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Abstract
In this work, we are interested to the PID control of nonlinear systems and more specially the control of a robot manipulator. 
The idea is to determine the optimal parameters ( Kp,Ki and Kd ) of the controller using a novel algorithm of optimization 
called whale optimizer algorithm (WOA). To study the effectiveness of WOA-PID controller, its performance is compared 
with other controllers such as particle swarm optimization-PID (PSO-PID) and grey wolf optimizer-PID (GWO-PID). The 
model of robot manipulator and all controllers were tested using Simulink/MATLAB. Simulation results obtained clearly 
indicate the superiority of WOA-PID controller over the other controllers for trajectory tracking, better settling time, and 
ITAE errors.

Keywords  Evolutionary algorithm · PID control · Optimization algorithm · Robot manipulator

1  Introduction

Robot manipulator is multi-input and multi-output (MIMO), 
highly nonlinear and coupled system, designed to automati-
cally perform tasks emulating or reproducing, in a specific 
area, human actions. Typical applications include welding, 
painting, assembly, etc. Industrial robotics must inspect 
the products quickly and accurately what is required to 
improve its performance by inserting efficient controllers. 
Therefore, designing an efficient controller for this system 
is a challenging task [1]. Despite the success of modern 
control theory, robot manipulator controllers still com-
monly employ classical proportional–derivative (PD) or 
proportional–integral–derivative (PID) algorithm [2–5]. To 
improve their performances, most of those controllers have 

been designed using linear or linearized models. In [6, 7], 
applications of nonlinear PID control are proposed either by 
adding a nonlinear proportional and derivative term to PID 
controller or by gravity compensating robot manipulators. 
To eliminate the oscillation angle of the end-effectors of 
the single-link flexible joint robot manipulator, the position 
trajectory is performed by state feedback control method [8]. 
A generalized PID-type control scheme with simple tuning 
for the global regulation of robot was also presented with 
constrained inputs [9]. Regarding stability and/or control 
approaches such as predictive control, state feedback control, 
decentralized control, the readers may be referred to these 
works [10–17]. In adaptive context, the authors of [18] pre-
sented an adaptive PID control with bounded disturbance 
while those of [19] have designed the controller in respect 
of the nonlinear uncertainties of the system. The adaptation 
law is motivated from the sliding mode control and derived 
to tune the PID gains in order to minimize the sliding condi-
tions. Afterward, other applications based on adaptive neural 
networks were introduced to control robot manipulator [20]. 
Recently, some researchers have made an effort to develop 
a new control strategies based on artificial intelligent. An 
approach based on partitioning of the space into segments 
describes to learning feedback control of robot manipula-
tor where the dynamic behavior of the robot is considered 
as decoupled linear system controlled by conventional PID 
controllers. The segments are represented as fuzzy sets 
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ensuring continuity of control variables [21]. Fuzzy logic 
self-tuning PID controller is introduced in [22–24], and the 
controller parameters are varied and computed online. In 
the hybrid context, learning automata is used to adjust the 
parameters of fuzzy-PID controller for optimal tracking 
of robot [25]. In order to minimize steady-state error with 
respect to uncertainties in robot control, PID control needs 
a big integral gain where a neural compensator is added to 
the classical PD control with a large derivative gain [26].

