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Abstract
In this paper, a numerical solution is presented for free vibration analysis of cantilever functionally graded carbon nanotube-
reinforced trapezoidal plates. The plate is modeled based on the first-order shear deformation theory, effective mechanical 
properties are estimated according to extended rule of mixture, and the set of governing equations and boundary conditions 
are derived using Hamilton’s principle. Generalized differential quadrature method is employed, and natural frequencies 
and corresponding mode shapes are derived numerically. Convergence and accuracy of the solution are confirmed, and 
effect of various parameters on the natural frequencies is investigated including geometrical characteristics, volume fraction 
and distribution of carbon nanotubes. Because of similarity of the studied model with the wing, tail and fin of aircrafts 
and missiles, results of this paper can be useful in design and analysis of aeronautic vehicles in the near future. It is worth 
mentioning that results of this paper may serve as benchmarks for future studies.
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1  Introduction

Due to their superior mechanical, thermal and electri-
cal properties, CNTs can be utilized in many applications 
including the reinforcement of polymer composites, such as 
CNTRC beams, plates and shells. So, since the discovery 
of CNTs by Ijima [1] in 1991, many researchers have inves-
tigated their unique capabilities as reinforcements in com-
posite structures. On the other hand, trapezoidal plates are 
widely used in mechanical, civil and aeronautical engineering 
applications such as bridges, wings, tails and fins of aircrafts. 
However, due to the mathematical difficulties and complexi-
ties involved in formulation, mechanical analysis of CNTRC 
trapezoidal plates is poorly investigated in comparison with 
those of rectangular, skew and circular plates [2–7].

In recent years, some authors focused on the bending, 
buckling and vibration analyses of CNTRC rectangular and 
skew plates. Based on FSDT, Zhu et al. [8] presented an 
element for bending and free vibration analyses of CNTRC 

moderately thick rectangular plates. They investigated influ-
ences of distribution and volume fractions of CNTs, bound-
ary conditions and edge-to-thickness ratio on the bending 
characteristics, natural frequencies and mode shapes of 
the plate. Zhang et al. [9, 10] used FSDT and element-free 
IMLS-Ritz method and focused on the free flexural vibration 
analysis of FG-CNTR triangular and skew plates. They pre-
sented new sets of natural frequencies and mode shapes for 
various FG-CNTRC triangular and skew plates and studied 
effect of volume fraction and distribution of CNTs, plate 
thickness-to-width ratio, plate aspect ratio and boundary 
condition on the natural frequencies of plates. In a similar 
work, Zhang et al. [11] studied free vibration analysis of 
triangular plates subjected to in-plane stresses. In this case, 
they studied effect of in-plane stress on the natural frequen-
cies of the plate. Again with similar theory for modeling 
of plate and method of solution, Lei et al. [12] focused on 
free flexural vibration analysis of FG-CNTRC quadrilateral 
plates resting on Pasternak foundations. For different bound-
ary conditions, they presented a parametric study on natural 
frequencies for various types of CNTs distributions, volume 
fraction of CNTs and geometries parameters of the plate.

Based on FSDT, García-Macías et al. [13] presented 
an element for static and dynamic simulations of moder-
ately thick FG-CNTRC skew plates with arbitrary-oriented 
reinforcements. They investigated a parametric study to 
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investigate influences of skew angle, fiber orientation, dis-
tribution and volume fraction of CNTs, thickness-to-width 
ratio, aspect ratio and boundary conditions on deflection and 
natural frequencies of FG-CNTRC skew plates. Lei et al. 
[14] employed FSDT and kp-Ritz method and studied free 
vibration analysis of laminated FG-CNTRC rectangular 
plates. They focused on the effects of lamination angle, num-
ber of layers, distributions and volume fractions of CNTs, 
plate width-to-thickness ratio and plate aspect ratio on the 
natural frequencies of laminated FG-CNTRC rectangular 
plates with various boundary conditions. Using third-order 
shear deformation theory (TSDT), Mori–Tanaka method 
and method of calculating the average stress of composite 
materials, Guo and Zhang [15] studied nonlinear vibration 
behaviors of CNTRC rectangular plates under combined 
dynamic axial and transverse excitations. They investigated 
effects of the forcing excitations on the different kinds of the 
periodic and chaotic motions of the CNTRC plates through 
a comprehensive parametric study.

Based on a higher-order shear deformation theory (HSDT) 
and using element-free kp-Ritz method, Selim et al. [16] 
studied free vibration analysis of CNTRC rectangular plates 
in a thermal environment. They studied effects of volume 
fraction and distribution of CNTs, boundary conditions, plate 
aspect ratio, plate thickness-to-width ratio and CNT volume 
fraction on the natural frequencies and sequence of first six 
mode shapes. Using FSDT and element-free improved mov-
ing least-squares Ritz (IMLS-Ritz) method, Zhang et al. [17] 
studied free vibration analysis of FG-CNTRC moderately 
thick rectangular plates with edges elastically restrained 
against transverse displacements and rotation. Besides vol-
ume fraction and distribution of CNTs and also geometrical 
parameters, they focused on the effect of elastically restrained 
edges on the natural frequencies of the plate. Zhang and 
Selim [18] employed an HSDT along with element-free 
IMLS-Ritz method and focused on free vibration behavior 
of FG-CNTRC thick laminated composite plates. For vari-
ous CNT orientation angles and boundary conditions, they 
presented a parametric study to show effects of CNT volume 
fraction, plate aspect ratio, plate width-to-thickness ratio and 
number of plate’s layers on natural frequencies of the plate. 
Employing FSDT along with Ritz method, Kiani et al. [19] 
focused on the free vibration analysis of FG-CNTRC skew 
plates. For various types of boundary conditions, he studied 
effect of aspect ratio, thickness-to-width ratio, skew angle 
and also volume fraction and distribution of CNTs on the 
natural frequencies of the FG-CNTRC skew plates. Again 
using FSDT along with Ritz method, he focused on the free 
vibration analysis of FG-CNTRC rectangular plates inte-
grated with piezoelectric layers at the bottom and top sur-
faces [20]. He showed that fundamental frequency of a closed 
circuit plate is always higher than corresponding value of a 
plate with open-circuit boundary conditions.

