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Abstract
In the present work, analytical solutions are presented for thermal convection of the linear Phan–Thien–Tanner fluid (LPTT) 
in slits and tubes of constant wall temperature by taking account of the viscous dissipation term. Unlike the similar previ-
ous studies in which the advection term was neglected in the heat transfer equation, it is considered in this investigation. 
A continuous relation between the Nusselt number and the Brinkman number is obtained. Expressions for the temperature 
distribution are derived in closed form and in terms of a Frobenius series for the slit and tube flows, respectively. Based on 
these solutions, the effects of fluid elasticity and Brinkman number on thermal convection of LPTT fluid flows are studied in 
detail. It is shown that at negative Brinkman numbers (fluid cooling), increasing the Deborah number leads to a decrease in 
the Nusselt number, but an increase in the centerline temperature. Nonetheless, this trend is opposite for positive Brinkman 
numbers (fluid heating), i.e., an increase in the Nusselt number and a decrease in the centerline temperature. Also, there 
is a Brinkman number beyond which the Nusselt number is smaller than zero, meaning that there is weak heat convection 
in the flow. Also, the results confirm that the extensibility parameter affects the temperature profile in the same way as the 
Deborah number.

Keywords  Viscoelastic fluid · Phan–Thien–Tanner model · Forced convection · Constant wall temperature tube and slit · 
Viscous dissipation

List of symbols
A	� Area of cross section, m2

Br	� Brinkman number, Br = 𝜂U2∕k(T̃w − T̃m)

cp	� Specific heat, J kg−1 K−1

dh	� Hydraulic diameter, dh = 2R for tube flow and 
dh = 4H for slit flow, m

�	� Deformation rate tensor, Eq. (8)
De	� Deborah number, defined as De = �U∕R for tube 

case and De = �U∕H for slit case
F	� Dimensionless function
h	� Heat transfer coefficient, W m−2 K−1

H	� Half of the distance between two parallel plates, m
J	� Equals 0 for slit and 1 for tube
k	� Conductivity coefficient, W m−1 K−1

K	� Equals 1.5 and 2 for slit and tube, respectively

Nu	� Nusselt number, Nu = hdh∕k

p	� Pressure, Pa
P	� Perimeter of cross section, m
R	� Tube radius, m
T 	� Fluid temperature, K
u	� Axial velocity, ms−1

U	� Mean velocity, ms−1

�	� Velocity vector
y	� Radial (tube) or transverse (slit) direction, m
z	� Axial direction, m

Greek symbols
�	� Equals 1 for pure entropy elasticity and 0 for pure 

energy elasticity
�1	� �1=1.5UN∕U for slit and �1=2UN∕U for tube
�	� Constant, Eq. (12)
�	� Extensibility coefficient
�	� Constant viscosity coefficient, Pa s
�	� Relaxation time, s
�	� Density, Kg m−3
∇
�	� Upper-convected derivative of stress tensor, Eq. (9)
�	� Viscous dissipation, Eq. (15)
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Subscripts
m	� Mean value
max	� Maximum value
N	� Newtonian case
w	� Wall

Superscripts
T	� Transpose operator
~	� Dimensional parameter

1  Introduction

It is crucial to understand clearly the physics of heat trans-
fer in non-Newtonian flows because it affects the quality of 
products in polymer processing industries.

Forced heat convection of non-Newtonian fluids in ducts 
has been increasingly investigated. Some authors [1–9] have 
studied heat transfer of fluids through ducts by neglecting 
the viscous dissipation effect. One of the earliest studies 
of viscoelastic fluid flow obeying the Phan–Thien–Tanner 
(PTT) model was conducted by Oliveira and Pinho [10]. 
They presented hydrodynamic solutions to the problem of 
fully developed laminar flow of the PTT model through 
channels and pipes. Their results revealed that by increas-
ing the dimensionless Deborah number, the velocity pro-
files were blunt in the center of the geometries. Pinho and 
Oliveira [11] investigated heat transfer of fully developed 
LPTT fluid in pipes and channels whose walls had a constant 
heat flux. They derived exact formulae for the temperature 
distribution in the presence of the viscous dissipation term. 
They reported that the heat transfer enhances by increasing 
either the Deborah number or the extensibility parameter. 
The problem of fully developed forced convection of the 
simplified PTT fluid in ducts with a constant wall tempera-
ture was analyzed semi-analytically by Coelho et al. [12]. 
In fact, they considered two cases in their study. The first 
case was the equilibrium between the axial convection and 
the radial conduction of thermal energy transfer equation, 
while the second case referred to the equilibrium between 
the radial conduction and the viscous dissipation terms. In 
the former case, Br = 0, their results showed that the Nusselt 
number increased monotonically when the fluid elasticity 
increased in the range of 0.001 ≤ �We2 ≤ 100 . They also 
showed that for all nonzero values of the Brinkman number, 
the Nusselt number increased with the fluid elasticity. Pinho 
and Coelho [13] studied the problem of fully developed heat 
transfer of the SPTT fluid flow with viscous dissipation in 
annuli of wall subjected to either a constant wall heat flux 
or a constant wall temperature. They showed that for the 
case of constant wall heat flux, the fluid elasticity would 
increase the heat transfer, especially by viscous dissipa-
tion effect. Nonetheless, for the constant wall temperature 

boundary condition, at low amounts of the Brinkman num-
ber, the fluid elasticity decreases the heat transfer. Norouzi 
[14] studied a similar problem for forced convection of PTT 
fluids through isothermal pipes, without the viscous dissipa-
tion effect, and derived exact solutions for the temperature 
distribution. Anand [15] investigated the heat transfer and 
entropy generation characteristics of a viscoelastic fluid flow 
modeled by the exponential formulation of LPTT model. 
By presenting an analytical model, Matias et al. [16] inves-
tigated the influence of Joule heating on the slip velocity of 
viscoelastic fluids.

Khan et al. [17] studied numerically the bioconvection 
Carreau nanofluid flow over a paraboloid surface of revolu-
tion to calculate the results of generalized Fick’s and Fouri-
er’s laws on nanoscale. Arif et al. [18] studied the application 
of generalized Fourier heat conduction law on viscoelastic 
fluid flow over stretching surface. To investigate the behavior 
of transformed internal energy in a magnetohydrodynamic 
Maxwell nanofluid flow, Khan et al. [19] conducted a theo-
retical study. Exploring the temperature-dependent viscosity 
of Maxwell fluid flow, Khan et al. [20] concluded that some 
parameters such as the thermal stratification one control the 
temperature distributions inside a stretching surface. The 
problem of impact of generalized heat and mass flux models 
on Darcy–Forchheimer Williamson nanofluid flow has been 
recently worked out by Salahuddin et al. [21]. In their inves-
tigation, the viscosity was assumed a dependent function of 
temperature, and they explicated the effectiveness of some 
parameters like the Reynolds number and Prandtl number on 
dimensionless velocity and temperature profiles. Khan et al. 
[22] studied the effect of Darcy–Forchheimer on magneto-
hydrodynamic Carreau–Yasuda nanofluid flow. Their results 
showed that the Weissenberg number led to deceleration of 
the tangential and radial velocities, while the power law 
index accelerated them. Tanveer and Salahuddin [23] clas-
sified the simultaneous significances of complaint walls and 
emission of electromagnetic waves from walls which con-
duct Eyring–Powell fluid. They reported various solutions 
for dimensionless temperature distributions and velocity. 
Homogeneous–heterogeneous reaction effects in the flow of 
tangent hyperbolic fluid on a stretching cylinder were stud-
ied by Salahuddin et al. [24]. The variable fluid properties 
of a second-grade fluid by taking account of two different 
temperature-dependent viscosity models were investigated 
by Salahuddin et al. [25]. In their work, they derived the 
Nusselt number as well as the skin friction in the vicinity of 
a sheet surface. Haider et al. [26] analyzed the characteristics 
of Darcy–Forchheimer second-grade fluid flow surrounded 
by a deformable sheet by taking account of both variable 
thermal conductivity and magnetohydrodynamics.