An elegant way of enhancing the performance of PID 
controllers is to find the appropriate settling of parameters 
values (Kp,Ki and Kd) to achieve optimal performance of the 
robot. In the recent years, several works have been carried 
out in optimization approaches. In the literature, some works 
have proposed methods combining genetic algorithm (GA) 
and fuzzy logic to tune PID gains for the robot control with 
unknown internal behavior where in some applications, GA 
is used as a main gain estimator associated with fuzzy logic 
as a ranking basement for GA [27], and in others, fuzzy logic 
is used as a main gain estimator associated with a signal ana-
lyzer to extract, from controller error signal, some perfor-
mance indexes, i.e., overshoot, rise time, and steady-state 
error [28]. An other application of GA is to find optimal input 
and output membership functions of a fuzzy self-tuning PID 
controller [29]. In order to control two-degree-of-freedom 
(2-DOF) robot manipulator, Elkhateeb and Badr in [30] 
applied the bee colony algorithm to tune the PID controller. 
A modified version fruit fly optimization algorithm (MFOA) 
is also used to find the optimal PID parameters where nonlin-
ear robot’s dynamic is linearized and decoupled using a non-
linear feedback linearization control technique [31]. In the 
same context, a new modified biogeography-based optimiza-
tion (BBO) algorithm is developed to tune PID parameters of 
a five bar robot [32]. Other interesting works have emerged 
thanks to PSO algorithm [33–39] such as the application of 

PSO algorithm in control chain of SCARA robot. In other 
hand, we noticed an increased attention to investigate the 
application of GWO such as the optimization of robot path 
planning with a multi-objective GWO approach [40].

In this work, a novel technique of optimization called 
whale optimization algorithm (WOA) inspired by Mirjalili 
in 2016 [41] is applied to tune PID controller for the trajec-
tory tracking of 2-DOF robot manipulator. In order to test 
the effectiveness of this technique, the WOA-PID controller 
was compared to those obtained from PSO and GWO algo-
rithms. The rest of this paper is organized in seven sections. 
The second section exhibits a brief outline of PID control 
followed by a review of the evolutionary algorithms used 
in this work (section 3). The next section is devoted to the 
2-DOF robot dynamic’s. The fifth part discusses simulation 
results for all developed controllers. The control of robot 
manipulator and robustness test appear, respectively, in sec-
tions 6 and 7. The last section concludes the paper and sug-
gests some directions for the future works.

2 � Design of PID controller

A PID controller is essentially a generic closed-loop feed-
back mechanism and monitors the error between measured 
system output and the desired set point. From this error, 
a control signal is computed to adjust the process perfor-
mance. The differential equation of PID controller is:

where Kp,Ki and Kd are the proportional, integral, and deriv-
ative gains, respectively. The superposition of these three 
actions constitutes the mechanism for adjustment of process 
performance as shown in Fig. 1. The continuous transfer 

(1)u(t) = Kpe(t) + Ki ∫
tf

0

e(t)dt + Kd

de

dt

Fig. 1   PID control mechanism
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function of the PID controller is obtained through Laplace 
transform as:

 

3 � Evolutionary algorithms

Evolutionary algorithms are exciting new probabilistic 
research tools inspired by biological models that have great 
power to solve problems in a variety of domains. Because 
they ideally do not make any assumption about the under-
lying fitness landscape. In this section, we are interested 
to a class of optimization techniques that are whales opti-
mizer algorithm, grey wolf optimizer, and particle swarm 
optimizer.

3.1 � Whale optimizer algorithm (WOA)

The WOA is a new meta-heuristic optimization algorithm 
mimicking the hunting behavior of humpback whales [41]. 
The particularity of this approach is in the manner of the sim-
ulated hunting behavior which is made randomly, i.e., the best 
search agent to chase the prey and the use of spiral to simulate 
bubble-net attacking mechanism of humpback whales. The 
philosophy of hunting can be described in three steps:

1.	 Encircling prey Once the humpback whales recog-
nize the location of prey, they encircle them. Other-
wise, when the position of the optimal design in the 
search space is not known a priori, the WOA algorithm 
assumes that the current best candidate solution is the 
target prey or is close to the optimum that will represent 
the best search agent. The other agents will hence try to 
update their positions in the neighborhood of this agent 
[41]. This behavior, defined by distance ��⃗D and updated 
position �⃗X , is represented by the following equations: 

 where t indicates the current iteration; ���⃗X∗ is the posi-
tion vector of the best solution obtained so far, ���⃗X∗ is 
the position vector; | ⋅ | is the absolute value. It is worth 
mentioning here that ���⃗X∗ should be updated each itera-
tion if there is a better solution. �⃗A and ��⃗C are coefficient 
vectors calculated as follows: 