Memar et  al. [21] employed TSDT and presented an 
isogeometric analysis for bending and free vibration analy-
sis of CNTRC skew plates with arbitrary-oriented CNTs. 
They studied effect of CNT orientation on deflection and 
natural frequencies of the plate and found the orientation 
which leads to minimum or maximum values in maximum 
deflection and fundamental frequency of the skew plates. 
Employing a refined TSDT and using GDQM, Nejati et al. 
[22] focused on the static bending and free vibration analyses 
of rotating FG-CNTRC truncated conical shells. They studied 
effect of volume fraction, agglomeration and geometry of 
CNTs on the natural frequencies and static deflection of the 
conical shells. Fantuzzi et al. [23] used non-uniform rational 
B-splines (NURBS) curves and studied free vibration analy-
sis of arbitrarily shaped FG-CNTRC plates. They focused on 
the influence of agglomeration on the natural frequencies. A 
semi-analytical solution was presented by Wang et al. [24] for 
free vibration analysis of FG-CNTRC doubly curved panels 
and shells of revolution with arbitrary boundary conditions. 
They studied effect of the geometrical parameters, CNTs 
distributions, volume fraction of CNTs as well as boundary 
restraint parameters on the natural frequencies. Wang et al. 
[25] employed FSDT and focused on the free vibration analy-
sis of the FG-CNTRC shallow shells with arbitrary bound-
ary conditions. They presented a comprehensive parametric 
investigation on the influence of elastic restraint parameters, 
shear deformation and rotary inertia, shallowness and mate-
rial properties on the vibration characteristics of the shell. 
A meshless discretization technique is used by Ansari et al. 
[26] to present a numerical solution for free vibration analy-
sis of FG-CNTRC elliptical plates. They modeled the plate 
based on the FSDT and presented various numerical results 
to explore the effects of concerned parameters on the natural 
frequencies.

Using multi-term Kantorovich–Galerkin method 
(MTKGM), Wang et al. [27] presented a semi-analytical 
solution for free vibration of symmetric sandwich plates 
resting on elastic foundation. They considered plate to 
be composed of two thin CNTRC face sheets and a thick 
homogenous core. They studied influence of sandwich con-
figurations, volume fractions of CNTs, plate aspect ratio, 
core-to-skin thickness ratio and foundation stiffness on 
the natural frequencies. Zhong et al. [28] employed FSDT 
and presented a semi-analytical solution for free vibration 
analysis of FG-CNTRC circular, annular and sector plates. 
They presented some crucial parametric studies covering 
the effect of the geometrical parameters, CNTs distributions, 
volume fraction of CNTs and boundary conditions on the 
natural frequencies. Ansari et al. [29] used finite element 
method (FEM) and presented a numerical solution for bend-
ing and free vibration analyses of FG-CNTRC rectangular 
plates carrying a concentrated mass. They studied effect 
of boundary conditions, volume fraction and distribution 
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of CNTs on the deflection, stress distribution and natural 
frequencies of the plate and effect of translational inertia 
of the concentrated mass on the natural frequencies of the 
plate. Using GDQM, Ansari et al. [30] studied free vibra-
tion analysis of arbitrary-shaped thick FG-CNTRC plates. 
They modeled plate based on an HSDT and reported natural 
frequencies for FG-CNTRC skew, quadrilateral, triangular, 
circular, sector and elliptical plates. Ghorbanpour Arani 
et al. [31, 32] used TSDT along with GDQM and studied 
free vibration and supersonic flutter analyses of laminated 
FG-CNTRC cylindrical panels. For various combinations 
of clamped and simple boundary conditions, they studied 
effects of lamination angle, number of layers, volume frac-
tions and distributions of CNTs and geometrical parameters 
of the panel on the natural frequencies and critical speed 
of laminated FG-CNTRC panels. Using the Ritz method, 
Zhao et al. [33] obtained approximate values for natural 
frequencies of FG-CNTRC truncated conical panels with 
general boundary conditions. They presented a parametric 
study on the influence of the volume fractions of CNTs, dis-
tribution type of CNTs, boundary restraint parameters and 
geometrical parameters on the natural frequencies. Through 
a nonlinear analysis, Nguyen et al. [34] employed FSDT 
and presented an NURBS-based analysis for postbuckling 
behavior of FG-CNTRC shells. They presented some com-
plex and useful postbuckling curves of FG-CNTRC panels 
and cylinders that could be useful for future references.

