panel with two sides 
simply supported and two 
sides clamped (CSCS) under 
nonlinear temperature distribu-
tion with the geometrical ratios 
( L = 0.2,R = 1, h = 0.002)

Fig. 16  Critical buckling 
temperature ΔTcr (in K) of a 
clamped FGM cylindrical panel 
versus the power law index p 
under different temperature dis-
tributions with the geometrical 
ratios ( A∕L = 1,R∕A = 2)
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Now, the thermal post-buckling responses of FGM struc-
tures are examined for square plates, skew plates and cylin-
drical panels. Figure 21 depicts the thermal post-buckling 
curves of a clamped Al/Al2O3 FGM square plates under uni-
form temperature distribution for different power law coef-
ficients p. The geometrical properties and the used mesh 
are the same as mentioned earlier in Sect. 5.2.1. In fact, 
the increases in the power index p produce less deflection 
and the thermal post-buckling path decreases. Figure 22 
shows the thermal post-buckling behavior of a simply sup-
ported Si3N4/SUS304 FGM skew plates under nonuniform 

temperature distribution for different power law indexes p. 
The geometrical parameters are: a∕h = 100, a∕b = 1 , skew 
angle � = 45◦ and the temperature-dependent material prop-
erties are listed in Table 11. It can be observed that as the 
power index p increases, the post-buckling response of the 
FG plate decreases. In fact, a high value of the power index 
p induces a rise in the volume fraction of ceramic portion, 
which is able to withstand high temperature. Therefore, the 
FGM materials show a good way of heat resistance. In addi-
tion, the effect of skew angle on the thermal post-buckling 
behavior of a simply supported Si3N4/SUS304 skew plates 

Fig. 17  Critical buckling 
temperature ΔTcr (in K) versus 
the thickness ratio (A/h) of 
a clamped FGM cylindrical 
panel subjected to: a uni-
form temperature rise and b 
nonuniform temperature rise for 
different power law indexes p 
and with the geometrical ratios 
( A∕L = 1,R∕A = 2 ) versus the 
thickness ratio (A/h)

Fig. 18  Buckling mode shapes 
of the FGM cylindrical panel 
under nonuniform temperature 
rise with two edges clamped 
and two edges simply supported

Mode 1 Mode 2
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under nonuniform temperature distribution is also examined 
as depicted in Fig. 23. It can be seen that with an increase 
in the skew angle, the post-buckling path is reduced for 
an applied thermal load, which induces the high thermal 
load capacity of the FG skew plate with the rise in the skew 

angle. As a result, designer can adjust the thermal capacity 
of such structures with the variation in the skew angle geo-
metrical parameter.

Figure 24 illustrates the post-buckling path of Al/ZrO2 
cylindrical panels under uniform temperature load for 

Fig. 19  Post-buckling path of 
the simply supported isotropic 
square plate subjected to 
uniform temperature distribu-
tion with the geometrical ratios 
( a∕h = 10, a∕b = 1)

Fig. 20  Post-buckling path of 
the clamped isotropic skew 
plate subjected to uniform 
temperature distribution 
with the geometrical ratios 
( a∕h = 100, a∕b = 1, � = 45◦)

Fig. 21  Thermal post-buckling 
path of a clamped Al/Al2O3 
FGM square plates under 
uniform temperature distribution 
for different power law indexes p 
and with the geometrical param-
eters ( a∕h = 100, a∕b = 1)
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different power law indexes p and with geometrical prop-
erties ( L = 0.2,R = 1, h = 0.002 ). As the temperature load 
increases, the nondimensional deflection increases. In 
addition, the thermal post-buckling response increases as 
the power index p increases. This can be explained by the 
flexural rigidity of the FGM panel, which is high with a 
fully ceramic phase ( p = 0 ) compared to the metallic part 

and can hence reach its maximum thermal load capac-
ity. In Fig. 25, the thermal post-buckling curves evaluated 
for the clamped FGM cylindrical panel ( p = 0.5 ) under 
uniform and nonuniform temperature distributions are 
highlighted. The uniform temperature distribution leads 
to more deflection compared to the nonuniform tempera-
ture distribution, which induces the significant effect of 