(2)CPID(s) = Kp +
Ki

s
+ Kds

(3)��⃗D = |��⃗C ���⃗X∗(t) − �⃗X(t)|

(4)�⃗X(t + 1) = ���⃗X∗(t) − �⃗A��⃗D

(5)�⃗A = 2 �⃗a��⃗r1 − �⃗a

 where �⃗a is linearly decreased from 2 to 0 over the course 
of iterations (in both exploration and exploitation phase) 
and ��⃗r1 and ��⃗r2 are random vectors in [0, 1].

2.	 Bubble-net attacking method This step represents the 
exploitation phase designed by two approaches:

–	 Shrinking encircling mechanism: the behavior is 
achieved by decreasing the value of �⃗a in (5) from 2 
to 0. Consequently, the values of �⃗A are fluctuated in 
the interval [−a, a].

–	 Spiral updating position: the movement of humpback 
is helix-shaped that can be describe by a spiral equa-
tion created between the position of whale and prey: 

 with ���⃗D� = ���⃗X∗(t) − �⃗X(t) indicates the distance of the 
ith whales to the prey (best solution obtained so far), 
b is constant for defining the shape of the logarith-
mic spiral, l is a random number in [−1, 1] . Note 
that humpback whales swim around the prey within 
a shrinking circle and along a spiral-shaped path 
simultaneously with a probability of 50% according 
to the following mathematical model: 

 where p is a random number in [0, 1].
3.	 Exploration phase The last step illustrates the chase of 

prey. This approach depends also on the variation of the 
vector �⃗A . The whales search randomly according to the 
position of each other. Indeed, the search agent position 
is updated according to randomly chosen agent. Note 
that for the random value of (| �⃗A|) > 1 , the search agent 
moves far away from reference whale. So, this allows to 
perform a global research and can be modeled as fol-
lows. 

 Exploration and exploitation phases are the common 
features of WOA and GWO which will be presented 
afterward.

3.2 � Grey wolf optimizer (GWO)

GWO is a recent meta-heuristic optimizer inspired by grey 
wolves and proposed by [42]. It mimics the leadership 

(6)��⃗C = 2��⃗r2

(7)�⃗X(t + 1) = ���⃗D� expbl cos(2𝜋l) + ��������⃗X∗(t)

(8)

�⃗X(t + 1) =

{
��������⃗X∗(t) − �⃗A��⃗D if p < 0.5

���⃗D� expbl cos(2𝜋l) + ��������⃗X∗(t) if p ≥ 0.5

(9)��⃗D = |��⃗C �������⃗Xrand(t) −
�⃗X(t)|

(10)�⃗X(t + 1) = �������⃗Xrand(t) −
�⃗A��⃗D



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:1

1 3

1  Page 4 of 11

hierarchy and the hunting mechanism of grey wolves in 
nature. As described in the literature, the GWO algorithm 
includes two mathematical models: encircling prey and 
hunting prey. The encircling behavior looks like above case 
and is modeled by:

where ���⃗Xp is the position vector of prey, �⃗X(t) indicates the 
position of grey wolf. �⃗A and ��⃗C have the same expression 
as (5) and (6), respectively. t indicates the current iteration.

