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Abstract
In this paper, the transient dynamic stress intensity factors are estimated for multiple cracks which are located at the interface 
between a nonhomogeneous elastic half-plane and an elastic half-plane. The material properties of the nonhomogeneous half-
plane vary continuously in the y-direction. First, Laplace and Fourier transforms are applied to reduce the mixed boundary 
value problem to a system of singular integral equations with Cauchy kernels which are solved numerically. By numerical 
Laplace inversion technique, the dislocation density on the crack faces is obtained and then transient dynamic stress intensity 
factors at crack tips have been determined. For validity and accuracy of the method, the results are compared with other 
references and very good agreement is shown. The influences of nonhomogeneity parameters, crack length, the variation in 
time and the interaction between of cracks on the transient dynamic stress intensity factors are studied. It is observed that 
the mode I stress intensity factors decrease regularly with increasing the FG constant and the results are briefly discussed.

Keywords Multiple interface cracks · Two dissimilar half-planes · Mixed-mode transient dynamic stress intensity factors · 
Functionally graded materials · Dislocation densities

1 Introduction

In recent years, functionally graded materials (FGMs) have 
been extensively used as coatings to remove the effects of 
sharp interfaces. Functionally graded structures have been 
widely introduced and applied to the development of ther-
mal and structural components due to their ability to not 
only reduce the residual and thermal stresses but increase 
the bonding strength and toughness as well. In the past dec-
ades, the fracture behaviors of FGMs have been investigated 
by several researchers with various geometries and crack 
modes, and a brief review of the article is mentioned below.

Delale and Erdogan [1] studied the crack problem in the 
interfacial zone between two homogeneous half-planes. Hutch-
inson and Suo [2] reviewed the stress intensity factor of the 
mixed-mode fracture of an interface crack. The generalized 
mixed-mode problem for a crack with an arbitrary orientation 
in FGMs was discussed by Konda and Erdogan [3]. Modes I, 
II stress intensity factors for two coaxial cracks in an ortho-
tropic plane subjected to a time-harmonic plane wave were 
obtained by Itou and Haliding [4]. It was shown that the stress 
intensity factors are dependent on material properties of the 
media, distance between cracks and the ratio of crack lengths. 
Ikeda et al. [5] presented the concept of the stress intensity 
factors of an interface crack between dissimilar materials so 
that various types of specimens were tested experimentally for 
investigating the mixed-mode facture toughness criterion of 
an interface crack. The internal and edge crack problem of an 
FGM layer attached to an elastic foundation was considered by 
Kadioğlu et al. [6]. Jiang and Wang [7] studied a finite crack 
with constant length propagating in an interfacial FGM layer 
under in-plane loading. The transient response of the internal 
crack which is perpendicular to the free surfaces in a function-
ally graded orthotropic strip was considered by Chen et al. [8]. 
In this analysis, integral transforms and dislocation density 
functions were employed to reduce the problem to singular 

Technical Editor: João Marciano Laredo dos Reis.

 * M. M. Monfared 
 mo_m_monfared@yahoo.com

1 Department of Mechanical Engineering, Hashtgerd Branch, 
Islamic Azad University, P.O. Box 33615-178, Hashtgerd, 
Alborz, Iran

2 Department of Mechanical Engineering, Mechatronics 
Faculty, Karaj Branch, Islamic Azad University, Karaj, 
Alborz, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-019-2071-6&domain=pdf


 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:573

1 3

573 Page 2 of 14

integral equations. A crack located in an orthotropic FG strip 
under anti-plane impact loading was studied by Feng et al. [9]. 
The dynamic fracture behavior of a functionally graded coat-
ing–substrate system with an internal crack perpendicular to 
the interface under an in-plane impact load was investigated by 
Guo et al. [10]. Interface crack located between a graded ortho-
tropic coating and a homogeneous orthotropic substrate using 
both the singular integral equation and enriched finite element 
techniques was studied by Dag et al. [11]. The results showed 
that enriched finite element technique is a strong method for 
analyzing crack problems. Chen and Liu [12] considered an 
orthotropic FGM layer under mode III deformation weakened 
by an internal or an edge crack which was perpendicular to the 
boundaries of a layer. Wang and Mai [13] provided a periodic 
array of cracks in an FGM plane under mode I and mode II 
transient mechanical loading. A crack situated between the two 
nonhomogeneous layers under mixed-mode transient loading 
was investigated by Li et al. [14]. The results showed that the 
weak discontinuity is an important factor affecting the SIFs 
of the interfacial crack. The mixed-mode fracture problem of 
orthotropic functionally graded material under mechanical 
and thermal loading conditions was analyzed by Dag et al. 
[15]. An elastic isotropic plane weakened by two and three 
parallel cracks under dynamic loading was examined by Itou 
[16]. In another paper, the transient response of a homogene-
ous strip with an internal crack was investigated by Itou [17]. 
Mixed-mode stress intensity factors in an orthotropic function-
ally graded plane, a half-plane and a strip containing multiple 
curved cracks under static loading were analyzed by Monfared 
and Ayatollahi [18], Monfared and Bagheri [19], Monfared 
et al. [20, 21], respectively.