Cruz et al. [27] presented analytical solutions for fully 
developed pipe and channel flows containing a Newtonian sol-
vent described by the PTT or the finitely extensible nonlinear 
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elastic followed by the Peterlin approximation (FENE-P) 
model. Norouzi et al. [28] investigated the heat transfer charac-
teristics for a FENE-P fluid flow through straight ducts. Also, 
the effect of the viscous dissipation on the thermal entrance 
region of non-laminar, non-Newtonian fluids is studied by 
some authors [29, 30]. By considering the viscous dissipation, 
Oliveira et al. [31] studied the Graetz problem for the FENE-
P fluid in a pipe and a channel. Their investigation showed 
that the viscous dissipation tends to lower the Nusselt number, 
while the elasticity increases it.

The viscous dissipation appeared in the energy equation 
has an effective role in heat transfer characteristics. The 
present study aims to examine the LPTT viscoelastic fluid 
flowing through constant wall temperature slits and tubes 
by taking account of the viscous dissipation effect. The tem-
perature distribution is derived as a closed-form function 
for the slit flow and a Frobenius series for the tube flow. In 
addition, the effects of the Brinkman number (both positive 
and negative values) and the fluid elasticity on heat transfer 
characteristics are discussed in detail.

As mentioned earlier, Coelho et al. [12] investigated 
forced convection of the LPTT fluid for two cases. But, they 
neglected the axial convection (advection) term for the case 
in which the viscous dissipation term was involved. Con-
sequently, their result in terms of the variation of the Nus-
selt number via the fluid elasticity is different compared to 
that of the present study. Actually, the present work could 
be considered as the generalization of solution of Coelho 
et al. [12] via considering the axial convection into the heat 
transfer equation.

2 � Governing equations and formulation

In continuum mechanics, the principles of mass conserva-
tion, momentum conservation and energy conservation must 
be obeyed. The continuity and the momentum equations are 
presented in Eqs. (1) and (2) from literature [32]

where �̃ is the velocity vector, p̃ is the pressure which is 
supposed to be a linear function, � is the density and �̃ is 
the stress tensor. The constitutive equation applied here for 
the PTT fluid [33] can be written as Eq. (3) in which f is 
the dimensionless function, � is the relaxation time, � is the 
constant viscosity coefficient, �̃ represents the deformation 
rate tensor ( �̃ = (∇̃�̃ + ∇̃�̃T )∕2 ) and 

∇

�̃ indicates the Old-
royd’s upper-convected derivative of the stress tensor shown 
in Eq. (4):

(1)∇̃. �̃ = 0

(2)𝜌 �̃.∇̃�̃ = −∇̃p̃ + ∇̃.�̃

Since there is no exact solution for the exponential type 
of the PTT fluid, just the linear form of the PTT fluid is 
adopted here in, and the corresponding dimensionless func-
tion will be

where � is the fluid extensibility coefficient limiting the fluid 
extensional viscosity. Indeed, nonzero values of � preclude 
the possibility of infinite extensional viscosity in a stretch-
ing flow in contrast to the upper-convected Maxwell (UCM) 
model possessing � = 0.

The underlying assumptions for the present study are 
summarized as follows. The model parameters are inde-
pendent of temperature, the flow is incompressible, recti-
linear, laminar and hydrodynamically and thermally fully 
developed, and the viscoelastic fluid is simulated with the 
LPTT constitutive equation in two dimensions. Since the 
flow is hydrodynamically fully developed, the velocity pro-
file (along the longitudinal axis) is only dependent on the 
vertical side, and since the flow is thermally fully developed, 
the axial conduction is negligible relative to the radial con-
duction [32].

After some mathematical simplifications, the two follow-
ing equations are derived from Eqs. (3) and (4) which are 
applicable for both the tube and slit flows.

Consequently, by considering the linear form of the PTT 
model, as shown in Eq. (5), the transverse (slit case) or radial 
(tube case) velocity gradient will be expressed as

Finally, with the help of the momentum equation given 
in Eq. (2) and considering the component in the axial direc-
tion, we have,

(3)f (tr(�̃))�̃ + 𝜆
∇

�̃ = 2𝜂�̃

(4)
∇

�̃ =
D�̃

Dt
−
(
∇̃�̃T .�̃ + �̃.∇̃�̃

)

(5)f (tr(�̃)) = 1 +
𝜀𝜆

𝜂
tr(�̃)

(6)tr(�̃) = 𝜏yy =
2𝜆𝜏2

yz

𝜂

(7)
dũz

dỹ
= f

(
2𝜆𝜏2

yz

𝜂

)
𝜏yz

𝜂

(8)
dũz

dỹ
=

[
1 +

2𝜀𝜆2𝜏2
yz

𝜂2

]
𝜏yz

𝜂
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where j equals 0 for the slit flow and 1 for the tube flow and 
dp̃∕dz̃ is the pressure gradient. Also, ỹ is radial or transverse 
coordinate depending on the use of radial or Cartesian coor-
dinate. By integrating Eq. (8) from an arbitrary position in 
the radial or transverse coordinate to the wall, and replacing 
the axial component of the stress tensor, in turn, the velocity 
distribution will be derived as [10]:

where ũ is the main flow velocity (axial velocity), U is 
the mean velocity defined as the volumetric flow rate 
divided by the cross-sectional area, K takes the respec-
tive values of 1.5 and 2 for the slit and the tube flows and 
UN is the corresponding mean velocity for the Newtonian 
flow which is UN = −dp̃∕dz̃(R2∕8𝜂) for the tube flow and 
UN = −dp̃∕dz̃(H2∕3𝜂) for the slit flow. In addition, y is the 
dimensionless variable defined as y = ỹ∕R for the tube flow 
and y = ỹ∕H for the slit flow (here H is half of width of 
the slit). The dimensionless Deborah number is defined as 
De = �U∕R for the tube flow and De = �U∕H for the slit 
flow and represents the level of the fluid elasticity. Expect-
edly, for De = 0 or � = 0 , Eq. (10) reduces to the parabolic 
profile with a maximum velocity at the centerline equal to 
K. Oliveira and Pinho [10] showed that the velocity ratio 
( UN∕U ) can be calculated from the following formulation 
in terms of the rheological properties:

where � is:

In Eqs. (11) and (12), b is a constant, b = 54∕5(�De2) for 
the slit flow and b = 64∕3(�De2) for the tube flow. Now we 
turn into the energy equation which plays a crucial role in the 
present study.

The energy equation should be treated cautiously. For vis-
coelastic materials, as Peters and Baaijens [34] reported in 
their work, the mechanical energy is partly dissipated and 
partly stored as elastic energy. They presented the general 
energy equation in the form of Eq. (13).

where cp is the specific heat, ̇̃T  is the temperature material 
derivative, k is the thermal conductivity, � ∶ D is the viscous 
dissipation which is a contribution of the entropy elasticity 

(9)𝜏yz =
dp̃

dz̃

ỹ

(1 + j)

(10)

ũ(y)

U
= K

UN

U

(
1 − y2

)(
1 + 4K2𝜀De2

(
UN

U

)2(
1 + y2

))

(11)
UN

U
=

4321∕6(�2∕3 − 22∕3)

6b1∕2�1∕3

(12)� = (4 + 27b)1∕2 + 33∕2b1∕2

(13)

𝜌cp
̇̃T = ∇̃.(k∇̃T̃) + 𝛼𝜏 ∶ D̃ + (1 − 𝛼)

tr(𝜏)

2𝜆

(
1 +

𝜀𝜆

𝜂
tr(𝜏)

)

and therefore contributes to temperature change. The last 
term in Eq. (13) denotes the energy elasticity representing 
the energy stored elastically and does not relate to tempera-
ture variation. The split of the mechanical energy into the 
entropic elasticity and the energy elasticity is measured by 
� . In the case of pure entropy elasticity we have � = 1 , while 
in pure elastic energy it is � = 0.