It can be seen that vibration analysis of CNTRC 
trapezoidal plates is poorly studied, especially the cantilever 
one which is more similar to the conditions of wings, 
tails and fins of aircrafts. It is due to the mathematical 
complexities involved in geometry of trapezoidal plates 
and difficulties involved in free edges. So, in this paper, free 
vibration analysis of cantilever FG-CNTRC trapezoidal 
plates are studied. The plate is modeled based on FSDT, 
and the set of governing equations and boundary conditions 
are mapped from the trapezoidal area into a rectangular one. 
GDQM is employed as a numerical approaches, and natural 
frequencies and corresponding mode shapes are reported 
for various cases.

2 � Governing equations

As depicted in Fig. 1, an FG-CNTRC cantilever trapezoidal 
plate clamped at y = 0 and free at other edges is considered. 
The plate is of dimensions a and b and angles α and β and is 
reinforced by CNTs arranged in y direction. As Fig. 2 shows, 
four standard patterns of distribution of CNTs are considered 

including UD, FG-V, FG-O and FG-X. For these types of 
distribution, volume fraction of CNTs is given as [35]

where h is thickness of the plate and V∗
CNT

 is total volume 
fraction of CNTs which is same in all types of distribution. 
Also, volume fraction of isotropic matrix can be calculated 
as Vm = 1 − VCNT. Based on the extended rule of mixture, the 
elastic moduli (E11 and E22) and shear modulus (G12) can be 
expressed as follows [36]:

(1)

UD ∶ VCNT(z) = V∗
CNT

FG − V ∶ VCNT(z) =
(
1 +

2z

h

)
V∗
CNT

FG − O ∶ VCNT(z) = 2

(
1 −

2|z|
h

)
V∗
CNT

FG − X ∶ VCNT(z) = 4
|z|
h
V∗
CNT

Fig. 1   Cantilever CNTRC trapezoidal plate

Fig. 2   Distribution patterns of CNTs

(2)E11(z) = �1VCNT(z)E
CNT

11
+ Vm(z)E

m �2

E22(z)
=

VCNT(z)

ECNT

22

+
Vm(z)

Em

�3

G12(z)
=

VCNT(z)

GCNT

12

+
Vm(z)

Gm
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in which E11
CNT, E22

CNT are elastic moduli of CNTs, G12
CNT is shear 

modulus of CNT and Gm, and Em indicate shear modulus and 
elastic modulus of isotropic matrix, respectively. Also, η1, η2 
and η3 are CNT efficiency parameters which can be calculated 
by matching the modulus of CNTs from the molecular dynam-
ics (MD) results with those obtained from the rule of mixture.

Using the rule of mixture, density (ρ) and the Poisson’s 
ratio (ν12) can be calculated as [36]

where ν12
CNT and ρCNT are Poisson’s ratio and density of CNT, 

respectively, and νm and ρm are Poisson’s ratio and density 
of matrix, respectively.

According to FSDT, the displacement field in the plate 
can be considered as [37, 38]

in which uz, vz and wz are components of displacement 
in any desired position of the plate and u, v and w are 
corresponding ones at z = 0. Also, ψx and ψy are rotation 
about y and x axes, respectively. Normal (εij) and shear (γij) 
components of strain can be calculated as [3]

in which

where superscript T indicates to transpose operator and 
corresponding components of stress (σij) can be stated as 
follows [39]:

where k is shear correction factor and due to the direction of 
CNTs, following relation should be considered for Qij [39]:

(3)
�(z) = VCNT(z)�

CNT + Vm(z)�
m �12 = V∗

CNT
�CNT
12

+
(
1 − V∗

CNT

)
�m

(4)

uz(x, y, z) = u(x, y) + z�x(x, y)

vz(x, y, z) = v(x, y) + z�y(x, y)

wz(x, y, z) = w(x, y)

(5)

⎧⎪⎪⎨⎪⎪⎩

�xx
�yy
�yz
�xz
�xy

⎫
⎪⎪⎬⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

(),x 0 0 z(),x 0

0 (),y 0 0 z(),y
0 0 (),y 0 1

0 0 (),x 1 0

(),y (),x 0 z(),y z(),x

⎤
⎥⎥⎥⎥⎥⎦

{p} �zz = 0

(6){p} =
{
u v w �x �y

}T
(),x =

�

�x
(),y =

�

�y

(7)

⎧⎪⎪⎨⎪⎪⎩

�xx
�yy
�yz
�xz
�xy

⎫
⎪⎪⎬⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 kQ44 0 0

0 0 0 kQ55 0

0 0 0 0 Q66

⎤
⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

�xx
�yy
�yz
�xz
�xy

⎫⎪⎪⎬⎪⎪⎭

(8)
Q11 =

E22

1 − �12�21
Q22 =

E11

1 − �12�21
Q12 =

�12E22

1 − �12�21

Q44 = G13 Q55 = G23 Q66 = G12

in which G13 and G23 are shear moduli and �21 = �12E22∕E11 
is the Poisson’s ratio.