The transient dynamic mixed-mode stress intensity factors 
presented in this paper are obtained using distributed disloca-
tion method. First, Fourier and Laplace transforms are used 
to convert the two partial differential equations in each region 
into a system of singular integral equations with Cauchy-type 
singularity. These equations are solved numerically by means 
of the Lobatto–Chebyshev collocation method [21] and of 
the Stehfest method [22] to obtain the dislocation densities 
on the crack faces. Then, dislocation densities are applied to 
calculate the transient mixed-mode stress intensity factors 
at crack tips for multiple interface cracks. Attention will be 
paid to the influences of the time variation, the gradient of the 
material property and also crack interactions on the transient 
dynamic stress intensity factors.

2  Dislocation solution

We consider an FGM half-plane bonded to a homogeneous 
half-plane as shown in Fig. 1. The edge dislocations located 
between the two dissimilar half-planes to analyze the stress 
field and to determine the SIFs at crack tips.

Under the in-plane deformation, the constitutive relation 
of FGM medium whose mechanical properties vary continu-
ously along the y-direction can be written as

In the above equation, �(y) and � stand for the shear mod-
ulus of elasticity and Kolosov constant, respectively. The 
Kolosov constant is � =

3−�

1+�
 for plane stress and � = 3 − 4� 

for plane strain situations, where � is the Poisson’s ratio of 
material. Due to the complexity of mathematics involved, 
the distribution of mechanical properties of FGMs may be 
approximated by an exponential function (Konda and 
Erdogan [3], Kadioğlu et al. [6], Chen and Liu [12] and 
Sourki et al. [23]) as follows:

where �0 is elastic constant in the homogeneous half-plane 
and β is the gradient parameter to describe the inhomogene-
ous material distribution. By virtue of Eq. (1) and the equa-
tions of motion, ��xx

�x
+

��xy

�y
= �(y)

�2u

�t2
 and ��xy

�x
+

��yy

�y
= �(y)

�2v

�t2
 , 

we can obtain the governing equations as follows:

In the above equation, it is assumed that the mass density 
of the FGM medium varies exponentially along the y-axis 

(1)
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[
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y ≥ 0.

Fig. 1  Schematic of dislocation between two half-planes
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with �(y) = �0e
�y , where ρ0 is the density at y = 0 and 

c =
1

C
, C =

√
�0

/
�0 is the shear wave speed of the mate-

rial. Note that the material gradient parameter has been con-
sidered identical in mass density and shear modulus but in 
reality, it may be different in mass density and shear modu-
lus (see Ref. [24]). The partial differential equations for the 
homogeneous half-plane can be obtained by substituting 0 
for � in Eq. (3). Let Volterra edge dislocations with time-
dependent Burgers vector be situated at the interface (Fig. 1). 
The dislocation cut created along the positive direction of 
the x-axis at the interface materials, while glide and climb 
of the edge dislocation are represented bx(t) and by(t), 
respectively. Therefore, the displacement conditions at the 
dislocation path and the continuity of traction on the disloca-
tion cut are:

where H(.) is the Heaviside step function. By applying 
Laplace transform to Eq. (3) with the initial values of the 
displacements and their time-derivatives assumed to be zero, 
the following equations are obtained:

where the superscript * denotes the Laplace transform, s is 
Laplace variable at the time transform domain. Applying 
Fourier transform to Eq. (5) with respect to x and assuming 
that displacement fields decay rapidly as x → ∞ , Eq. (5) can 
be rewritten as

where i =
√
−1 , ξ is Fourier variable and U and V are Fourier 

transforms of displacement components u and v, respectively. 
The general solutions of Eq. (6) can be expressed as follows:

(4)

u(x, 0+, t) − u(x, 0−, t) = bx(t)H(x),

v(x, 0+, t) − v(x, 0−, t) = by(t)H(x),

�yy(x, 0
+, t) = �yy(x, 0

−, t),

�xy(x, 0
+, t) = �xy(x, 0

−, t).