In the hunting model, four types of grey wolves partici-
pate in chasing prey; alpha, beta, delta and omega denote 
the wolf group and are employed as solutions (fittest, best 
and candidate) for simulating the leadership hierarchy. The 
optimization algorithm is guided by �, � and � , three best 
solutions obtained so far, and the other search agents follow 
them and update their positions according to the best search 
agent. The proposed formula are the following:

(11)��⃗D = |��⃗C ���⃗Xp(t) −
�⃗X(t)|

(12)�⃗X(t + 1) = ���⃗Xp(t) −
�⃗A��⃗D

(13)

����⃗D𝛼 = | ���⃗C1
���⃗X𝛼(t) −

�⃗X(t)|
����⃗D𝛽 = | ���⃗C2

���⃗X𝛽(t) −
�⃗X(t)|

����⃗D𝛾 = | ���⃗C3
���⃗X𝛾 (t) −

�⃗X(t)|

���⃗X1(t + 1) = ���⃗X𝛼(t) −
���⃗A1
����⃗D𝛼

���⃗X2(t + 1) = ���⃗X𝛽(t) −
���⃗A2
����⃗D𝛽

���⃗X3(t + 1) = ���⃗X𝛾 (t) −
���⃗A3
����⃗D𝛾

�⃗X(t + 1) =
��⃗X1+��⃗X2+��⃗X3

3

solution with regard to a given objective function. Each par-
ticle searches for better positions by updating its velocity and 
position according to simple mathematical formulae [43]. 
This is expected to move the swarm toward the best solutions 
using the individual best position (pbest) and global best 
position (gbest) expressed by:

where c1 and c2 are two positive constants, called cognitive 
learning rate and social rate, respectively, w is the inertia 
factor and � is constriction factor.

4 � Dynamic model of 2‑DOF robot 
manipulator

In this paper, a 2-DOF manipulator is regarded as the case 
study of coupled nonlinear systems and presented in Fig. 2. 
The manipulator dynamic equation is as follows:

where qi, q̇i , and q̈i denote the link position, velocity, and 
acceleration vectors, respectively, M(q) is the matrix inertia; 
H(q, q̇) is the Coriolis centripetal forces matrix, G(q) is the 
gravity vector, F(q̇) is the friction force vector and � is the 
vector of the torque control signal.

(14)

V
i
= �(w ⋅ V

i
(t − 1) + c1rand()(pbesti − X

i
(t − 1))

+ c2rand() ⋅ (gbesti − X
i
(t − 1)))

X
i
= X

i
(t − 1) + V

i
(t)

(15)𝜏 = M(q)q̈ + H(q, q̇)q̇ + G(q) + F(q̇)

M(q) =

[
m1l

2
1
+ m2(l

2
1
+ 2l1l2 cos(q2) + l2

2
) m2l2(l2 + l1 cos(q2))

m2l2(l2 + l1 cos(q2)) m2l
2
2

]
F(q̇) =

[
2q̇1 + 0.8sign(q̇1)

4q̇2 + 0.1sign(q̇2)

]

H(q, q̇) =

[
−m2l2l1 sin(q2)2q̇2 −m2l2l1 sin(q2)q̇2

m2l2l1 sin(q2)q̇1 0

]

G(q) =

[
(m1 + m2)g.l1 cos(q1) + m2.g.l2. cos(q1 + q2)

m2.g.l2. cos(q1 + q2)

]

Fig. 2   Model of 2-DOF robot manipulator

3.3 � Partial Swarm Optimization (PSO)

Particle swarm optimization is a stochastic algorithm inspri-
red from natural biotic life of swarms. Based on a population 
of candidate solutions, its principle is to optimize a problem 
in search space by iteratively trying to improve a candidate 
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where mi, li and g are the link mass, the link length and the 
gravity, respectively. In application, m1 = 10 kg, m2 = 5 kg, 
l1 = 1 m and l2 = 0.5 m.

5 � Simulation results

In this section, a PID controller is designed for the trajec-
tory tracking control of robot manipulator using optimization 
techniques previously described. The idea is to determinate 
optimal parameters ( Kp,Ki and Kd ) ensuring best performance 
indexes (rise time, overshoot, settling time and peak) of sys-
tem. The main is to apply the novel optimization algorithm 
(WOA) to tune the PID parameters and to demonstrate thus 
its efficiency compared to those obtained from the two most 
known algorithms (GWO and PSO). From randomly initial-
ized parameters, the optimization algorithm minimizes the 
integral time absolute error criterion (ITAE), mentioned in 

Equation (16), for each iteration until obtaining optimal set of 
Kp,Ki and Kd parameters.