Substituting Eq. (5) into Eq. (7), following relation can 
be achieved:

The set of governing equations and boundary conditions 
can be derived using Hamilton’s principle as [40]

in which δ is variational operator, [t1,t2] is a desired time 
interval and T, U and Wext are kinetic energy, potential 
energy and work done by external loads calculated as [31, 
32]

where V and S are volume and surface of the plate and q is 
the external load per unit area. Substituting Eqs. (4), (5), (7) 
and (11) into Eq. (10), the set of governing equations can 
be derived as

and external boundary conditions can be written as

in which

(9)

⎧
⎪⎪⎨⎪⎪⎩

�xx
�yy
�yz
�xz
�xy

⎫
⎪⎪⎬⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

Q11(),x Q12(),y 0 zQ11(),x zQ12(),y
Q12(),x Q22(),y 0 zQ12(),x zQ22(),y

0 0 kQ44(),y 0 kQ44

0 0 kQ55(),x kQ55 0

Q66(),y Q66(),x 0 zQ66(),y zQ66(),x

⎤
⎥⎥⎥⎥⎥⎦

{p}

(10)

t2

∫
t1

(
�T − �U + �Wext

)
dt = 0

(11)

U =
1

2 ∭
V

(
�xx�xx + �yy�yy + �zz�zz + �xy�xy + �xz�xz + �yz�yz

)
dV

T =
1

2 ∭
V

�

[(
�uz

�t

)2

+

(
�vz

�t

)2

+

(
�wz

�t

)2
]
dV

Wext = ∬
S

q(x, y, t)w(x, y, t)dS

(12)

�Nxx

�x
+

�Nxy

�y
− I0

�2u

�t2
− I1

�2�x

�t2
= 0

�Nyy

�y
+

�Nxy

�x
− I0

�2v

�t2
− I1

�2�y

�t2
= 0

�Qxz

�x
+

�Qyz

�y
+ q − I0

�2w

�t2
= 0

�Mxx

�x
+

�Mxy

�y
− Qxz − I1

�2u

�t2
− I2

�2�x

�t2
= 0

�Myy

�y
+

�Mxy

�x
− Qyz − I1

�2v

�t2
− I2

�2�y

�t2
= 0

(13)
Nnn�un = 0 Nns�us = 0 Qnz�w = 0 Mnn��n = 0 Mns��s = 0
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where nx = cosθ and ny = sinθθ are components of the normal 
unit vector (see Fig. 3) and components of stress resultant 
and inertia are defined as follows:

Substituting Eq. (9) into Eq. (15) leads to the following 
relation

in which

Substituting Eq. (16) into Eq. (12) and considering q = 0 
for free vibration analysis leads to the following set of gov-
erning equations:

(14)
Nnn = Nxxn

2
x
+ 2Nxynxny + Nyyn

2
y

Nns =
(
Nyy − Nxx

)
nxny + Nxy

(
n2
x
− n2

y

)

Mnn = Mxxn
2
x
+ 2Mxynxny +Myyn

2
y
Mns =

(
Myy −Mxx

)
nxny +Mxy

(
n2
x
− n2

y

) Qnz = Qxznx + Qyzny

(15)
⎧
⎪⎨⎪⎩

Nxx

Nyy

Nxy

⎫
⎪⎬⎪⎭
=

h

2∫
−

h

2

⎧
⎪⎨⎪⎩

�xx
�yy
�xy

⎫
⎪⎬⎪⎭
dz

⎧
⎪⎨⎪⎩

Mxx

Myy

Mxy

⎫
⎪⎬⎪⎭
=

h

2∫
−

h

2

⎧
⎪⎨⎪⎩

�xx
�yy
�xy

⎫
⎪⎬⎪⎭
zdz

�
Qxz

Qyz

�
=

h

2∫
−

h

2

�
�xz
�yz

�
dz

⎧
⎪⎨⎪⎩

I0
I1
I2

⎫
⎪⎬⎪⎭
=

h

2∫
−

h

2

�

⎧
⎪⎨⎪⎩

1

z

z2

⎫
⎪⎬⎪⎭
dz

(16)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Nxx

Nyy

Nxy

Mxx

Myy

Mxy

Qyz

Qxz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11(),x A12(),y 0 B11(),x B12(),y
A12(),x A22(),y 0 B12(),x B22(),y
A66(),y A66(),x 0 B66(),y B66(),x
B11(),x B12(),y 0 D11(),x D12(),y
B12(),x B22(),y 0 D12(),x D22(),y
B66(),y B66(),x 0 D66(),y D66(),x

0 0 A44(),y 0 A44

0 0 A55(),x A55 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{p}

(17)
⎧⎪⎨⎪⎩

A11

A12

A22

A66

⎫⎪⎬⎪⎭
=

h

2∫
−

h

2

⎧⎪⎨⎪⎩

Q11

Q12

Q22

Q66

⎫⎪⎬⎪⎭
dz

⎧⎪⎨⎪⎩

B11

B12

B22

B66

⎫⎪⎬⎪⎭
=

h

2∫
−

h

2

⎧⎪⎨⎪⎩

Q11

Q12

Q22

Q66

⎫⎪⎬⎪⎭
zdz

⎧⎪⎨⎪⎩

D11

D12

D22

D66

⎫⎪⎬⎪⎭
=

h

2∫
−

h

2

⎧⎪⎨⎪⎩

Q11

Q12

Q22

Q66

⎫⎪⎬⎪⎭
z2dz

�
A44

A55

�
=

h

2∫
−

h

2

k

�
Q44

Q55

�
dz

(18)[S]{p} = {0}5×1

in which Sij = Sji are presented in “Appendix 1”.
Also, using Eqs. (13), (14) and (16), following relations 

can be written for boundary conditions:

Clamped edge (y = 0):

Free edges:

where [P] can be found in “Appendix 2”
The analysis of the non-rectangular plates uses a local 

parameter coordinate system rather than a Cartesian one. As 

shown in Fig. 4, the original trapezoidal shape of the plate in 
the x–y coordinates system can be mapped into a square in 
the ζ–η coordinates, using the following transformation [4]:

in which

Applying Eq. (21) in Eq. (18) and using the method of 
separation of variables as

(19)u = 0 v = 0 w = 0 �x = 0 �y = 0

(20)

⎧⎪⎪⎨⎪⎪⎩

Nnn

Nns

Mnn

Mns

Qnz

⎫
⎪⎪⎬⎪⎪⎭

= [P]{p} = {0}5×1

(21)x = a� + L�(tan � − G� ) y = L�

(22)L = b cos � G = tan � − tan �

(23)

⎧⎪⎪⎨⎪⎪⎩

u(� , �, t)

v(� , �, t)

w(� , �, t)

�x(� , �, t)

�y(� , �, t)

⎫
⎪⎪⎬⎪⎪⎭

=

⎧
⎪⎪⎨⎪⎪⎩

U(� , �)

V(� , �)

W(� , �)

X(� , �)

Y(� , �)

⎫
⎪⎪⎬⎪⎪⎭

ei� t

Fig. 3   n–s coordinate against Cartesian coordinate [6]
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in which i2 = − 1 and Ω is the natural frequency, the set of 
equations can be rewritten as

in which Rij = Rji can be found in “Appendix 3” and

Also, in a similar manner, boundary conditions can be 
written as

Clamped edge (η = 0):

Free edges (η = 1, ζ = 0,1)

where [J] is presented in “Appendix 4”

3 � Differential quadrature method

Differential quadrature method (DQM) is one of the most 
popular numerical approaches which was first presented by 
Bellman et al. [41] in 1971. This method has been applied by 

(24)[R]{q} = {0}

(25){q} =
{
U V W X Y

}T
E = E(�) =

1

� sec �−G�
F = F(�) = G� − tan � � =

a

b

(26)U = 0 V = 0 W = 0 X = 0 Y = 0

(27)[J]{q} = {0}

many authors to present numerical solution for one-dimen-
sional and two-dimensional problems [42–45]. Values of a 
two-dimensional function like F(ζ,η) can be expressed in a 
matrix form as

where N and M are number of grid points in ζ and η 
directions, respectively. According to the differential 
quadrature rules, all derivatives of the function can be 
approximated by means of weighted linear sum of the 
function values at the pre-selected grid of points as [46]

in which superscripts (r) and (s) indicate to order of 
derivation, subscripts ζ and η show derivative with respect 
to ζ or η, respectively. These matrices for the first-order 
derivatives are given as [46]:

(28)Fij = F
(
�i, �j

)
i = 1, 2,… ,N j = 1, 2,… ,M

(29)
[
�r+sF

�� r��s

]
=
[
A
(r)

�

]
[F]

[
A(s)
�

]T

Fig. 4   Original and computa-
tional coordinates [4]

(30)
�
A
(1)

�

�
in
=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∏
k=1
k≠i,n

�
�i − �k

�

N∏
k=1
k≠n

�
�n − �k

� i, n = 1, 2, 3,… ,N; i ≠ n

N�
k=1
k≠i

1

�i − �k
i = n = 1, 2, 3,… ,N

�
A
(1)
�

�
jm

=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m∏
k=1
k≠j,m

�
�j − �k

�

m∏
k=1
k≠m

�
�m − �k

� j,m = 1, 2, 3,… ,M; j ≠ m

m�
k=1
k≠j

1

�j − �k
j = m = 1, 2, 3,… ,M



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:118	

1 3

Page 7 of 18  118

and of higher-order derivatives are calculated as:

For matrix [F]N×M, an equivalent column vector 
{
F̂
}
NM×1

 
can be defined as [3]:

and multiple of three matrices as [a][F][b] can be replaced 
by 

(
[b]T ⊗ [a]

){
F̂
}
 , in which ⊗ indicates the Kronecker 

product [3]. Thus, Eq. (29) can be rewritten as

In addition to number of grid points, distribution of them 
affects convergence of the solution. A well-accepted set 
of the grid points is the Gauss–Lobatto–Chebyshev points 
given for interval [0,1] as [46]:

4 � DQ analog

Using DQ rules, the set of governing equation (24) can be 
written in the following algebraic form:

in which [K] and [M] are stiffness and mass matrices and

Also, external boundary conditions (26) and (27) can be 
written using DQ rules as

The grid points can be separated into two sets: boundary 
points which are located at the four edges of the plate and 
domain ones which are other interior points. By neglecting 
satisfying Eq. (35) at the boundary points, this equation can 
be written as [47]

(31)

[
A
(r)

�

]
=
[
A
(1)

�

][
A
(r−1)

�

] [
A
(s)
�

]
=
[
A
(1)
�

][
A
(s−1)
�

]
r, s = 2, 3, 4,…

(32)F̂v = Fij v = (j − 1)N + i

(33)
{

𝜕r+sF̂

𝜕𝜁 r𝜕𝜂s

}
=
([

A(s)
𝜂

]
⊗

[
A
(r)

