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Abstract
In the current study, the flow and heat transfer of MHD Eyring–Powell fluid in a circular infinite pipe is discussed. The 
rheology of fluid is described by constitutive equation of Eyring–Powell fluid. The solution is constructed for both constant 
and variable viscosity cases. For variable viscosity case, the viscosity function is defined by Reynolds and Vogel’s models. 
The solution of each case is calculated numerically with the help of eminent iterative numerical technique. The effects of 
thermo-fluidic parameters on flow and heat transfer phenomenon are highlighted through graphs. The velocity and tempera-
ture profiles diminish against magnetic parameter (M

e
) and material parameter (M) in all cases, whereas both velocity and 

temperature profiles rise via magnitude of the pressure gradient and material parameter Y. The validity of our numerical 
results due to shooting method is presented by comparing them with the numerical results produced by pseudo-spectral 
collocation method. Relative absolute errors are plotted, and achieved accuracies are of the order four and five in w and 
� , respectively. The outcomes of current investigation may be useful in thin film, catalytic reactors, polymer solutions and 
paper production, etc.

Keywords Variable viscosity · Eyring–Powell fluid · Pressure driven flow · Shooting method

1 Introduction

The non-Newtonian fluid has various applications in science 
and technology [1–3]. Theoretical studies give the important 
information related to investigation and modeling of mass 
and energy transfer in non-Newtonian fluids [4–6]. Gener-
ally, the flow behavior of non-Newtonian fluids is much 
complex as compare to Newtonian fluids. Non-Newtonian 
fluids such as polymeric solutions, muddy, coal-water, inks, 
blood and oils [7–9] contained a nonlinear relationship 
between viscous shear stress and velocity gradient. Such 
type of fluids is generally used in chemical and polymer 

processing, namely bubbles absorption, composite and 
molten plastic foam processing, etc. Rheological features 
of non-Newtonian fluids are commonly used in biomedi-
cal and biological devises. Generally, non-Newtonian fluid 
models lead the constitutive nonlinear stress–strain rela-
tion, which lead the nonlinear equations of motion. It is 
clearly noted that non-Newtonian fluids model cannot be 
addressed by a single constitutive equation between shear 
rate and shear stress. Due to such reason, some famous 
non-Newtonian models proposed by various authors such 
as: Akbar et al. [10] used the asymmetric channel for the 
peristaltic flow of Williamson nano-fluid. They used fifth-
order Runge–Kutta–Fehlberg method to solve the nonlinear 
differential equations and presented some important results 
in the form of streamlines, velocity and temperature profiles. 
Slips effects on peristaltic flow of Jeffery’s fluid in an asym-
metric channel were discussed by Akbar and Nadeem [11]. 
They concluded that the pressure is an increasing function of 
Hartmann number, perturbation, thermal slip and relaxation 
parameter. Ellahi [12] examined the slip effects on Oldroyd 
eight constant fluid in a channel, and Homotopy analysis 
method was implemented to solve the nonlinear boundary 
value problem. Analytical study of flow of Casson fluid over 
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an exponentially shrinking sheet under the effects of mag-
netic field was investigated by Nadeem et al. [13]. Alamri 
et al. [14] used the Cattaneo–Christov heat flux model in 
the flow of second grade fluid over a stretching cylinder 
to explores the heat transfer characteristics. The effects of 
inclined magnetic field and heat transfer analysis on peristal-
tically induced motion of particle through uniform channel 
were analyzed by Bhatti et al. [15]. The effects of mass and 
bioheat transfer on MHD two-phase Sisko fluid inside the 
porous channel were determined by Bhatti et al. [16]. They 
used the homotopy perturbation method to find the series 
solution of the modeled equations. Ellahi et al. [17] inves-
tigated the combined effects of slip and entropy generation 
on MHD boundary layer flow over a moving plate. Hassan 
et al. [18] utilized the Dupuit–Forchheimer and Darcy’s law 
models for the investigation of heat transfer phenomena of 
nano-fluid in a porous wavy surface. Effects of magnetic 
dipole and suction on the viscoelastic fluid over a stretch-
ing sheet were explored by Majeed et al. [19]. A numerical 
investigation of free convection flow inside a porous inclined 
rectangular conduit under the effect of surface radiation was 
analyzed by Shirvan et al. [20]. They employed finite volume 
method for the solution of couple nonlinear partial differ-
ential equations. Hassan et al. [21] obtained the analytical 
expression of velocity and temperature profiles for Cu–Ag/
water hybrid nanofluids inside the inverted cone. Yousaf 
et al. [22] performed the shooting method for the study of 
thermal boundary layer flow of non-Newtonian fluid over an 
exponentially permeable stretching sheet.