In light of the assumptions mentioned earlier and by con-
sidering an isotropic thermal conductivity, Eq. (13) can be 
simplified for both the tube and the slit cases as follows:

As it is available in the literature [32], for PeD ≫ 1 the 
axial conduction is neglected in comparison with the radial 
conduction. Also, by considering the hypothesis of a fully 
developed flow in the axial direction where the velocity 
component is zero, the transverse convection term of the 
energy equation is neglected. In addition, the viscous dis-
sipation term 𝜏 ∶ D̃ is replaced by 𝜙̃ and is resulted by tensor 
product of the velocity gradient into the stress tensor which 
for the present problem will be reduced to 𝜙̃ = 𝜏yzdũz∕dỹ , 
and after replacing the velocity gradient by Eq. (8), the 
dimensional viscous dissipation will be

It is worthwhile to mention that the viscous dissipation 
term is not the same for the tube and the slit cases since they 
have a different shear stress ( ̃𝜏yz ) as presented in Eq. (9). 
After some mathematical simplifications, the final energy 
equation will be derived as

As it can be seen from the above equation, the term � 
has been diminished. Indeed, the terms involving � cancel 
out and interestingly the final result, as shown in Eq. (16), 
is mathematically equivalent to setting � = 1 in Eq. (14). In 
order to render the variables dimensionless, the following 
expressions are introduced.

(14)

𝜌cpũz
𝜕T̃

𝜕z̃
= k

(
𝜕2T̃

𝜕ỹ2
+

j

ỹ

𝜕T̃

𝜕ỹ

)
+ 𝛼𝜙̃ + (1 − 𝛼)

𝜏yy

2𝜆

(
1 +

𝜀𝜆

𝜂
𝜏yy

)

(15)𝜙̃ =

(
1 +

2𝜀𝜆2𝜏2
yz

𝜂2

)
𝜏2
yz

𝜂

(16)

ũz
𝜕T̃

𝜕z̃
=

k

𝜌cp

(
𝜕2T̃

𝜕ỹ2
+

j

ỹ

𝜕T̃

𝜕ỹ

)
+

1

𝜌cp

(
1 +

2𝜀𝜆2𝜏2
yz

𝜂2

)
𝜏2
yz

𝜂

(17)

u =
ũ

U
, T =

T̃ − T̃w

T̃m − T̃w

⎧⎪⎪⎨⎪⎪⎩

For slit flow: z =
z̃

H
, y =

ỹ

H
and 𝜙 =

𝜙̃

3𝜂U2∕H2

For tube flow: z =
z̃

R
, y =

ỹ

R
and 𝜙 =

𝜙̃

4𝜂U2∕R2
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where T̃w is the wall temperature and T̃m denotes the fluid 
mean temperature in the tube or the slit across the longitu-
dinal coordinate. Consequently, the dimensionless form of 
the viscous dissipation term (Eq. (15)) will be

in which we have �2 = 9�De2(UN∕U)2 for the slit flow and 
�2 = 16�De2(UN∕U)2 for the tube flow. It is easily provable 
that the viscous dissipation term for De = 0, the Newtonian 
fluid, is � = (3 + j)y2.

Now it aims to derive a relationship for the dimensional 
axial gradient of temperature ( 𝜕T̃∕𝜕z̃ ). In this regard, it is 
known that in the fully developed thermal condition, the axial 
gradient of the dimensionless temperature is zero [35]:

By expanding the above equation and knowing that the tube 
wall temperature is constant, we have:

In addition, the dimensional axial gradient of the mean tem-
perature appeared in the above equation, dT̃m∕dz̃ , could be 
obtained by considering a balance of energy on a differential 
control volume and taking account of the viscous dissipation 
for both the cases as follows:

where P̃ and Ã are the perimeter and the area of the cross 
section, respectively. By applying Eq. (22) which is reported 
by Oliveira and Pinho [10], on Eq. (21), finally the axial 
gradient of the mean temperature can be expressed in the 
form of Eq. (23).

(18)� = (3 + j)(UN∕U)2y2
(
1 + 2�2y

2
)

(19)
𝜕T

𝜕z
=

𝜕

𝜕z

(
T̃ − T̃w

T̃m − T̃w

)
= 0

(20)𝜕T̃

𝜕z̃
= T

dT̃m

dz̃

( )

( )

22
2

2

222

2

222

2

2( ) 1 dz

3 ( / ) 1 ( / )( )For slit flow:

8 ( / ) 1 ( / )2 ( )For tube flow:

yz
p m w m yz

V

NNw mm

pp

NNw mm

pp

AUc dT h T T Pdz dA

U U U b U Uh T TdT
dz HUc H Uc

U U U b U Uh T TdT
dz RUc R Uc

τελρ τ
η η

η
ρ ρ

η
ρ ρ

 
= − + + 

 
 +− = +



+ −= +


∫

(21)

(22)
UN

U

(
1 + b

(
UN

U

)2
)

= 1

Finally, the dimensionless form of the energy equation for 
the LPTT flow in slits and tubes of constant wall temperature 
is derived as

where we have �1=1.5UN∕U and �1=2UN∕U for the slit and 
tube flows, respectively. Moreover, there are two well-known 
dimensionless numbers, namely the Nusselt number and the 
Brinkman number, which are defined as Nu = hdh∕k and 
Br = 𝜂U2∕(k(T̃w − T̃m)) , respectively. The parameter h is the 
convective heat transfer coefficient and dh is the hydraulic 
diameter ( dh = 2R for the tube flow and dh = 4H for the slit 
flow).

(23)

⎧
⎪⎪⎨⎪⎪⎩

For slit flow:
dT̃m

dz̃
=

h(T̃w − T̃m)

𝜌HUcp
+

3𝜂UN

𝜌H2cp

For tube flow:
dT̃m

dz̃
=

2h(T̃w − T̃m)

𝜌RUcp
+

8𝜂UN

𝜌R2cp

(24)

d
2T

dy2
+

j

y

dT

dy
+ �1

(
1 − y2

)(
1 + �2

(
1 + y2

))
(

1

4 − 3j
Nu + 2(j + 1)�1Br

)
T

− 4�2

1
Br

(
1 + 2�2y

2
)
y2 = 0

3 � Analytical solution

As mentioned before, the motive of the present study is to 
obtain the dimensionless temperature field, T(y), in constant 
wall temperature slits and tubes. To this aim, the tempera-
ture distribution is determined by solving the second-order 



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:480

1 3

480  Page 6 of 23

non-homogeneous differential equation [Eq. (24)] by apply-
ing an analytical method. Besides, there are two boundary 
conditions consisting of the symmetry condition at the 
centerline [Eq.  (25)] and the constant wall temperature 
[Eq. (26)]. Since the number of unknown parameters exceeds 
the number of the boundary conditions, a physical constrain 
will be introduced for each case [Eqs. (29) and (32)].