(5)

(� + 1)
�2u∗

�x2
+ 2

�2v∗

�x�y
+ (� − 1)

�2u∗

�y2

+ �(� − 1)

(
�u∗

�y
+

�v∗

�x

)
= c2(� − 1)s2u∗,

(� − 1)
�2v∗

�x2
+ 2

�2u∗

�x�y
+ (� + 1)

�2v∗

�y2

+ �(� + 1)
�v∗

�y
+ �(3 − �)

�u∗

�x
= c2(� − 1)s2v∗.

(6)

(� − 1)
d2U∗

dy2
+ �(� − 1)

dU∗

dy
+ 2i�

dV∗

dy

+ i��(� − 1)V∗ − [�2(� + 1) + c2(� − 1)s2]U∗ = 0,

(� + 1)
d2 V∗

dy2
+ �(� + 1)

dV∗

dy
+ 2i�

dU∗

dy

+ i��(3 − �)U∗ − [�2(� − 1) + c2(� − 1)s2]V∗ = 0, y ≥ 0,

where Aj, j = 1, 2, 3, 4 are the unknown functions. The 
characteristic roots �j, j = 1, 2, 3, 4 and the functions 
a1j, j = 1, 2, 3, 4 are given as

where Δ1 and Δ2 are Δ1 = −2�2 −
2�c2s2

�+1
,Δ2 = �4 +

2�c2s2�2

�+1

+
c
4
s
4(�−1)

�+1
− �2�2

(�−3)

�+1
 . Following a very similar procedure 

of applying Fourier transform, the solution for the homoge-
neous half-plane can be expressed as

where Cj, j = 1, 2, 3, 4 are the unknown functions. The char-
acteristic roots rj, j = 1, 2, 3, 4 and b1j, j = 1, 2, 3, 4 are given 
in the following form:

The displacements in Eq. (7) while y → ∞ and also the 
displacements in Eq. (9) while y → −∞ must be limited. 
Thus, the unknown functions A3,A4 in Eq. (7) and C3,C4 in 
Eq. (9) become zero. Employing the inverse Fourier trans-
form, the displacement fields in Eqs. (7) and (9) lead to

(7)

U
∗(�, y, s) = A1e
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�3y + A4e
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V
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�3y + ia41A4e

�4y, y ≥ 0,

(8)
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, Re(𝜆1, 𝜆2) < 0

𝜆3 =
1
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√
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√
Δ2

1
− 4Δ2

]
,

𝜆4 =
1

2
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√
𝛽2 − 2Δ1 − 2

√
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1
− 4Δ2

]
, Re(𝜆3, 𝜆4) > 0

a
j1 =

(𝜅 − 1)𝜆2

j
+ 𝛽(𝜅 − 1)𝜆

j
− [𝜉2(𝜅 + 1) + c

2(𝜅 − 1)s2]

𝜉[2𝜆
j
+ 𝛽(𝜅 − 1)]

,

j = 1, 2, 3, 4

(9)

U∗(�, y, s) = C1e
r1y + C2e

r2y + C3e
r3y + C4e

r4y,

V∗(�, y, s) = ib11C1e
r1y + ib21C2e
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+ ib31C3e
r3y + ib41C4e

r4y, y ≤ 0.