𝜁

]){
F̂
}

(34)�i =
1

2

{
1 − cos

[
(i−1)�

N−1

]}
�j =

1

2

{
1 − cos

[
(j−1)�

M−1

]}

(35)[K]{s} = �2[M]{s}

(36){s}5NM×1 =

⎧
⎪⎪⎨⎪⎪⎩

�
Û
�

�
V̂
�

�
Ŵ
�

�
X̂
�

�
Ŷ
�

⎫⎪⎪⎬⎪⎪⎭

(37)[T]{s} = {0}

(38)
[
K̄
]
{s} = 𝛺2

[
M̄
]
{s}

in which bar sign implies corresponding non-square matrix. 
Equations (37) and (38) may be rearranged and partitioned 
in order to separate boundary (b) and domain (d) points as

Substituting Eq. (39.b) into Eq. (39.a) leads to the following 
eigen value equation:

in which

Solving Eq. (40), values of the natural frequencies and 
mode shapes can be calculated as eigen values and eigen 
vectors, respectively. Also, mode shapes can be completed 
using Eq. (39.b).

5 � Numerical results

In the previous section, a numerical solution was presented 
for free vibration analysis of FG-CNTRC cantilever 
trapezoidal plates. In this section, numerical results are 
proposed for the presented numerical solution. Unless 
otherwise stated, results are presented for a plate made 
of poly-co-vinylene (PmPV), as matrix with material 
properties Em = 2.1 GPa, νm = 0.34 and ρm = 1150 kg/m3 
[36] and (10,10) armchair single wall CNTs (L = 9.26 nm, 
R = 0.68 nm, h = 0.067 nm) as the reinforcements. Elasticity 
moduli, shear modulus, Poisson’s ratio and density of CNT 
at reference temperature are E11

CNT = 5.6466 TPa, E22
CNT = 7.08 

TPa, G12
CNT = 1.9447 TPa, ν12

CNT = 0.175 and ρCNT = 1400 kg/
m3 [36]. The shear moduli G13 and G23 are taken equal to 
G12 [36] and corresponding efficiency parameters are 
presented in Table 1 for some selected values of the total 
volume fraction of CNT. Also, shear correction factor is 
considered as k = 5/6 [48].

First of all, convergence of the presented solution must 
be examined. For this purpose, consider an FG-X CNTRC 
trapezoidal plate of b = 1 m, a/b = 0.75, h/b = 0.01, α = 15°, 
β = − 5° and V∗

CNT
 = 0.14. Effect of number of grid points 

(Nx = Ny) on the values of the first six natural frequencies 
of the plate is presented in Table 2. This table confirms 

(39.a)
[
K̄
]
d
{s}d +

[
K̄
]
b
{s}b = 𝛺2

([
M̄
]
d
{s}d +

[
M̄
]
b
{s}b

)

(39.b)[T]d{s}d + [T]b{s}b = {0}

(40)
[
K∗

]
{s}d = �2

[
M∗

]
{s}d

(41)[M∗] =
[
M̄
]
d
+
[
M̄
]
b

[
p
]
[K∗] =

[
K̄
]
d
+
[
K̄
]
b

[
p
]

Table 1   Efficiency parameters 
[36]

V
∗
CNT

η1 η2 = η3

0.11 0.149 0.934
0.14 0.150 0.941
0.17 0.149 1.381
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convergence of the presented solution, and Nx = Ny = 19 is 
considered in all of the following examples.

In order to confirm accuracy of the presented solution, 
a homogenous trapezoidal plate of E11 = E22 = 68.2 GPa, 
ν12 = ν21 = 0.35, ρ = 2860 kg/m3, a = 8.8 cm, b = 10.35 cm, 
h = 0.98 mm, α = 27° and β = − 13° is considered. Table 3 
shows values of the first six natural frequencies of the plate 
and corresponding ones presented by other researchers. A 
comparison between results confirms high accuracy of the 
presented solution. Also corresponding mode shapes are 
depicted in Fig. 5 which show accuracy of the presented 
solution.

An UD CNTRC square plate of h/b = 0.02 and V∗
CNT

 = 0.14 
is considered. In Table  4, dimensionless values 
( � = �b2

√
�m∕Em

�
h ) of the first eight natural frequencies 

are reported and are compared with numerical ones reported 
by Memar et al. [21]. As this table shows, results are in good 
agreement and the small difference can be explained by 
difference in employed theories which is FSDT in the 
presented paper and TSDT in Ref. [21]. Also, in Fig. 6, 
corresponding mode shapes are depicted against 
corresponding ones reported by Memar et al. [21] which 
reveals high accuracy of the presented numerical solution.

Consider an FG-CNTRC trapezoidal plate of b = 1 m, 
a/b = 0.7, h/b = 0.02, α = 15° and β = − 15°. For various 
values of volume fraction of CNTs and different types of 
distribution, Table 5 presents values of the first six natural 
frequencies in Hz. This table shows that using CNTs leads to 
considerable increase in all natural frequencies and increase 
in value of the volume fraction of CNTs increases all natural 

frequencies as well. It can be explained by high values of 
elastic and shear moduli of CNTs. Table 5 also shows that 
types of distribution of CNTs can be sorted in order of 
increase in natural frequencies as FG-X, UD, FG-V and 
FG-O which is in agreement with those reported by other 
authors for free vibration analysis of FG-CNTRC plates and 
shells [19, 31]. It is worth mentioning that results of Table 5 
may serve as benchmarks for future studies.