(25)at y = 0 ⇒
dT

dy
= 0

3.1 � Slit flow

By substituting j = 0 into Eq. (24) and then solving it, the 
temperature distribution for the LPTT fluid flow in a slit of 
constant wall temperature will be determined as follows:

(26)at y = 1 ⇒ T = 0

(27)

T(y)

= C1HeunT

⎛
⎜⎜⎜⎜⎜⎝

0.13
�2
1

�
8�1Br + Nu

�2�
2�2 + 1

�2
�
�1�2

�
8�1Br + Nu

��4∕3 , 0,

0.7211
�1
�
8�1Br + Nu

�
�
�1�2

�
8�1B + Nu

��2∕3 ,−0.6934 6

�
�1�2

�
8�1Br + Nu

�
y

⎞
⎟⎟⎟⎟⎟⎠

× e

1

12

�1(8 �1Br+Nu)y(2 �2y2+3)√
�1�2(8 �1Br+Nu)

+ C2HeunT

⎛⎜⎜⎜⎜⎜⎝

0.13
�2
1

�
8�1Br + Nu

�2�
2�2 + 1

�2
�
�1�2

�
8�1Br + Nu

��4∕3 , 0,

0.7211
�1
�
8�1Br + Nu

�
�
�1�2

�
8�1B + Nu

��2∕3 , 0.6934 6

�
�1�2

�
8�1Br + Nu

�
y

⎞⎟⎟⎟⎟⎟⎠

× e
−

1

12

�1(8 �1Br+Nu)y(2 �2y2+3)√
�1�2(8 �1Br+Nu)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HeunT

⎛⎜⎜⎜⎜⎜⎝

0.13
�1
�
8B�1 + Nu

��
2�2 + 1

�2

�2
3

�
�1�2

�
8B�1 + Nu
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�1
�
8B�1 + Nu

�
�
�1�2

�
8B�1 + Nu

��2∕3 ,

− 0.6934
6

�
�1�2

�
8B�1 + Nu

�
y

⎞⎟⎟⎟⎟⎟⎠

e
1

12

(2 y3�2+3 y)
√

�1�2(8 Br�1+Nu)

�2 ∫
A

B
dy

− HeunT

⎛⎜⎜⎜⎜⎜⎝
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�1
�
8B�1 + Nu

��
2�2 + 1

�2

�2
3

�
�1�2

�
8B�1 + Nu

� , 0, 0.7211
�1
�
8B�1 + Nu

�
�
�1�2

�
8B�1 + Nu

��2∕3 ,

0.6934
6

�
�1�2

�
8B�1 + Nu

�
y

⎞⎟⎟⎟⎟⎟⎠

e
−

1

6

y
√

�1�2(8 Br�1+Nu)(�2y2+ 3
2 )

�2 ∫
C

B
dy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 24�2

1
Br

�
�1�2

�
8�1Br + Nu

�
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where A, B and C are:

As it can be seen, Eq. (27) represents a closed-form 
solution containing a special mathematical function, 
HeunT, for the slit case. Regarding Eq. (27), there are three 
unknown constant parameters in the slit temperature distri-
bution, namelyC1 , C2 and Nu which one of them, C1 , van-
ishes by applying Eq. (26) to Eq. (27). Unfortunately, there 
are no analytical solutions for the two integral expressions 
in Eq. (27). Therefore, these integrals have been solved 
numerically using the 1/3 Simpson rule. Because of the 

(28)

A = (2y4�2 + y2)e
−

1

6

y

√
�1�2(8 Br�1+Nu)(�2y2+ 3

2 )
�2
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�
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�
y

⎞
⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

48

�
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8

��
�2y

2 +
1
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�
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�
�
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�
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�
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⎛
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�
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�
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�
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⎞
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C = (2y4�2 + y2)e
1
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(2 y3�2+3 y)
√

�1�2(8 Br�1+Nu)
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⎛⎜⎜⎜⎜⎝
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�
�1�2

�
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��2∕3 ,

− 0.6934
6

�
�1�2

�
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�
y

⎞⎟⎟⎟⎟⎠

number of the unknown parameters, a physical constrain 
is presented in Eq. (29) which is the product of the dimen-
sionless velocity profile into the dimensionless tempera-
ture distribution throughout the area of the geometry.

(29)

1

∫
0

u(y)T(y)dy = 1
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Then, with applying Eqs. (25) and (29) to Eq. (27), a lin-
ear system of two equations with two variables ( C2 and Nu) 
will appear by solving it; the slit temperature distribution 
will be completely determined.

3.2 � Tube flow

The solution of forced heat convection of the LPTT fluid 
flow in a constant wall temperature tube can be obtained by 

solving Eq. (24) for j = 1. There is no closed-form solution 
for this case, and therefore, the temperature distribution has 
been solved by the Frobenius method. The corresponding 
temperature distribution for the tube flow is presented in 
Eq. (30).

(30)

T(y) = C1

⎛
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By applying the boundary condition given in Eq. (25) 
to Eq. (30) and considering the singularity of Eq. (30) at 
y = 0, the constant C2 vanishes. Suffice it to say that the tem-
perature distribution is finite throughout the cross section. 
Finally, the temperature distribution, up to eight-order terms, 
for the tube flow is presented in Eq. (31) in which C1 is 
replaced by the maximum temperature located at the center 
of the tube.

(31)

T(y) = Tc
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Like the slit case, the Nusselt number and the maximum 
temperature have been calculated using the boundary con-
dition shown in Eq. (26) as well as the physical constrain 
presented in Eq. (32).

(32)

1

∫
0

u(y)T(y)ydy =
1

2

4 � Results and discussion

In this section, the results of forced convective heat trans-
fer of the linear PTT fluid with viscous dissipation through 
constant wall temperature slits and tubes are discussed in 
detail. This study aims to clarify the effects of fluid elas-
ticity ( 0.1 ≤ De ≤ 100 ), extensibility ( 1 ≤ � ≤ 10 ) and the 

Brinkman number ( −10 ≤ Br ≤ 10 ) on the heat transfer 
characteristics in a fully developed regime. The results for 
the tube flow are presented and discussed in detail, while 
those relating to the slit flow are summarized in tabular form 
(for the similarity). For estimating the dimensionless param-
eters that appear in this study, the typical values [36] of 
physical parameters are listed in Table 1. Also, the reliability 
of the present results is gained for the Newtonian fluid in 
tubes and slits in Sect. 4.1.
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4.1 � Validation

The authors believe that the existing studies on forced con-
vection of the LPTT fluid flow do not match the present 
work and cannot be used for validation. The present results 
have been therefore validated only in the Newtonian case 
( De = 0 and � = 0 ) with those available in the literature. 
In the present work, the Nusselt number for a constant wall 
temperature tube flow has been calculated as Nu = 3.6571 
which closely matches the value of Nu = 3.66 [32, 37]. For 
the slit case, the Nusselt number in a constant wall tempera-
ture slit is Nu = 7.541 [32], and this investigation revealed 
the value of Nu = 7.5407 . It can be concluded that the pre-
sent results are in good correspondence with those available 
in the literature. In Sect. 4.2, the effects of either negative or 
positive Brinkman numbers as well as the fluid elasticity on 
the heat transfer characteristics are examined.

4.2 � Effects of Brinkman number and fluid elasticity

Figure 1 demonstrates the effect of negative Brinkman num-
bers, namely Br = −10 , − 1 and − 0.1, on the dimensionless 
temperature, considering different values of the extensibil-
ity parameter ( � ) and the Deborah number (De). By con-
sidering the definition of the Brinkman number, given by 
Br = 𝜂U2∕k(T̃w − T̃m) , at negative Brinkman numbers there 
is fluid cooling adjacent to the wall. Figure 1 shows that at 
fixed values of � and De, by increasing the Brinkman num-
ber, the flow temperature and its temperature gradient in the 
vicinity of the wall fall, leading to a smaller Nusselt number. 
As demonstrated in Fig. 1, at De = 0.1 when Br increases 
from Br = −10 to Br = −0.1 , the respective Nusselt numbers 
decrease dramatically from Nu = 38.4616 to Nu = 4.1799 . 
Indeed, higher values of Br strengthen the cooling process 
in the wall area, where the viscous dissipation effect is the 
strongest. Following a diametrically opposed trend, the cen-
terline temperature, Tc , increases by Br and the temperature 
profiles in the vicinity of the core region displace upward in 
the radial direction. According to Fig. 1, by increasing De 

Table 1   Typical values of 
physical and geometrical 
parameters used for estimating 
the dimensionless parameters in 
the present study

Parameter Value Unit

Br �U2

k(Tw−Tm)
=

9.245(0.2054)2

0.1067(210−200)
= 0.3655 –

cp 840 J kg−1 K−1

De �U∕H = 0.0018(0.2054)∕0.0125 = 0.0296 –
h Nuk

dh
=

{
(1.7028)(0.1067)∕0.025 = 7.2675 tube

(4.9363)(0.1067)∕0.05 = 10.5341 slit

Wm−2 K−1

H 0.0125 m

k k0(k
∗
0
+ k∗

s
T)