(10)

r1 =
√
𝜉2 + c2s2, r2 =

�
𝜉2 + c2s2

𝜅 − 1

𝜅 + 1
, Re(r1, r2) > 0

r3 = −
√
𝜉2 + c2s2, r4 = −

�
𝜉2 + c2s2
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, Re(r3, r4) < 0

bj1 =
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, j = 1, 2, 3, 4
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Using Eqs.  (1), (2) and (11), the stress fields in two 
regions become

where the functions aj2, aj3, aj4, bj2, bj3, bj4 j = 1, 2. are given 
as

The unknown coefficients in Eq. (12) ( Aj,Cj, j = 1, 2 ) 
may be obtained by taking the Fourier and Laplace trans-
forms of Eq. (4) and applying the resultant expression to 
Eq. (12) as follows:

(11)

⎧⎪⎨⎪⎩

u∗(x, y, s) =
1

2�

∞

∫

−∞

(A1e
�1y + A2e

�2y) ei�xd�,

v∗(x, y, s) =
i

2�

∞

∫

−∞

(a11A1e
�1y + a21A2e

�2y) ei�xd�, y ≥ 0,

⎧⎪⎨⎪⎩

u∗(x, y, s) =
1

2�

∞

∫

−∞

(C1e
r1y + C2e

r2y) ei�xd�,

v∗(x, y, s) =
i

2�

∞

∫

−∞

(b11C1e
r1y + b21C2e

r2y) ei�xd�, y ≤ 0.

(12)

�∗
xx
(x, y, s) =

i�0e
�y

2�(� − 1)

∞

�
−∞
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aj2Aje
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�∗
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�y
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∞

�
−∞

2∑
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�0e
�y
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∞

�
−∞
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aj4Aje
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xx
(x, y, s) =
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∞

�
−∞
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j=1
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∞

�
−∞
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bj3Cje
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�∗
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(x, y, s) =

�0

2�

∞

�
−∞

2∑
j=1

bj4Cje
rjyei�xd�, y ≤ 0.

(13)

aj2 = (� + 1)� + (3 − �) aj1�j,

aj3 = (3 − �)� + (� + 1) aj1�j,

aj4 = �j − �aj1,

bj2 = (� + 1)� + (3 − �) bj1rj,

bj3 = (3 − �)� + (� + 1) bj1rj,

bj4 = rj − �bj1.

where δ(.) is the Dirac delta function and Aij,Cij, i, j = 1, 2. 
are given in “Appendix 1.” Substituting unknown functions 
(14) into Eq. (12), the stress components in the homogene-
ous half-plane after some manipulations yield

To evaluate the stress components numerically, the inte-
grals in Eq. (15) can be split into odd and even parts to 
arrive at

where fij(x, y, s, �), i, j ∈ {x, y} are defined as follows:

(14)

A1 = [A11bx(s) + iA12by(s)](��(�) − i∕�)

A2 = [A21bx(s) + iA22by(s)](��(�) − i∕�)

C1 = [C11bx(s) + iC12by(s)](��(�) − i∕�)

C2 = [C21bx(s) + iC22by(s)](��(�) − i∕�)

(15)

�∗
xx
(x, y, s) =

�0

2�(� − 1)

∞

∫
−∞

ei�x

�
[(b12C11e

r1y+b22C21e
r2y)
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r2y)by(s)] d�,

�∗
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(x, y, s) =

�0

2�(� − 1)

∞

∫
−∞

ei�x

�
[(b13C11e

r1y+b23C21e
r2y)

bx(s) + i(b13C12e
r1y + b23C22e

r2y) by(s)] d�,

�∗
xy
(x, y, s) =

�0

2�

∞

∫
−∞

−iei�x

�
[(b14C11e

r1y+b24C21e
r2y)

bx(s) + i(b14C12e
r1y + b24C22e

r2y) by(s)] d�.

(16)

�∗
xx
(x, y, s) =

∞

∫

0

fxx(x, y, s, �) d�,

�∗
yy
(x, y, s) =

∞

∫

0

fyy(x, y, s, �) d�,

�∗
xy
(x, y, s) =

∞

∫

0

fxy(x, y, s, �) d�

(17)

fxx(x, y, s) =
�0

�(� − 1)�
[(b12C11e

r1y + b22C21e
r2y)

cos(�x) bx(s) − (b12C12e
r1y + b22C22e

r2y)sin(�x) by(s)],

fyy(x, y, s) =
�0

�(� − 1)�
[(b13C11e

r1y + b23C21e
r2y)

cos(�x) bx(s) − (b13C12e
r1y + b23C22e

r2y)sin(�x) by(s)],

fxy(x, y, s) =
�0

��
[(b14C11e

r1y + b24C21e
r2y)

sin(�x) bx(s) + (b14C12e
r1y + b24C22e

r2y)cos(�x) by(s)].
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The integrals in Eq. (16) are unbounded for points in 
the vicinity of dislocation. Thus, the singular behavior of 
the kernels fij is determined by asymptotic values of fij for 
� → ∞ which may be shown as follows:

When � → ∞ , the asymptotic values of fij in Eq. (17) can 
be expressed as

The stress components (16) by view of Eqs. (18) and (19) 
are as follows:

The integrals in Eq. (20) are bounded and may be evalu-
ated by numerical methods.