An FG-X CNTRC trapezoidal plate of V∗
CNT

 = 0.11, 
b = 1 m, a/b = 0.75 and h/b = 0.02 is chosen. Effect of angles 
α and β on the natural frequencies of the first six modes are 
depicted in Fig. 7. As shown in this figure, increase in values 
of α increases all natural frequencies and in order to achieve 
higher natural frequencies it is better to use negative value 
of β. Big positive values of α and big negative values of β 
decreases width (mass) of the plate at unsupported areas and 
makes the plate more similar to a triangle which leads to rise 
in all natural frequencies.

Because of opposite effects of α and positive values of β 
on values of the natural frequencies of trapezoidal plates, it 
can be interesting to study effect of skew angles on natural 
frequencies of FG-CNTRC skew plates. For this purpose, 
consider an FG-X CNTRC skew plate (α = β) of b = 1 m, 
a/b = 0.25 and h/b = 0.01. For various values of α = β and 
volume fraction of CNTs, Table 6 presents values of the first 
six natural frequencies. This table shows that no specified 
trend can be detected for effect of skew angle on value of 
natural frequencies of the plate which can be explained by 
confrontation between effects of α and β.

Table 2   Convergence of the 
presented numerical solution 
(b = 1 m, a/b = 0.75, h/b = 0.01, 
α = 15°, β = − 5°, V∗

CNT
 = 0.14)

N Natural frequencies (Hz)

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

11 24.83263 34.51617 83.62336 132.5699 136.0458 157.3429
13 24.13631 34.44771 80.71520 132.4562 135.8034 157.4896
15 23.82860 34.45238 79.67155 132.4433 135.6308 157.7460
17 23.68160 34.46073 79.22733 132.4456 135.5714 157.9443
19 23.60707 34.45913 79.02393 132.4474 135.5601 158.0784
21 23.56823 34.45240 78.92684 132.4474 135.5577 158.1593
23 23.54815 34.44595 78.87908 132.4462 135.5542 158.2013
25 23.53817 34.44170 78.85541 132.4449 135.5503 158.2198

Table 3   Natural frequencies 
of a homogenous trapezoidal 
plate (E11 = E22 = 68.2 Gpa, 
ν12 = ν21 = 0.35, ρ = 2860 kg/
m3, a = 8.8 cm, b = 10.35 cm, 
h = 0.98 mm, α = 27°, β = − 13°)

Natural frequencies (Hz)

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Presented solution 151.8647 579.7707 676.2399 1493.146 1734.581 2288.901
DQM (Torabi et al. [7]) 153.1031 579.5874 676.4468 1492.844 1735.459 2291.540
Experimental results [49] 153.0000 594.0000 717.0000 1571.000 1970.000 2320.000
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Fig. 5   First six mode shapes of a homogenous trapezoidal plate (E = 68.2 Gpa, ν = 0.35, ρ = 2860 kg/m3, a = 8.8 cm, b = 10.35 cm, h = 0.98 mm, 
α = 27°, β = − 13°)

Table 4   Dimensionless natural 
frequencies of an UD CNTRC 
square plate (h/b = 0.02, 
V
∗
CNT

 = 0.14)

Dimensionless natural frequencies 
�
� = �b2

√
�m∕Em

�
h

�

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Present 7.482 7.913 11.233 21.096 37.653 43.652 44.107 46.066
Memar et al. [21] 7.479 7.908 11.235 21.087 37.646 43.674 44.126 46.099
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Present Memar et al. [21] Present Memar et al. [21] Present Memar et al. [21]

Mode 1 Mode 2 Mode 3

Present Memar et al. [21] Present Memar et al. [21] Present Memar et al. [21]

Mode 4 Mode 5 Mode 6

Present Memar et al. [21] Present Memar et al. [21]

Mode 7 Mode 8

Fig. 6   First eight mode shapes of an UD CNTRC square plate (h/b = 0.02, V∗
CNT

 = 0.14)

Table 5   Effect of distribution 
and volume fraction of CNTs 
on the natural frequencies of an 
FG-CNTRC trapezoidal plate 
(b = 1 m, a/b = 0.7, h/b = 0.02, 
α = 15°, β = − 15°)

V
∗
CNT

Distribution 
pattern

Natural frequencies (Hz)

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0 UD 6.907254 33.63638 35.51616 87.02458 90.09614 157.8853
FG-V 6.907254 33.63638 35.51616 87.02458 90.09614 157.8853
FG-O 6.907254 33.63638 35.51616 87.02458 90.09614 157.8853
FG-X 6.907254 33.63638 35.51616 87.02458 90.09614 157.8853

0.11 UD 40.56566 80.76841 181.1958 233.3481 241.8614 399.9144
FG-V 34.15201 72.38557 156.7862 208.8734 226.1778 270.5313
FG-O 29.83221 65.51283 138.8090 189.0453 211.0150 336.1000
FG-X 48.53877 92.36501 208.8705 264.3048 266.9876 432.9294