First, we tune the PID controller with three algorithms for 
different values of agents or population size is 10, 20, 30, 50, 
100 and 200; we choose thereafter the best population size for 
each algorithm.

e = qref − q is the error between the reference position and 
the actual position of the robot. In this study, simulation 
results are performed using MATLAB/Simulink environ-
ment. Figure  3 illustrates the Simulink diagram of the 
control scheme strategy of two joints robot manipulator. 
The simulation consists of robot manipulator system, two 
controllers, trajectory that must followed, and optimization 

(16)J = ITAE = ∫
tf

0

e(t)tdt

Fig. 3   PID control mechanism

Table 1   Comparison results 
of the first and second joint 
response characteristics 
controlled by PSO-PID

The bold signified the best values

Nbre agents Rise time Settling time Overshoot Peak ITAE

Joint
1

10 0.2847 1.6044 2.0626 10.261 5.519
20 0.3706 0.6150 1.8813 10.264 6.694
30 0.2845 0.4513 1.8375 10.242 5.487
50 0.379 0.650 0.951 10.18 6.034
100 0.135 0.445 6.408 10.68 2.958
200 0.186 1.296 2.595 10.29 3.834

Joint
2

10 0.428 3.379 2.911 10.34 6.487
20 0.3150 2.9138 3.2203 10.344 3.813
30 0.4307 3.545 3.0994 10.36 6.542
50 0.5014 4.3387 3.8711 10.443 7.86
100 0.395 3.430 3.177 10.36 6.002
200 0.3138 2.8678 3.229 10.344 4.106
Joints 1 and 2

Nbre agents 10 20 30 50 100 200
Objective function 12.006 10.925 12.029 13.894 8.96 7.94
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block used for selecting the controlling parameters which 
based on optimal tracking error constrain. It also has two 
outputs which are the first joint displacement (position 1) 
and the second joint displacement (position 2). The desired 
and actual positions for the first and second joint of robot 

manipulator controlled are depicted in Figs. 4, 5 and 6 
with the initial conditions q1(0) = 0.5 deg, q2(0) = 1 deg, 
q̇1(0) = 0 and q̇2(0) = 0 . In addition, all controllers were 
tested under the same conditions with time range of simula-
tion is 10 s, and the reference signal magnitude is given as 

Table 2   Comparison results 
of the first and second joint 
response characteristics 
controlled by GWO-PID

The bold signified the best values

Nbre agents Rise time Settling time Overshoot Peak ITAE

Joint
1

10 0.080 0.468 15.11 11.54 2.243
20 0.15 0.453 7.8466 10.828 3.157
30 0.0863 0.3841 13.0525 11.3238 2.097
50 0.175 0.4795 3.4604 10.3912 3.461
100 0.090 0.4086 8.7769 10.8973 2.295
200 0.1936 0.4288 2.1872 10.2687 3.113

Joint
2

10 0.471 2.191 1.9771 10.277 7.197
20 0.343 0.585 0.4101 10.09 3.307
30 0.387 0.631 1.512 10.21 5.579
50 0.449 3.236 2.658 10.32 6.932
100 0.444 2.277 2.038 10.27 6.784
200 0.4293 4.1512 4.5348 10.4862 6.426
Joints 1 and 2

Nbre agents 10 20 30 50 100 200
Objective function 9.44 6.464 7.676 10.396 9.079 9.539

Table 3   Comparison results 
of the first and second joint 
response characteristics 
controlled by WOA-PID