3  Analysis of multiple interface cracks

The solutions of edge dislocations obtained in the preced-
ing section are used to construct integral equations for the 
analysis of a dissimilar half-planes weakened by N interface 
cracks. An interface crack configuration may be described 
in parametric form as

(18)

fij(x, y, s, �) = fij∞(x, y, s, �)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Singular Part

+
[
fij(x, y, s, �) − fij∞(x, y, s, �)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Nonsingular Part

,

i, j ∈ {x, y}.

(19)

fxx∞(x, y, s) = −
2�0

�(� + 1)
[(2 + �y) e�ycos(�x) bx(s)

+ (1 + �y) e�ysin(�x) by(s)],

fyy∞(x, y, s) =
2�0

�(� + 1)
[�ye�ycos(�x) bx(s)

− (1 − �y) e�ysin(�x) by(s)],

fxy∞(x, y, s) =
2�0

�(� + 1)
[−(1 + �y) e�ysin(�x) bx(s)

+ �ye�ycos(�x) by(s)].

(20)

�∗
xx
(x, y, s) =

2�0

�(� + 1)

y(3x2 + y2) bx(s) + x(y2 − x2) by(s)

(x2 + y2)2
+

∞

∫

0

[fxx(x, y, s, �) − fxx∞(x, y, s, �)] d�,

�∗
yy
(x, y, s) =

2�0

�(� + 1)

y(y2 − x2)bx(s) − x(x2 + 3y2) by(s)

(x2 + y2)2
+

∞

∫

0

[fyy(x, y, s, �) − fyy∞(x, y, s, �)] d�,

�∗
xy
(x, y, s) =

2�0

�(� + 1)

x(y2 − x2) bx(s) + y(y2 − x2) by(s)

(x2 + y2)2
+

∞

∫

0

[fxy(x, y, s, �) − fxy∞(x, y, s, �)] d�.

(21)
xi(p) = x0i + pai,

yi(p) = 0, −1 ≤ p ≤ 1, i ∈ {1, 2,…N}.

where (x0i, 0) , ai are the coordinates of center and half-length 
of the ith cracks, respectively. The components of traction on 
the face of ith crack at a point with coordinates (xi, yi) due to 
the presence of above-mentioned distribution of dislocations 
on all N cracks yield

where bxk(q, s) and byk(q, s) are the Laplace transforms of 
the dislocation density functions on the face of k-th crack, 
klm
ik
, l = 1,m = 1, 2, i, k = x, y are coefficients of bx(s) and 

by(s) in Eq. (20). The kernels in Eq. (22) exhibit Cauchy-
type singularity for i = k as q → p and may be expressed as

(22)

�∗
yy
(xi(p), yi(p), s) =

N∑
k=1

ak
�

1

−1

[
k11
yyik

(p, q, s)bxk(q, s)

+k12
yyik

(p, q, s)byk(q, s)
]
dq,

�∗
xy
(xi(p), yi(p), s) =

N∑
k=1

�

1

−1

ak

[
k11
xyik

(p, q, s)bxk(q, s)

+k12
xyik

(p, q, s)byk(q, s)
]
dq,

i = 1, 2,… ,N, −1 ≤ p ≤ 1.

The singular term of the above equation is obtained by 
means of the Taylor series expansion of xi(p) and yi(p)in 
the vicinity of q. In view of Bueckner’s superposition theo-
rem (Bueckner [25]), the left-hand sides of Eq. (22) are the 
traction components on the presumed face of a crack with 
opposite sign in the uncracked two dissimilar half-planes 
subjected to external applied loads. For interface cracks, dis-
placement field is single-valued out of a crack face. Hence, 

(23)

kkl
rtii
(p, q, s) = −

2�0

�ai(� + 1)(p − q)

+

∞∑
m=0

akl,mi(q, s)(p − q)m

k, l ∈ {1, 2}, t = y, r ∈ {x, y}.
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Eq. (22) should be complimented with the following closure 
conditions:

The stress fields near a crack tip exhibit square-root sin-
gularity. Thus, dislocation densities are taken as follows:

By replacing Eq. (25) into Eqs. (22) and (24), and using 
the Lobatto–Chebyshev integration formula, the discretiza-
tion singular integral equations lead to

where the collocation points are chosen as q
r
= cos[

(r−1)�

n−1
],

r = 1, 2,… , n  and pl = cos[
(2l−1)�

2(n−1)
], l = 1, 2,… , n − 1 , 

er= 0.5 for r = 1, n and er= 1 for 1 < r<n.
The modes I and II stress intensity factors (SIFs) are 

defined by Baghestani et al. [26] as follows:

where r is the distance from the crack tip, θ = 0 is right and θ = π 
is left crack tips, respectively. By substituting Eqs. (23) and (25) 
into Eq. (22) and resultant equations into Eq. (27), the SIFs at 
the tips of ith crack in terms of dislocation densities lead to

where � = 1 is the right crack tip and � = −1 is the left crack 
tip. The numerical inversion of the Laplace transform is carried 
out based on the algorithm developed by Stehfest [22] such as

where M is a chosen positive even number, and Hm is given by

(24)

1

∫

−1

bkj(q, s)dq = 0, k ∈ {x, y}, j ∈ {1,… ,N}.

(25)

bki(q, s) =
gki(q, s)√
1 − q2

, k ∈ {x, y}, −1 < q < 1, i ∈ {1, 2,… ,N}.

(26)
1

∫

−1

k1h
myij

(pl, q, s)
gij(q, s)√
1 − q2

dq =
�

n − 1

n�
r=1

erk
1h
myij

(pl, q, s)gij(qr, s), m ∈ {x, y}, h ∈ {1, 2}.

(27)
kI(s) = lim

r→0

√
2r�yy(r, �, s), kII(s) = lim

r→0

√
2r�xy(r, �, s).

(28)
kIi(s) = −

2�0�

� + 1

√
aigyi(�, s),

kIIi(s) = −
2�0�

� + 1

√
aigxi(�, s), i ∈ {1, 2,…N}.

(29)kj(t) ≈
ln 2

t

M∑
m=1

Hmkj

(
ln 2

t
m
)
, j ∈ {I, II}, t > 0.

(30)

Hm = (−1)
M

2
+m

min
(

M

2
,m
)

∑
j=[0.5(m+1)]

j
M

2 (2j)!(
M

2
− j

)
!j!(j − 1)!(m − j)!(2j − m)!

.

In the above equation, [.] signifies the integer part of the 
quantity.

4  Results and discussion

In this section, some examples are solved to show the appli-
cability of the distributed dislocation technique for any 
number of interface cracks. First, to validate this method, 
we choose the two materials to be identical. Under this con-
dition, the bi-material solution should reduce to the solu-
tion for homogeneous materials. The number of points for 
the inversion of Laplace transform, using Stehfest method, 
is M = 10. In all the following examples, plane strain con-
ditions with Poisson’s ratio � = 0.3 , modulus of elastic-

ity E0 = 200 GPa and mass density �0 = 7840 kg/m3 are 
assumed.

A single crack with length 2a = 2 cm which is located in 
the homogeneous materials is shown in Fig. 2 under uniform 
normal step function traction along the crack face. The vari-
ations in the dimensionless stress intensity factors k(t)

/
k0 

versus the dimensionless time t/t0 are plotted in Fig. 3, where 
t0 is t0 = a

√
�0
/
�0 and k0 is the static value of SIF for a 

single crack in a homogenous plane under static normal trac-
tion σ0. It can be seen from Fig. 3 that very good agreement 
has been obtained between the present method and the papers 
published by Sih and Embley [27] and Mottale et al. [28].