= 0.08(0.7753 + 0.00118(273.15 + 200))

= 0.1067

Wm−1 K−1

Nu
{

1.7065 tube

4.9363 slit

–

R 0.0125 m

U Re�

�D
=

0.5(9.245)

900(0.025)
= 0.2054 ms−1

� 0.1 –
� �0aT

= 10

{
exp[�

(
1

Tm + 273.15
−

1

T0 + 273.15

)
]

}

= 10
{
exp[1720

(
1

200 + 273.15
−

1

190 + 273.15

)
]
}

= 9.245

Pa s

� �0aT

= 0.002

{
exp[�

(
1

T + 273.15
−

1

T0 + 273.15

)
]

}

= 0.002
{
exp[1720

(
1

200 + 273.15
−

1

190 + 273.15

)
]
}

= 0.0018

s

� 900 kg m−3
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the Nusselt number decreases and the centerline temperature 
increases. Consequently, the Deborah number intensifies the 
effect of the Brinkman number, meaning that the higher the 
Deborah number, the higher the Brinkman number, lead-
ing to lower Nusselt numbers, but higher centerline tem-
peratures. Moreover, the increasing De causes a wider blunt 
velocity distribution in the core region as well as a lower 
value of centerline velocity, leading to weaker heat convec-
tion in the vicinity of the core. This is why the lowest value 
of the centerline temperature is recorded for De = 0.1 , and 
the centerline temperature increases as De increases. Regard-
ing the rheological aspect, when De increases the fluid shear-
thinning behavior intensifies which results in a better heat 
distribution in the flow as shown in Fig. 1. Furthermore, as 

Br increases, the effect of De seems to be lessened. In other 
words, when the Brinkman number increases from Br = −10 
to Br = −0.1 , the deviation between the three temperature 
profiles nearly vanishes (for either the Nusselt number or the 
centerline temperature). For instance, at Br = −10 we have 
Nu = 38.4616 at De = 0.1 and Nu = 5.1371 at De = 100 , 
while the corresponding values at Br = −0.1 are nearly the 
same, Nu = 4.1799 and Nu = 4.1760 , respectively. And the 
same goes for the centerline temperature values.

Figure 1 also depicts the effect of the fluid extensibility 
parameter on the temperature distribution. It is found that at 
a certain Brinkman number, � decreases the wall temperature 
gradient and therefore Nu, but it also increases the center-
line temperature which is apparent by considering Fig. 1b. 

Fig. 1   Dimensionless tempera-
ture distribution for negative 
Brinkman numbers in constant 
wall temperature tubes a ε = 1 
and b ε = 10
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Indeed, the extensibility parameter affects the temperature 
profile in the same way as the Deborah number. For exam-
ple, at Br = −10 and De = 0.1 as demonstrated in Fig. 1b the 
Nusselt number is equal to Nu = 38.4616 at � = 1 , while it 
is decreased to Nu = 29.9092 at � = 10.

Similarly, Fig. 2 illustrates the effects of positive Brink-
man numbers on temperature distribution in the LPTT fluid. 
It is worthwhile mentioning that, as a fact, the Nusselt num-
ber decreases continuously with the Brinkman number and 

thus it has lower values at positive Brinkman numbers. Gen-
erally, nearly all the trends presented at positive Brinkman 
numbers are opposite to those shown at negative Brinkman 
numbers. When the Brinkman number is greater than zero, 
flow is supposed to be heated, since the wall temperature 
is larger than the mean temperature. But it is revealed that 
at Br = 0.1 the flow is cooled further. Such small positive 
values of Br behave in the same way as Br = 0 does. At 
these values, the dominance of viscous dissipation is not 

Fig. 2   Dimensionless tem-
perature distribution for positive 
Brinkman numbers in constant 
wall temperature tubes a ε = 1 
and b ε = 10
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strong enough to overcome fluid cooling, and therefore, the 
fluid in the vicinity of the wall becomes colder. As shown 
in Fig. 2, at Br = 0.1 and � = 1 , when De = 0.1 , the fluid is 
cooled down and there is a negative temperature gradient 
next to the wall. When the Deborah number increases from 
De = 0.1 to De = 100 , because of an improvement in the 
fluid shear-thinning behavior, both the Nusselt number and 
centerline temperature increase, and the temperature profiles 
move upward entirely. As Br increases, the viscous dissipa-
tion effect will be stronger and much more energy will be 
produced in the flow. As depicted in Fig. 2, for the case 
Br = 1 , the viscous dissipation effect overcomes the cooling 
effect and the Nusselt number decreases to a negative num-
ber at De = 0.1 . Indeed, at this moment there is the heating 
process in the flow which is borne out with the positive wall 
temperature gradient, leading to a negative Nusselt number 
( Nu = −1.0723 ). In this condition and at a constant Brink-
man number, when the Deborah number increases, because 
of a larger value of velocity adjacent to the wall, the flow 

becomes warm faster than other areas, augmenting the heat-
ing process. As a consequence, the temperature profile in the 
vicinity of the wall moves upward which causes the tempera-
ture gradient to be positive, thereby resulting in a positive 
Nusselt number as well ( Nu = 4.0686 at De = 100 ). Like the 
cooling process, when De increases, the centerline velocity 
becomes lower, weakening the heat convection in the core 
region. For this reason, at higher De the centerline tempera-
ture follows a downward trend. In the following, through 
further growth in the Brinkman number up to Br = 10 , a 
dramatic fall has been observed in the value of Nu, imply-
ing too weak heat convection in the flow ( Nu = −55.9386 ). 
At this moment, the strength of the viscous dissipation is 
so much that causes difficulty in proper distribution of the 
heat generated as it can be seen in the case of De = 0.1 . 
Since a huge amount of energy is accumulated next to the 
wall, where the viscous dissipation effect is the highest, the 
heat convection is too weak which causes the flow tempera-
ture to remain negative at radial distances more than y ≈ 5 . 
Conversely, the flow temperature in the core region is by far 
higher than other areas ( Tc ≈ 14 ). Again, by increasing De 
there will be better heat distribution throughout the flow and 
at De = 100 it is much better where the temperature profile 
varies steadily in the radial coordinate ( Nu = 3.1851 ). In 
fluid heating, at higher Deborah numbers the value of the 
centerline temperature falls ( Tc ≈ 2 ), so the flow in the core 
region will be heated slightly which is attributed to a lower 
centerline velocity.

As mentioned earlier, the extensibility parameter only 
intensifies the Deborah number effect. In comparison with 
Fig. 2a, the temperature profiles in Fig. 2b become closer to 
each other and there will be a lower deviation between them, 
leading to better heat distribution.

Figure 3a, b shows the impact of the fluid elasticity shown 
by �De2 on the heat transfer characteristics. As explained 
before, it is clear from the line graphs that for the cases in 
which Br = 0.2 and Br = 1 there is fluid heating in the flow, 
while other cases are related to the cooling process.

According to the Fig. 3a, the Nusselt number depends 
heavily on the Brinkman number and it isincreases by 
decreasing the Brinkman number from positive to negative 
values.

Figures 4, 5 and 6 show the slit case which shows simi-
lar results in comparison with the tube case.

In “Appendix,” the results of the Nusselt number and 
the centerline temperature are reported (Tables 2, 3, 4, 
5, 6, 7, 8, 9) for both the tube and slit flows for various 
values of the Brinkman number, Deborah number and the 
extensibility parameter.