Extensive literature can be seen in which many models 
have been proposed to account the viscosity’s dependence on 
temperature of the fluid. For this, there are two famous mod-
els are noted in the literature, namely Reynolds and Vogel’s 
models. Some, useful studies on variable viscosity models 
are presented in the next paragraph.

Turkyilmazoglu [23, 24] used the variable physical prop-
erties to account the magnetic and thermal radiation effects 
over rotating porous body. Bhatti et al. [25] examined the 
effects of slip condition and variable viscosity on clot blood 
model. Ellahi and Riaz [26] investigated the effects of vari-
able properties on third-grade fluid in a pipe and presented 
the explicit analytical solution of the problem. In another 
study, Ellahi [27] examined the effects of magnetohydro-
dynamic flow of third-grade fluid inside the tube under the 
different viscosity models. He used the homotopic analysis 
method to predict the important results.

Power-law model is mostly use to predict the behavior of 
non-Newtonian fluids. Mathematically, the power-law model 
looks like simple model but having some restriction over 
Eyring–Powell fluids. In modern era, numerous researchers 
have used the Powel-Eyring fluid model and illustrated the 
various aspects. For this, Hayat et al. [28] used the series 
solution method to find the solution of nonlinear modeled 

equations of Eyring–Powell fluid and highlighted the impor-
tant results. Hayat et al. [29] analyzed the effects of magnetic 
field, heat generation/absorption and thermal radiation on 
Eyring–Powell fluid over a stretching cylinder. Finite dif-
ference numerical technique was performed by Akbar 
et al. [30] to capture the effects of magnetic field on flow 
of Eyring–Powell fluid over a stretching surface. Nadeem 
and Saleem [31] employed the optimal homotopy analysis 
method to solve the nonlinear partial differential equations 
of Eyring–Powell fluid model and pointed out some use-
ful results. The effects of physical parameters on MHD 
Eyring–Powell fluid over a rotating surface were investigated 
by Khan et al. [32]. Hayat et al. [33] applied the homotopy 
approach for the investigation of Eyring–Powell fluid over 
a stretching sheet under the effects of Brownian motion and 
magnetic field.

According to Ellahi et al. [34], the non-Newtonian fluid 
models are divided into three different classes, namely inte-
gral, rate types and differential. The Eyring–Powell fluid 
model has certain advantages over other non-Newtonian 
models like Power-law model because it shows Newtonian 
behavior against low and high shear rates. The Eyring–Pow-
ell fluid model is derived from kinematic theory rather than 
empirical relation, due to this reason it is favorite over other 
non-Newtonian fluid models. Such model characterizes the 
behavior of viscoelastic suspension and polymeric solutions 
against extensive ranges of shear rates. In the present study, 
the Eyring–Powell fluid inside the pipe under the effects 
of magnetic field is incorporated. To our best knowledge, 
there is no investigation available that deals with the flow of 
temperature dependent Eyring–Powell fluid in a pipe. Such 
type of flow configuration is commonly used in polymeric 
liquids, slurries and food stuffs, etc. [35]. In this investiga-
tion, the motivation emanates from a desire to realize the 
effects of magnetic field on Eyring–Powell fluid in a pipe. 
The shooting method based on Newton method [36, 37] is 
implemented to find the solution of considered problem. The 
important results of present study are highlights with the 
help of plots.