In the next example, a single crack located between 
two dissimilar materials with length 2a = 2 cm under 
uniform normal and shear step function traction is shown 
in Figs.  4 and 5, respectively. The normalized modes 
I and II transient dynamic stress intensity factors for 
different dimensionless nonhomogeneity parameters 
�a = −1.0, �a = −0.5, �a = 0.5, �a = 1.0 are plotted 

Fig. 2  Geometry of a single crack in homogeneous materials sub-
jected to normal step function traction
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in Figs. 6 and 7 for normal traction and in Figs. 8 and 9 
for shear traction, respectively. DSIFs are normalized by 
k0 = �0

√
a for normal traction and k0 = �0

√
a for shear 

traction where a is the half-length of crack.
The general feature of these curves is that the transient 

DSIF varies with time from its initial zero value to a steady 
state. DSIFs at the left crack tip are the same as those at the 
right crack tip in mode I under normal traction (Fig. 6) while 
for mode II, DSIFs at left crack tip and right crack tip are 

differences with a negative sign (Fig. 7). This trend for DSIFs 
is reverse under shear traction. With the increase in mate-
rial gradient parameter �a , the upper side of the half-plane 
becomes stiffer than the lower side of the half-plane. Then, 
both the peak and steady values of the mode I DSIFs in nor-
mal loading and also mode II DSIFs in shear loading at crack 
tips decrease regularly. Also note that due to the nonhomoge-
neity of the medium, the stress intensity factors exhibit mixed-
mode condition even though the loading is of one mode.

In the next example, the dimensionless modes I and II 
transient dynamic stress intensity factors with different 
Poisson’s ratios � = 0.25, 0.35, 0.45 and nonhomogeneous 
parameter �a = 0.5 for a single crack located between two 
dissimilar half-planes under uniform shear traction (Fig. 5) 
are depicted in Figs. 10 and 11. It can be seen that the Pois-
son ratio � has only a negligible influence on the transient 
dynamic stress intensity factors and also the lack of sym-
metry with respect to y-axis produces mode I stress intensity 
factors even where cracks are subjected to shear traction.

To study the interaction of multiple cracks, we consider 
two cracks situated between two dissimilar half-planes 
loaded by uniform tractions, which are shown in Fig. 12. 
The interaction between two cracks with two dimensionless 
nonhomogeneity parameters �a = 0.5, 1.0 and dimensionless 
distance d/a = 1.05 is studied in Figs. 13 and 14 for mode I 
and II, respectively. Due to the symmetry of problem with 
respect to the y-axis, DSIFs in mode I at tips L1,R1 are equal 
to those at R2, L2 , respectively. The variation in DSIFs at tips 
L1,R2 is much higher than that at tips R1, L2 , because these 
tips have stronger interaction than tips R1, L2 . Also, it can be 
observed that the magnitudes of DSIFs for mode I decrease 
with increase in the nonhomogeneity parameter.

We consider two equal-length cracks L1R1 and L2R2 as 
shown in Fig. 12 again. Variations in the normalized modes I 

Fig. 3  Comparison of normal-
ized mode I transient DSIFs 
versus dimensionless time for a 
homogeneous plane

Fig. 4  Geometry of a single crack located between two dissimilar 
materials subjected to normal step function traction

Fig. 5  Geometry of a single crack located between two dissimilar 
materials subjected to shear step function traction
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Fig. 6  Variations in normalized 
mode I transient DSIFs of a 
single interface crack for differ-
ent dimensionless nonhomoge-
neity parameters under normal 
traction

Fig. 7  Variations in normalized 
mode II transient DSIFs of a 
single interface crack for differ-
ent dimensionless nonhomoge-
neity parameters under normal 
traction

Fig. 8  Variations in normalized 
mode I transient DSIFs of a sin-
gle interface crack for different 
dimensionless nonhomogeneity 
parameters under shear traction
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Fig. 9  Variations in normalized 
mode II transient DSIFs of a 
single interface crack for dif-
ferent dimensionless nonhomo-
geneity parameters under shear 
traction

Fig. 10  Variations in normal-
ized mode I transient DSIFs 
of a single interface crack for 
different Poisson’s ratios under 
shear traction

Fig. 11  Variations in normal-
ized mode II transient DSIFs 
of a single interface crack for 
different Poisson’s ratios under 
shear traction
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and II transient dynamic stress intensity factors versus the nor-
malized size of crack for time t = 3 ms and nonhomogeneity 
parameter �a = 0.5, 1.0 are plotted in Figs. 15 and 16, respec-
tively. The crack centers are fixed, whereas the crack lengths 
are changing with the same rates. As it may be observed, as 
crack size increases, the interaction at the tips L1 and R2 of the 
cracks increases; therefore, DSIFs at these tips increase rapidly 
while the variation in DSIFs at tips L2 and R1 is very small. It 
is worth mentioning that the lack of symmetry produces mode 
II DSIFs even where cracks are subjected to normal traction.