Fig. 3   Variations of a Nusselt number and b centerline temperature 
with fluid elasticity �De2 for different Brinkman numbers in tube flow
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Fig. 4   Dimensionless tempera-
ture distribution for negative 
Brinkman numbers in constant 
wall temperature slits a ε = 1 
and b ε = 10
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Fig. 5   Dimensionless tem-
perature distribution for positive 
Brinkman numbers in constant 
wall temperature slits a ε = 1 
and b ε = 10
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5 � Conclusions

In this article, exact analytical solutions for heat convec-
tion in the simplified PTT fluid flow through tubes and slits 
whose walls are subjected to a constant temperature have 

been presented for the first time. The viscous dissipation 
term is taken into account. Expressions for the temperature 
distribution are derived in closed form for the slit case 
and in terms of a Frobenius series for the tube case. It is 
shown that the Nusselt number is heavily dependent on 
the Brinkman number and decreases continuously with the 
Brinkman number. The results revealed that the variations 
in the cooling and heating processes are inversed. In the 
cooling process, the Nusselt number decreases when the 
Deborah number and the extensibility parameter increase, 
while the centerline temperature increases. However, dur-
ing the heating process the Nusselt number increases and 
the centerline temperature decreases. In addition, they 
vary in two completely different trends when the Deborah 
number and the Brinkman number increase.
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Appendix: Tube and slit Nusselt number 
and centerline temperature

For the sake of conciseness, the Nusselt number and cen-
terline temperature data for both the tube and slit cases are 
given in Tables 2, 3, 4, 5, 6, 7, 8 and 9. Results have been 
calculated for Br = −10 , − 1, − 0.1, 0, 0.1, 1, 10, for three 
scores of the extensibility parameters � = 1 , 

√
10 and 10 

and for a range of Deborah numbers 0.1 ≤ De ≤ 100.

Fig. 6   Variations of a Nusselt number and b centerline temperature 
with fluid elasticity �De2 for different Brinkman numbers in slit flow
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Table 2   Nusselt number and 
centerline temperature values 
for the LPTT fluid flow in 
a constant wall temperature 
tube for negative Brinkman 
numbers at different values of 
extensibility parameter and 
Deborah number

De Br = −10 Br = −1 Br = −0.1 Br = 0

Nu Tc Nu Tc Nu Tc Nu Tc

� = 1

0.1 38.4616 0.1822 8.1439 1.3624 4.1799 1.7628 3.7213 1.8139
1 20.0768 0.7145 5.7783 1.6869 4.1785 1.8379 3.9986 1.8554
10 8.4332 1.5037 4.5723 1.8315 4.1766 1.8675 4.1326 1.8715
20 6.9181 1.6319 4.4291 1.8478 4.1764 1.8707 4.1482 1.8732
30 6.2873 1.6867 4.3702 1.8544 4.1762 1.8719 4.1546 1.8739
40 5.9276 1.7183 4.3368 1.8582 4.1761 1.8727 4.1583 1.8743
50 5.6904 1.7394 4.3148 1.8606 4.1761 1.8731 4.1607 1.8745
60 5.5202 1.7545 4.2991 1.8624 4.1761 1.8735 4.1624 1.8747
70 5.3910 1.7660 4.2872 1.8637 4.1760 1.8737 4.1637 1.8749
80 5.2891 1.7752 4.2778 1.8648 4.1760 1.8739 4.1647 1.8750
90 5.2061 1.7826 4.2701 1.8656 4.1760 1.8741 4.1655 1.8751
100 5.1371 1.7888 4.2638 1.8663 4.1760 1.8742 4.1662 1.8751

� =
√
10

0.1 34.6784 0.2359 7.6291 1.4381 4.1798 1.7815 3.7838 1.8242
1 15.9939 0.9487 5.3311 1.7421 4.1779 1.8495 4.0488 1.8618
10 7.1325 1.6134 4.4492 1.8455 4.1764 1.8702 4.1460 1.8730
20 6.0667 1.7061 4.3497 1.8567 4.1762 1.8724 4.1569 1.8741
30 5.6276 1.7449 4.3090 1.8613 4.1761 1.8733 4.1613 1.8746
40 5.3783 1.7672 4.2860 1.8639 4.1760 1.8738 4.1638 1.8749
50 5.2144 1.7819 4.2709 1.8655 4.1760 1.8741 4.1654 1.8750
60 5.0970 1.7924 4.2601 1.8667 4.1760 1.8743 4.1666 1.8752
70 5.0080 1.8004 4.2519 1.8677 4.1760 1.8745 4.1675 1.8753
80 4.9378 1.8068 4.2455 1.8684 4.1759 1.8746 4.1682 1.8753
90 4.8808 1.8119 4.2402 1.8690 4.1759 1.8748 4.1688 1.8754
100 4.8334 1.8162 4.2359 1.8694 4.1759 1.8748 4.1693 1.8754
� = 10

0.1 29.9092 0.3384 6.9850 1.5286 4.1795 1.8028 3.8601 1.8360
1 12.7302 1.1698 4.9936 1.7825 4.1774 1.8577 4.0862 1.8662
10 6.2165 1.6929 4.3636 1.8552 4.1762 1.8721 4.1554 1.8740
20 5.4746 1.7586 4.2949 1.8629 4.1761 1.8736 4.1628 1.8748
30 5.1711 1.7857 4.2669 1.8660 4.1760 1.8742 4.1659 1.8751
40 4.9993 1.8012 4.2511 1.8678 4.1760 1.8745 4.1676 1.8753
50 4.8865 1.8114 4.2408 1.8689 4.1759 1.8747 4.1687 1.8754
60 4.8058 1.8187 4.2334 1.8697 4.1759 1.8749 4.1695 1.8755
70 4.7448 1.8242 4.2278 1.8704 4.1759 1.8750 4.1701 1.8755
80 4.6966 1.8286 4.2233 1.8708 4.1759 1.8751 4.1706 1.8756
90 4.6576 1.8321 4.2198 1.8712 4.1759 1.8752 4.1710 1.8756
100 4.6251 1.8351 4.2168 1.8716 4.1759 1.8753 4.1713 1.8757
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Table 3   Nusselt number 
and centerline temperature 
values for LPTT fluid flow in 
a constant wall temperature 
tube for positive Brinkman 
numbers at different values of 
extensibility parameter and 
Deborah number

De Br = 0 Br = 0.1 Br = 1 Br = 10

Nu Tc Nu Tc Nu Tc Nu Tc

� = 1

0.1 3.7213 1.8139 3.2589 1.8663 − 1.0723 2.4046 − 55.9386 13.9279
1 3.9986 1.8554 3.8184 1.8731 2.1773 2.0387 − 15.9875 4.3877
10 4.1326 1.8715 4.0885 1.8756 3.6906 1.9123 − 0.3830 2.3138
20 4.1482 1.8732 4.1201 1.8758 3.8665 1.8990 1.2920 2.1443
30 4.1546 1.8739 4.1331 1.8759 3.9386 1.8936 1.9715 2.0785
40 4.1583 1.8743 4.1404 1.8759 3.9795 1.8905 2.3545 2.0421
50 4.1607 1.8745 4.1452 1.8759 4.0063 1.8885 2.6053 2.0185
60 4.1624 1.8747 4.1487 1.8760 4.0255 1.8871 2.7845 2.0018
70 4.1637 1.8749 4.1513 1.8760 4.04 1.8861 2.9199 1.9893
80 4.1647 1.8750 4.1534 1.8760 4.0515 1.8852 3.0266 1.9795
90 4.1655 1.8751 4.1551 1.8760 4.0608 1.8845 3.1132 1.9715
100 4.1662 1.8751 4.1565 1.8760 4.0686 1.8840 3.1851 1.9650

� =
√
10

0.1 3.7838 1.8242 3.3852 1.8678 − 0.3199 2.3050 − 46.0977 10.4188
1 4.0488 1.8618 3.9194 1.8741 2.7462 1.9886 − 9.8613 3.4717
10 4.1460 1.8730 4.1157 1.8757 3.8418 1.9008 1.0588 2.1673
20 4.1569 1.8741 4.1376 1.8759 3.9637 1.8917 2.2068 2.0560
30 4.1613 1.8746 4.1465 1.8759 4.0134 1.8880 2.6715 2.0124
40 4.1638 1.8749 4.1516 1.8760 4.0415 1.8859 2.9332 1.9881
50 4.1654 1.8750 4.1549 1.8760 4.0599 1.8846 3.1046 1.9723
60 4.1666 1.8752 4.1573 1.8760 4.0731 1.8836 3.2269 1.9611
70 4.1675 1.8753 4.1591 1.8760 4.0830 1.8829 3.3194 1.9527
80 4.1682 1.8753 4.1605 1.8760 4.0909 1.8823 3.3922 1.9461
90 4.1688 1.8754 4.1616 1.8760 4.0973 1.8818 3.4513 1.9408
100 4.1693 1.8754 4.1626 1.8760 4.1026 1.8815 3.5003 1.9363
� = 10