2  Problem formulation

Let us consider the steady-state fully developed, incompress-
ible one-dimensional MHD flow of Eyring–Powell fluid 
inside a pipe. It is assumed that the fluid is flowing inside 
the pipe is electrical conducting fluid with applied uniform 
magnetic field B0 . Further, we have neglected the electric 
and induced magnetic. The fluid flow inside the pipe is due 
to constant pressure gradient. The geometry of the present 
problem is shown in Fig. 1. However, here the rheology of 
fluid flowing in the pipe is characterized by Erying–Powell 
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model. In particular, the analysis is carried out for three dif-
ferent viscosity models.

The Cauchy-stress tensor for the current study is [38] 

Powell and Erying [38] present the relation given in Eq. (1). 
With the help of Sinh−1 approximation

The new form of Eq. (1) is

where A =
K3

K2

 and B =
K3

3

K2

.
The velocity and temperature fields are defined by the 

given expression

In view of Eq. (4), the stress tensor has the following form

It is noted that from above equation, Srz
(
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)
 only non-van-

ishing components of stress tensor S

In the present situation, equations of continuity and conser-
vation of momentum are given by
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Substituting the values Srz into Eq. (9), we have

The energy equations in the present problem take the fol-
lowing form:

The boundary conditions of Eqs. (10) and (11) are

With the help of normalized quantities [4], the new form of 
Eqs. (10)–(12) are:

where M2
e
= �B0R

/
�0

 is the magnetic parameter.
It is noted that the momentum equation will be differ-

ent against different viscosity models such form is defined 
separately in separate section.

2.1  Constant viscosity model

For this case, �̄� = 1 , and Eq. (13) becomes
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Fig. 1  Geometry of the consid-
ered study
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2.2  Reynold’s model

According to this model �(�) = �0e
−n� therefore 

�̄� = e−n𝜃we−L�̄� and
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3
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0
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).

2.3  Vogel’s model
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 . Thus 

dimensionless equation of motion in this case is

where �∗ = �0e
�w .

The boundary conditions of Eqs. (16)–(18) are

The shooting method is selected for the solution of the given 
boundary value problems. The detail of shooting method is 
present in the next section.

3  Numerical solution

It is noted that the analytical solution of each system in each 
case is not possible due to nonlinearity and coupling appear 
in each equation. Due to this reason, the boundary value 
problem of an ordinary differential equations is solved with 
numerical technique (shooting method). Various techniques 
have been implemented to obtain the solution of complex 
rheological models which are cited in introduction section. 
The main problem noted with such type of techniques is 
that when you discretize the differential equations into sys-
tem of algebraic equations it is time consuming and we get 
highly nonlinear algebraic structure. Particularly, it takes 
penalty of time when we enhance the interval and number 
of mesh points to attain the accuracy. The shooting method 
based on Runge–Kutta scheme of order 4 combined with 
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(19)w̄ = 0 at r̄ = 1, and
dw̄

dr
= 0 at r̄ = 0.

Newton–Raphson’s method, based on step-by-step technique 
in which we use previous solution to approximate the next 
one. In this scheme, all the differential equations have unit 
order. This numerical scheme is very eminent, less time 
consuming, stable and rapidly convergent as explained in 
[39–50]. In some cases, when we have physical constraints 
on dependent variable, the iterative numerical solution of 
discretized nonlinear boundary value problems by using 
Newton–Raphson method is divergent. In this scenario, we 
prefer to use shooting method. The graphical results and 
discussion are given in next section. The flowchart is pre-
sented below to show the short view of this method that how 
to work this method. For the employment of the shooting 
method, first of all we want to transform the achieved system 
of equation of the constant viscosity case, such as
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ing conditions) and these are pick as boundary conditions at 
unity are fulfilled. In the numerical implementation of shoot-
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4  Results and discussion