In the last example, three equal cracks with lengths 2a 
located between two dissimilar half-planes with identical 
center-to-center distance d/a = 2.1 are shown in Fig. 17. 
The variations in dimensionless modes I and II transient 
dynamic SIFs versus the dimensionless time for nonhomo-
geneity parameter �a = 0.5 are plotted in Figs. 18 and 19, 
respectively.

As the problem is symmetrical, the values of mode I dynamic 
stress intensity factors at tips L1R1 , L3R2 and L2R3 are identical. 
It is found from Figs. 18 and 19 the dynamic stress intensity 
factor at tips of crack L1R1 is higher than that at the other tips.

5  Concluding remarks

The present work is an analytical method based on the dis-
tributed dislocation technique to calculate the transient mixed-
mode stress intensity factors for multiple cracks located 
between two dissimilar half-planes. In this study, a single 
crack, two and three cracks have been selected for analyzing 
stress intensity factors at crack tips. The material properties 
in the nonhomogeneous medium are assumed to change con-
tinuously along the y-axis, and also crack faces are loaded by 
uniform normal and shear step function traction. The Fourier 

Fig. 12  Geometry of two cracks 
located between two dissimilar 
half-planes subjected to uniform 
normal step function

Fig. 13  Interaction of mode I 
of two interface cracks under 
normal step function traction
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and Laplace transforms are applied to reduce the problem 
to a system of singular integral equations with Cauchy-type 
singularity. These equations are then solved by the numerical 
Laplace technique and Lobatto–Chebyshev integration for-
mula to obtain the dislocation density on the crack face.

The results reported in Sect. 4 indicate that the nonho-
mogeneity parameters have a significant influence on the 
transient dynamic stress intensity factors while the Poisson’s 
ratio has only a negligible influence on the transient dynamic 
stress intensity factors. With the increase in the value of the 
�a , the upper side of the half-plane becomes stiffer and the 

mode I DSIF in normal loading and also mode II DSIFs 
in shear loading at the crack tip decrease regularly, as this 
process has been reported by Chen and Erdogan [29]. The 
values of DSIFs for two and three cracks are more of single 
crack because the interaction between crack tips in multiple 
cracks is greater than that of the single crack tip.

Appendix 1

Parameters that appeared in Eq. (14) are

Fig. 14  Interaction of mode II 
of two interface cracks under 
normal step function traction

Fig. 15  Mode I normalized 
transient DSIFs versus crack 
sizing of two interface cracks 
under step function normal 
traction
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A11 = [a24(−b13b21 + b11b23) + a23(b14b21 − b11b24) + a21(−b14b23 + b13b24)]∕Δ,

A12 = [a24(−b13b21 + b11b23) + a23(b14b21 − b11b24) + a21(−b14b23 + b13b24)]∕Δ,

A21 = −[a14(−b13b21 + b11b23) + a13(b14b21 − b11b24) + a11(−b14b23 + b13b24)]∕Δ,

A22 = −[a14(−b13 + b23) + a13(b14 − b24) + b13b24 − b14b23]∕Δ,

C11 = [a14(a23b21 − a21b23) + a13(−a24b21 + a21b24) + a11(a24b23 − a23b24)]∕Δ,

C12 = [a14(a23 − b23) + a13(−a24 + b24) + a24b23 − a23b24]∕Δ,

C21 = −[a14(a23b11 − a21b13) + a13(−a24b11 + a21b14) + a11(a24b13 − a23b14)]∕Δ,

C22 = −[a14(a23 − b13) + a13(−a24 + b14) + a24b13 − a23b14]∕Δ,

Δ = a11a24b13 − a11a23b14 − a24b13b21 + a23b14b21 − a11a24b23 + a24b11b23 + a11b14b23

− a21b14b23 + a14[a23(b11 − b21) + b13(−a21 + b21) + b23(a21 − b11)]+

+ b24[a23(a11 − b11) + (−a11 + a21)b13] + a13[b14(a21 − b21) + a24(−b11 + b21) + b24(−a21 + b11)].

Fig. 16  Mode II normalized 
transient DSIFs versus crack 
sizing of two interface cracks 
under step function normal 
traction

Fig. 17  Geometry of three 
cracks located between two dis-
similar half-planes subjected to 
uniform normal step function
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