0.1 3.8601 1.8360 3.5392 1.8697 0.5811 2.1991 − 34.7394 7.7604
1 4.0862 1.8662 3.9950 1.8748 3.1691 1.9534 − 5.5129 2.8986
10 4.1554 1.8740 4.1345 1.8759 3.9467 1.8930 2.0471 2.0712
20 4.1628 1.8748 4.1496 1.8760 4.0306 1.8867 2.8323 1.9974
30 4.1659 1.8751 4.1558 1.8760 4.0648 1.8842 3.1498 1.9682
40 4.1676 1.8753 4.1592 1.8760 4.0840 1.8828 3.3285 1.9519
50 4.1687 1.8754 4.1615 1.8760 4.0966 1.8819 3.4454 1.9413
60 4.1695 1.8755 4.1631 1.8760 4.1057 1.8812 3.5289 1.9337
70 4.1701 1.8755 4.1644 1.8761 4.1125 1.8807 3.5919 1.9281
80 4.1706 1.8756 4.1653 1.8761 4.1178 1.8803 3.6416 1.9236
90 4.1710 1.8756 4.1661 1.8761 4.1222 1.88 3.6819 1.92
100 4.1713 1.8757 4.1668 1.8761 4.1258 1.8798 3.7154 1.9170
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Table 4   Nusselt number data as a function of �De2 in a tube flow for 
different values of Brinkman number

���
� Br = −1 Br = −0.2 Br = 0 Br = 0.2 Br = 1

0.001 8.5845 4.6884 3.6664 2.6245 − 1.7430
0.01 8.1439 4.6348 3.7213 2.7928 − 1.0723
0.02 7.8564 4.6003 3.7564 2.9003 − 0.6481
0.03 7.6565 4.5764 3.7805 2.9740 − 0.3591
0.04 7.5039 4.5583 3.7988 3.0298 − 0.1414
0.05 7.3809 4.5438 3.8134 3.0745 0.0322
0.06 7.2783 4.5317 3.8256 3.1116 0.1760
0.07 7.1904 4.5213 3.8360 3.1433 0.2983
0.08 7.1137 4.5124 3.8450 3.1708 0.4043
0.09 7.0458 4.5044 3.8530 3.1951 0.4978
0.1 6.9850 4.4973 3.8601 3.2168 0.5811
0.2 6.5897 4.4513 3.9061 3.3566 1.1155
0.3 6.3677 4.4256 3.9316 3.4342 1.4104
0.4 6.2165 4.4082 3.9489 3.4868 1.6093
0.5 6.1034 4.3952 3.9618 3.5259 1.7570
0.6 6.0139 4.3849 3.9720 3.5568 1.8733
0.7 5.9405 4.3765 3.9803 3.5821 1.9684
0.8 5.8784 4.3694 3.9873 3.6034 2.0485
0.9 5.8250 4.3632 3.9934 3.6217 2.1173
1.0 5.7783 4.3579 3.9986 3.6377 2.1773
2.0 5.4952 4.3256 4.0304 3.7343 2.5386
3.0 5.3490 4.3089 4.0468 3.7838 2.7235
4.0 5.2538 4.2981 4.0574 3.8160 2.8435
5.0 5.1845 4.2902 4.0651 3.8394 2.9305
6.0 5.1308 4.2841 4.0710 3.8575 2.9978
7.0 5.0874 4.2791 4.0759 3.8721 3.0521
8.0 5.0512 4.2750 4.0799 3.8842 3.0973
9.0 5.0204 4.2715 4.0833 3.8946 3.1358
10.0 4.9936 4.2685 4.0862 3.9036 3.1691
20.0 4.8359 4.2506 4.1036 3.9564 3.3651
30.0 4.7572 4.2417 4.1123 3.9827 3.4626
40.0 4.7068 4.2359 4.1178 3.9996 3.5249
50.0 4.6705 4.2318 4.1218 4.0117 3.5697
60.0 4.6427 4.2287 4.1249 4.0209 3.6040
70.0 4.6203 4.2261 4.1273 4.0284 3.6316
80.0 4.6017 4.2240 4.1294 4.0346 3.6545
90.0 4.5860 4.2222 4.1311 4.0398 3.6739
100.0 4.5723 4.2207 4.1326 4.0444 3.6906

Table 5   Centerline temperature values as a function of �De2 in tube 
flow for different values of Brinkman number

���
� Br = −1 Br = − 0.2 Br = 0 Br = 0.2 Br = 1

0.001 1.2950 1.6885 1.8044 1.9279 2.5048
0.01 1.3624 1.7131 1.8139 1.9202 2.4046
0.02 1.4050 1.7282 1.8197 1.9157 2.3470
0.03 1.4341 1.7383 1.8236 1.9128 2.3099
0.04 1.4560 1.7459 1.8266 1.9107 2.2830
0.05 1.4735 1.7518 1.8289 1.9091 2.2621
0.06 1.4880 1.7567 1.8308 1.9077 2.2451
0.07 1.5003 1.7608 1.8324 1.9066 2.2310
0.08 1.5109 1.7644 1.8337 1.9056 2.2189
0.09 1.5203 1.7675 1.8349 1.9048 2.2083
0.1 1.5286 1.7702 1.8360 1.9040 2.1991
0.2 1.5821 1.7876 1.8428 1.8994 2.1419
0.3 1.6114 1.7970 1.8464 1.8970 2.1119
0.4 1.6311 1.8032 1.8488 1.8954 2.0923
0.5 1.6457 1.8078 1.8505 1.8942 2.0780
0.6 1.6571 1.8114 1.8519 1.8933 2.0669
0.7 1.6665 1.8143 1.8530 1.8925 2.0580
0.8 1.6743 1.8167 1.8539 1.8919 2.0506
0.9 1.6811 1.8188 1.8547 1.8913 2.0442
1.0 1.6869 1.8206 1.8554 1.8909 2.0387
2.0 1.7221 1.8312 1.8595 1.8881 2.0065
3.0 1.7399 1.8366 1.8615 1.8867 1.9905
4.0 1.7514 1.84 1.8628 1.8858 1.9804
5.0 1.7598 1.8425 1.8637 1.8852 1.9731
6.0 1.7662 1.8444 1.8645 1.8847 1.9675
7.0 1.7714 1.8460 1.8650 1.8843 1.9630
8.0 1.7757 1.8472 1.8655 1.8839 1.9593
9.0 1.7793 1.8483 1.8659 1.8837 1.9561
10.0 1.7825 1.8492 1.8662 1.8834 1.9534
20.0 1.8010 1.8546 1.8683 1.8820 1.9377
30.0 1.8102 1.8573 1.8692 1.8813 1.93
40.0 1.8160 1.8590 1.8699 1.8808 1.9251
50.0 1.8202 1.8602 1.8703 1.8805 1.9216
60.0 1.8234 1.8611 1.8707 1.8802 1.9190
70.0 1.8260 1.8619 1.8709 1.88 1.9168
80.0 1.8281 1.8625 1.8712 1.8799 1.9151
90.0 1.8299 1.8630 1.8713 1.8797 1.9136
100.0 1.8315 1.8634 1.8715 1.8796 1.9123
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Table 6   Nusselt number 
and centerline temperature 
values for LPTT fluid flow in 
a constant wall temperature 
slit for negative Brinkman 
numbers at different values of 
extensibility parameter and 
Deborah number