In this portion, we intend to explore the obtained results. 
Here, we focused velocity w(r) and temperature �(r) through 
variation in some important parameters. The nonlinear 
boundary value problem is solved with the help of eminent 
shooting method based on Newton–Raphson method. Total 
eight figures are plotted in this section in which Figs. 2 and 
3 are for constant case, Figs. 4, 5, 6 and 7 are for the case 

of temperature dependent viscosity (Reynolds and Vogel’s 
model), and absolute errors between numerically computed 
velocity and temperature are depicted in Fig. 8. In each fig-
ure, left panel is for the velocity and right panel for the tem-
perature profiles. Figure 2 predicts the effects of magnetic 
parameter Me on velocity and temperature profiles, respec-
tively. From the figure, it can be seen that the velocity and 
temperature profile decreases with increasing the values of 
magnetic parameter Me . It is evident that when magnetic 
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Fig. 2  Effects via M
e
 on w and �

Fig. 3  Effects via M on w and �

Fig. 4  Effects via M
e
 on w and �
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Fig. 5  Effects via C on w and �

Fig. 6  Effects via M
e
 on w and �

Fig. 7  Effects via Y  on w and �
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forces or Lorentz forces (friction forces) are dominating 
over viscous forces as a result the velocity of the fluid is 
showing decreasing trend against magnetic parameter and 
boundary layer thickness is also decreases. Figure 3 illus-
trates the behavior of Eyring–Powell parameter M on velocity 

and temperature fields. It scrutinized that the velocity and 
temperature decays through M. Physically, for increasing the 
values of M, the viscosity of the fluid will decrease; therefore, 
the resistance in the fluid particle decreases and less heat is 
produced. The effects of magnetic parameter Me on velocity 

Fig. 8  Absolute error in velocity and temperature for M
e
= 1, 2, 3



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:518 

1 3

Page 9 of 10 518

and temperature fields are highlighted in Fig. 4 for the case 
of Reynolds model. It is noted that the effects of magnetic 
parameter are similar as we have shown for the case of con-
stant viscosity model. Basically, the velocity and temperature 
fields are decreasing function of magnetic parameter for both 
cases namely, constant and Reynods model cases. Figure 5 
depicts the effects of pressure gradient on velocity and tem-
perature profiles. It is clearly noted that both velocity and 
temperature profiles rises via magnitude of the pressure gra-
dient. It is noted that when C becomes negative, the velocity 
of the fluid is going maximum at the center of the pipe physi-
cally which means that thickness of the velocity boundary 
layer decreases. Figure 6 illustrates the effects of Me on w(r) 
and �(r) for the case of Vogel’s model. It is clearly noted that 
the velocity and temperature profiles having similar trend 
against the values of magnetic parameter Me as we discussed 
into previous two cases. The effects of parameter Y are pre-
sented in Fig. 7. The velocity and temperature fields are 
also increases with increasing the value of Y. To verify the 
numerical results obtained from shooting method, we solve 
numerically the same problem via pseudo-spectral colloca-
tion method for different cases. The absolute errors between 
numerically computed velocity and temperature are depicted 
in Fig. 8. The numerically values of velocity and temperature 
for Me = 1, 2, 3 are four and five digits accurate comparing 
with pseudo-spectral collocation method.       

5  Conclusions

The steady-state MHD Eyring–Powell fluid inside the infi-
nite long pipe is discussed here through numerically. The 
coupled nonlinear ordinary differential equations arise from 
the mechanics of fluid. The simulations are constructed for 
both constant and variable viscosity models. The effects of 
some important parameters on velocity w(r) , and tempera-
ture �(r) are noted with the help of plots. The major out-
comes are listed below:

• The velocity and temperature fields are diminishing with 
increasing Me in all cases, namely constant, Reynolds and 
Vogel’s models.

• Both velocity and temperature profiles rise via magnitude 
of the pressure gradient and material parameter Y.

• The validity of our numerical results due to shoot-
ing method is presented by comparing them with the 
numerical results produced by pseudo-spectral collo-
cation method. Relative absolute errors are plotted and 
achieved accuracies are of the order four and five in w 
and �, respectively.
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