The bold signified the best values

Nbre agents Rise time Settling time Overshoot Peak ITAE

Joint
1

10 0.101 0.5104 20.784 12.117 2.033
20 0.25 0.38 0.434 10.10 3.813
30 0.1896 0.2728 1.3703 10.19 3.668
50 0.1224 0.446 17.61 11.78 2.541
100 0.1824 0.4402 3.058 10.35 3.669
200 0.079 0.488 19.99 12.03 2.165

Joint
2

10 0.336 0.577 0.392 10.08 3.207
20 0.476 3.442 2.774 10.34 7.325
30 0.342 0.5841 0.4066 10.089 3.301
50 0.415 0.727 0.498 10.11 4.176
100 0.364 0.591 1.302 10.18 4.928
200 0.509 0.789 1.371 10.22 7.111
Joints 1 and 2

Nbre agents 10 20 30 50 100 200
Objective function 5.24 11.138 6.97 6.717 8.597 9.272

Table 4   PSO-PID, GWO-PID, 
and WOA-PID parameters

Algorithm/PID 
parameters

Kp Ki Kd

1st Joint 2nd Joint 1st Joint 2nd Joint 1st Joint 2nd Joint

PSO 4000 3000 900 900 462.87 450
GWO 4000 3000 639.45 210 346.79 457.03
WOA 4000 3000 350.27 210 453.69 450
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10 degree. Tables 1, 2, and 3 illustrate the temporal charac-
teristics responses of the two joints with different number 
of agents.    

From Table 1, we see that the lower objective function 
(7.94) is obtained with 200 agents for the PSO optimization 

that corresponds at the smallest rise time for both joints and 
the others characteristics are on average acceptable. We can 
observe also (Table 2), that the objective function for the 
GWO optimization is weak with a value of 6.464 for only 20 
agents. Besides the overshoot value of the first joint, GWO 
offers enhancement over related PSO in terms of the settling 
times for the first joint (0.453/1.296) and the second joint 
(0.585/2.8678) and gives improvements in the cost function 
by decreasing the value from 3.834 to 3.157 for the first joint 
and from 4.106 to 3.307 for the second joint.

While in Table 3, the WOA algorithm has the small-
est cost function 5.24, with only 10 agents. But due to the 

Table 5   Convergence time of three algorithms

PSO GWO WOA

Convergence time/Nbre-
agents

09min53s/200 2.1117s/20 1.363s/30
53.392s/20 1.882s/20 0.928s/20

(a) First joint. (b) Second joint.

Fig. 4   Actual position for the robot controlled by PSO-PID controller

(a) First joint. (b) Second joint.

Fig. 5   Actual position for the robot controlled by GWO-PID controller

(a) First joint. (b) Second joint.

Fig. 6   Actual position for the robot controlled by WOA-PID controller
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remarkable overshoot for the first joint, it seems that the 
results obtained with 30 agents are the best, with a small cost 
function 6.97, compared with the other values. In general, 
the WOA presents best performances for the controlled sys-
tem. The different values of controller parameters deduced 
from the optimization process with objective function (16) 
are listed in Table 4. In order to prove the efficiency of WOA 
algorithm in term of computing time, we have tested the 
three algorithms for different and same number of agents; 
the numerical results show that the WOA algorithm spends 
a short time to compute the set of PID optimal parameters 
compared to GWO and PSO algorithms, i.e., it converges 
faster to the optimum. This constitutes another choice 

criterion of the WOA algorithm (Table 5) that shows the 
superiority of WOA algorithm over the other algorithms.

From Figs. 4, 5 and 6, we can see that the first articula-
tion has an oscillatory form for the three optimization tech-
niques, and different population sizes, with a remarkable 
relative overshoot for the GWO-PID and WOA-PID between 
[2.18–15.11%] and [0.43–20.78%], respectively, where the 
maximum overshoot does not precede 6.4% for the PID con-
trol optimized by PSO algorithm. For the second articula-
tion, the response is almost aperiodic with a small overshoot 
of 3.87%, 4.53% and 2.774% maximum for the PSO-PID, 
GWO-PID, and WOA-PID commands, respectively. We 
see also that the response of the first joint converges more 
rapidly toward the final value for the PID control optimized 

(a) First joint. (b) Second joint.