Table 11  Temperature-
dependent thermo-elastic 
coefficients of Si3N4 and 
SUS304 [53]

Material Properties P0 P−1 P1 P2 P3

Silicon nitride E (GPa) 348.43e9 0 − 3.070e−4 2.160e−7 − 8.946e−11
Si3N4 � 0.28 0 0 0 0

� (K−1) 5.8723e−6 0 9.095e−4 0 0

K (W mK−1) 9.19 0 0 0 0
� (kgm−3) 2370 0 0 0 0

Stainless steel E (GPa) 201.04e9 0 3.079e−4 − 6.534e−7 0
SUS304 � 0.28 0 0 0 0

� (K−1) 12.330e−6 0 8.086e−4 0 0

K (W mK−1) 12.04 0 0 0 0

� (kg/m−3) 8166 0 0 0 0

Fig. 22  Thermal post-buckling 
path of a simply supported 
Si3N4/SUS304 FGM skew plates 
under nonuniform tempera-
ture distribution for different 
power law indexes p and with 
the geometrical parameters 
( a∕h = 100, a∕b = 1 , Skew 
angle � = 45◦)

Fig. 23  Thermal post-buckling 
path of a simply supported Si3N4

/SUS304 FGM skew plates 
under nonuniform temperature 
distribution for different skew 
angles and with the geometrical 
parameters ( a∕h = 100, a∕b = 1)
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temperature distribution profile on thermal post-buckling 
behavior of FGM structures. For the sake of completeness, 
it should be noted that the nondimensional deflections in 
the case of large displacement can reach to ( w∕h = 6 ) as 
shown in Figs. 21, 24 and 25, whereas in the case of small 
displacements the deflection does not exceed ( w∕h = 1.5 ) 
due to the inclusion of Von karman assumptions.

6  Conclusion

Thermal buckling and post-buckling analysis of FG square, 
skew plates and cylindrical panels is presented. The governing 
equations are developed using a finite rotation four-node shell 
element. This model allows the description of large deforma-
tions as well as the finite rotation which constitutes an ame-
lioration compared to the standard Kirchhoff–Love model. In 
fact, the standard Kirchhoff–Love model used in the litera-
ture includes only membrane forces and remains limited to 
small deformations via the use of von Karman assumptions. 

The material properties of FGM structures are assumed to be 
graded along the thickness direction and temperature depend-
ent. In numerical examples, comparison studies are firstly 
performed to verify the accuracy of the present finite element 
method and then a parametric study is conducted to show the 
effects of several parameters on the thermal buckling and post-
buckling paths of FGM plates and cylindrical panels. From the 
numerical results, the following conclusions can be drawn:

• The present work allows the assessment of the critical 
buckling temperature and the post-buckling responses of 
FGM structures with a good efficiency and assures the 
compromise between good accuracy and low computa-
tional time.

• The critical buckling temperature of a clamped plate is 
greater than that of a simply supported ones. So, to delay 
the thermal buckling phenomena, a clamped boundary 
condition should be applied to the structure.

• The applied thermal loadings have a significant effect 
on the thermal buckling and post-buckling responses. In 

Fig. 24  Thermal post-
buckling response for an 
Al/ZrO2 clamped (CCCC) 
panel under uniform tem-
perature distribution with 
the geometrical parameters 
( L = 0.2,R = 1, h = 0.002)

Fig. 25  Thermal post-buckling 
paths for an Al/ZrO2 clamped 
(CCCC) panel under uni-
form and nonuniform tem-
perature rise through thickness 
with the geometrical ratios 
( L = 0.2,R = 1, h = 0.002)
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fact, the structure undergoes buckling at lower tempera-
ture when the applied thermal field is uniform through 
the thickness.

• The flexural rigidity of the FGM structures subjected to 
thermal loadings is highly dependent on the variation in 
the power law index.

• The stiffness of the FGM skew plates in thermal environ-
ment is highly dependent on the variation in the skew 
angle. Indeed, as the skew angle increases, the critical 
buckling temperature increases, and the post-buckling 
path is reduced.
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