0.14 UD 45.16049 87.48807 197.8984 252.0496 256.6066 419.9638
FG-V 38.00395 78.12257 172.3735 225.6385 238.7661 276.3044
FG-O 33.20877 70.36550 153.0207 203.8370 221.1887 360.7189
FG-X 54.03495 100.5511 226.8374 285.5655 285.7629 456.8818

0.17 UD 50.00738 100.0463 224.0140 289.0974 300.5069 497.6425
FG-V 41.95668 89.60738 193.1475 258.472 281.6912 339.9825
FG-O 36.59960 80.51910 170.5655 232.5961 259.9196 413.9974
FG-X 60.05115 115.3790 260.2737 330.0358 335.3878 546.6670



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:118	

1 3

Page 11 of 18  118

Fig. 7   Effect of angles α and β of CNTs on the natural frequencies of an FG-CNTRC trapezoidal plate (FG-X, V∗
CNT

 = 0.11, b = 1 m, a/b = 0.75, h/b = 0.02)
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Consider a UD CNTRC trapezoidal plate of 
V∗
CNT

 = 0.17, b = 1  m, α = 15° and β = − 5°. Effect of 
thickness ratio (h/b) and aspect ratio (a/b) on the first six 
natural frequencies of the plate are depicted in Fig. 8. As 
shown in this figure, increase in thickness of the plate 
leads to rise in all natural frequencies of the plate which 
shows more increase in stiffness of the plate in compari-
son with its inertia. This figure also shows that increase 
in width of the plate decreases all natural frequencies 
intensively. Increase in width of the plate increases inertia 
and decreases stiffness of the plate which decreases all 
natural frequencies.

As depicted in Fig. 8, smooth decrease can be seen for 
variation of the first three modes of the plate versus varia-
tion of aspect ratio; but for specified values of aspect ratio 
(a/b = 0.87 and a/b = 1.136), some sudden changes can 
be seen in fourth, fifth and sixth modes. Figure 9 shows 
variation of natural frequencies of modes 4–6 simultane-
ously. This figure reveals that for a/b = 0.87 and a/b = 1.136, 
sequence of mode changes and it is the main reason of those 
sudden changes.

6 � Conclusions

Using GDQM, a numerical solution was presented for free 
vibration analysis of cantilever FG-CNTRC trapezoidal plates. 
The plate was modeled based on FSDT, and effective mechani-
cal properties were calculated using extended rule of mixture. 
Convergence and accuracy of the presented numerical solu-
tion were confirmed, and effect of geometrical parameters 
and volume fraction and distribution of CNTs on the natural 
frequencies of the plate were studied through numerical exam-
ples. Numerical results showed that adding CNTs to cantile-
ver trapezoidal plates leads to considerable rise in all natural 
frequencies and in order to increase natural frequencies it is 
better to increase volume fraction of CNTs and using FG-X 
pattern for distribution of CNTs. Numerical examples showed 
that increase in thickness of the plate leads to increase in natu-
ral frequencies but increase in width of the plate decreases 
all natural frequencies and may change sequence of modes. 
It was shown by numerical results that all natural frequencies 
increases by decreasing width of the plate at the unsupported 
parts of the plate located near the outer free edge.

Table 6   Effect of skew angle 
on the natural frequencies of 
an FG-CNTRC skew plate 
for various values of volume 
fraction (FG-X, b = 1 m, 
a/b = 0.25, h/b = 0.01)

V
∗
CNT

α Natural frequencies (Hz)

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0 0 2.223800 13.91496 17.45577 39.02661 54.04806 76.76280
5 2.232650 13.89768 17.55369 39.01026 54.28713 76.61938

10 2.238962 13.89165 17.82912 38.96200 55.10369 76.32405
15 2.254437 13.88504 18.28849 38.91201 56.43882 75.93666
20 2.278217 13.89358 18.93256 38.89236 58.31103 75.58087

0.11 0 17.60115 28.16587 107.7704 122.9058 235.6413 281.2692
5 14.99881 31.40316 98.79637 124.0130 240.0856 251.1562

10 11.50442 36.40242 84.08418 123.1521 214.4974 247.3623
15 8.890742 38.09930 74.32749 115.0675 190.6047 238.5399
20 7.693624 34.47309 70.39124 101.9006 176.6449 214.0843

0.14 0 19.80917 30.16614 120.7018 135.0358 242.7974 293.3443
5 16.58932 34.02706 109.3184 136.2334 248.2942 267.3207

10 12.52594 39.60807 91.65889 134.5290 228.4604 259.1383
15 9.570982 41.13884 80.37558 124.2513 202.5349 253.7213
20 8.313955 36.60245 75.74266 108.7883 187.2720 227.3000

0.17 0 21.68846 35.49964 132.9152 152.9945 302.0099 357.8986
5 18.61875 39.38257 122.4377 154.3641 307.1703 316.1768

10 14.38445 45.55224 104.8752 153.6245 270.255 314.1168
15 11.16566 47.80778 93.09015 144.2107 240.5565 300.7031
20 9.643494 43.56260 88.40120 128.3157 223.2372 270.2151
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Fig. 8   Effect of thickness and aspect ratio on the natural frequencies of an FG-CNTRC trapezoidal plate (UD, V∗
CNT

 = 0.17, b = 1 m, α = 15° and β = − 5°)
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Fig. 9   Effect of aspect ratio on sequence of modes
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