Fig. 7   Actual position for joints controlled by three algorithm controllers
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Fig. 8   a Error signal for the first and second articulations from step consign, b converge curve of the WOA algorithm
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by GWO and WOA algorithms with an average response 
time between [0.38–0.48 s] and [0.27–0.51 s], respectively, 
and also with an interval of [0.58–4.15 s] and [0.57–3.44 s] 
for the second joint, and the WOA optimization gives good 
values in this sense. On the contrary, the response of the 
robot controlled by a PSO-PID takes more response time 
between [0.44–1.6 s] for the first articulation and an interval 
of [2.86–4.33 s] for the second articulation.

6 � Control of Robot manipulator

To better see the contribution of WOA for a fast and pre-
cise trajectory tracking of the robot manipulator. We have 
applied the PID control tuned by the three algorithms, 
used the best performance of the controllers obtained by 
200 agents for the PSO, 20 agents for GWO and 30 agents 

for WOA, respectively. Figure 7 shows the superiority of 
the WOA-PID and GWO-PID controllers over the PSO-
PID controller. The second joint have almost the same 
behavior with WOA-PID and GWO-PID, and we can see 
the enhancement in the performance of the first joint of 
the robot. The WOA algorithm offers the optimization of 
the settling time for the first joint compared with those 
obtained with GWO tuning (0.2728 s/0.453 s) and reduce 
the overshoot from (7.8466% to 1.3703%). It can be said 
that the system performance is satisfied in terms of settling 
time and the system responses are faster with the WOA-
PID controller. Figure 8a shows the convergence speed 
of error resulting from WOA algorithm which confirm 
the competitive of this methodology. As can be seen from 
Fig. 8b, WOA algorithm converge to the optimum with a 
smaller number of iterations.

(a) Position controlled by WOA-PID. (b) Control torque.

Fig. 9   Position and control torque of the first and second articulations without disturbances

(a) Position controlled by WOA-PID. (b) Control torque.

Fig. 10   Position and control torque of both articulations with disturbance (variance = 0.8)
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7 � Robustness test

To examine the robustness of the optimization algorithm, the 
obtained controller was tested for the first time by changing 
the input to the sinus signal and for the second time by intro-
ducing a torque disturbance for two articulations.

(A)	 Tracking sinus input The optimization was done for a 
sinus input signal, the obtained gains of the PID con-
troller allows pursuit of the trajectory as it is shown in 
Fig. 9a and the generated control torque in Fig. 9b.

(B)	 Disturbance torque The objective is to test the robust-
ness of the WOA-PID controller when the robot is sub-
jected to disturbances. A white noise torque is added 
to the PID control signal with variance of (0.8) as 
depicted in Fig. 10a. It can be seen from Fig. 10b that 
the efficiency of the controlled robot by the tuned PID 
to track the desired trajectory despite the existence of 
external disturbances. Figure 11 reveals the cost func-
tion (ITAE) for both cases.

8 � Conclusion

The aim of this paper is to introduce new application of 
the whale optimizer algorithm to adjust the PID parameters 
for the tracking control of the 2-DOF robot manipulator. 
The results obtained witness the effectiveness of the pro-
posed WOA-PID in terms settling time, errors, and con-
vergence time as well as its robustness to tune parameters 
PID controller for the robot tracking control with or without 
disturbances.

As future work, we propose to change the objective func-
tion and to test this controller for robots with more degrees 
of freedom. We plan also to compare the results of this 

study with others control techniques. From an optimization 
standpoint, we attempt to test the WOA algorithm in others 
applications such as determining optimal durations of traf-
fic lights.
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