De Br = −10 Br = −1 Br = −0.1 Br = 0

Nu Tc Nu Tc Nu Tc Nu Tc

ε = 1
0.1 62.1886 0.4510 14.0384 1.1776 8.2509 1.3085 7.5941 1.3239
1 36.2854 0.8508 10.9670 1.2931 8.2496 1.3141 7.9512 1.3549
10 15.8619 1.2267 8.9392 1.3564 8.2365 1.37 8.1583 1.3716
20 13.1526 1.2795 8.6845 1.3639 8.2334 1.3726 8.1833 1.3736
30 12.0222 1.3018 8.5789 1.3670 8.2321 1.3736 8.1935 1.3744
40 11.3768 1.3145 8.5188 1.3687 8.2313 1.3742 8.1994 1.3748
50 10.9511 1.3229 8.4792 1.3698 8.2308 1.3746 8.2032 1.3751
60 10.6454 1.3290 8.4509 1.3706 8.2304 1.3749 8.2059 1.3753
70 10.4134 1.3336 8.4294 1.3713 8.2302 1.3751 8.2080 1.3755
80 10.2302 1.3372 8.4124 1.3717 8.2299 1.3752 8.2097 1.3756
90 10.0812 1.3401 8.3986 1.3721 8.2298 1.3754 8.2110 1.3757
100 9.9572 1.3426 8.3871 1.3725 8.2296 1.3755 8.2121 1.3758

� =
√
10

0.1 58.2948 0.5056 13.5153 1.1995 8.2553 1.3162 7.6602 1.3299
1 29.2320 0.9754 10.2414 1.3166 8.2496 1.3566 8.0272 1.3611
10 13.5364 1.2720 8.7204 1.3629 8.2339 1.3722 8.1798 1.3733
20 11.6264 1.3096 8.5420 1.3680 8.2316 1.3740 8.1971 1.3747
30 10.8383 1.3251 8.4688 1.3701 8.2307 1.3747 8.2042 1.3752
40 10.3906 1.3340 8.4273 1.3713 8.2301 1.3751 8.2082 1.3755
50 10.0960 1.3398 8.34 1.3721 8.2298 1.3754 8.2109 1.3757
60 9.8850 1.3440 8.3804 1.3727 8.2295 1.3755 8.2127 1.3759
70 9.7250 1.3472 8.3656 1.3731 8.2293 1.3757 8.2142 1.3760
80 9.5989 1.3497 8.3540 1.3734 8.2292 1.3758 8.2153 1.3761
90 9.4964 1.3517 8.3445 1.3737 8.2290 1.3759 8.2162 1.3761
100 9.4111 1.3534 8.3366 1.3739 8.2289 1.3760 8.2170 1.3762
ε = 10
0.1 52.0066 0.5973 12.7288 1.2305 8.2585 1.3270 7.7548 1.3382
1 23.4961 1.0810 9.6726 1.3344 8.2445 1.3627 8.0853 1.3658
10 11.8951 1.3043 8.5671 1.3673 8.2319 1.3737 8.1947 1.3745
20 10.5635 1.3306 8.4433 1.3709 8.2303 1.3749 8.2067 1.3754
30 10.0181 1.3414 8.3928 1.3723 8.2297 1.3754 8.2116 1.3758
40 9.7093 1.3475 8.3642 1.3731 8.2293 1.3757 8.2143 1.3760
50 9.5066 1.3515 8.3454 1.3736 8.2291 1.3759 8.2161 1.3761
60 9.3615 1.3544 8.3320 1.3740 8.2289 1.3760 8.2174 1.3762
70 9.2516 1.3566 8.3219 1.3743 8.2287 1.3761 8.2184 1.3763
80 9.1650 1.3583 8.3139 1.3745 8.2286 1.3762 8.2192 1.3764
90 9.0947 1.3597 8.3074 1.3747 8.2285 1.3762 8.2198 1.3764
100 9.0363 1.3609 8.3020 1.3749 8.2285 1.3763 8.2203 1.3764
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Table 7   Nusselt number 
and centerline temperature 
values for LPTT fluid flow in 
a constant wall temperature 
slit for positive Brinkman 
numbers at different values of 
extensibility parameter and 
Deborah number

De Br = 0 Br = 0.1 Br = 1 Br = 10

Nu Tc Nu Tc Nu Tc Nu Tc

ε  = 1
0.1 7.5941 1.3239 6.9344 1.3396 0.8690 1.4893 − 72.5868 3.9464
1 7.9512 1.3549 7.6473 1.3612 4.8924 1.4195 − 24.6043 2.1366
10 8.1583 1.3716 8.0801 1.3731 7.3750 1.3869 0.2189 1.5318
20 8.1833 1.3736 8.1331 1.3745 7.6811 1.3833 3.1190 1.4737
30 8.1935 1.3744 8.1550 1.3751 7.8076 1.3818 4.3093 1.4505
40 8.1994 1.3748 8.1674 1.3754 7.8795 1.3810 4.9839 1.4376
50 8.2032 1.3751 8.1756 1.3757 7.9268 1.3804 5.4270 1.4291
60 8.2059 1.3753 8.1814 1.3758 7.9608 1.3801 5.7443 1.4231
70 8.2080 1.3755 8.1859 1.3759 7.9865 1.3798 5.9845 1.4186
80 8.2097 1.3756 8.1894 1.3760 8.0068 1.3795 6.1740 1.4150
90 8.2110 1.3757 8.1922 1.3761 8.0233 1.3793 6.3278 1.4121
100 8.2121 1.3758 8.1946 1.3762 8.0370 1.3792 6.4557 1.4098

� =
√
10

0.1 7.6602 1.3299 7.0629 1.3437 1.5885 1.4748 − 63.0771 3.5089
1 8.0272 1.3611 7.8047 1.3657 5.7916 1.4070 − 15.3090 1.8861
10 8.1798 1.3733 8.1256 1.3743 7.6380 1.3838 2.7123 1.4817
20 8.1971 1.3747 8.1626 1.3753 7.8517 1.3813 4.7234 1.4426
30 8.2042 1.3752 8.1777 1.3757 7.9394 1.3803 5.5442 1.4269
40 8.2082 1.3755 8.1863 1.3759 7.9890 1.3797 6.0082 1.4182
50 8.2109 1.3757 8.1919 1.3761 8.0216 1.3794 6.3125 1.4124
60 8.2127 1.3759 8.1960 1.3762 8.0449 1.3791 6.5302 1.4084
70 8.2142 1.3760 8.1990 1.3763 8.0626 1.3789 6.6949 1.4053
80 8.2153 1.3761 8.2014 1.3763 8.0765 1.3787 6.8247 1.4029
90 8.2162 1.3761 8.2034 1.3764 8.0879 1.3786 6.93 1.4009
100 8.2170 1.3762 8.2050 1.3764 8.0973 1.3785 7.0176 1.3993
ε = 10
0.1 7.7548 1.3382 7.2497 1.3495 2.6388 1.4554 − 49.9816 2.9783
1 8.0853 1.3658 7.9260 1.3690 6.4876 1.3979 − 8.3664 1.7183
10 8.1947 1.3745 8.1574 1.3752 7.8218 1.3817 4.4424 1.4480
20 8.2067 1.3754 8.1830 1.3758 7.9698 1.3799 5.8291 1.4215
30 8.2116 1.3758 8.1934 1.3761 8.0302 1.3793 6.3929 1.4109
40 8.2143 1.3760 8.1993 1.3763 8.0644 1.3789 6.7111 1.4050
50 8.2161 1.3761 8.2032 1.3764 8.0867 1.3786 6.9195 1.4011
60 8.2174 1.3762 8.2059 1.3764 8.1027 1.3784 7.0685 1.3983
70 8.2184 1.3763 8.2080 1.3765 8.1148 1.3783 7.1812 1.3962
80 8.2192 1.3764 8.2097 1.3765 8.1244 1.3782 7.27 1.3946
90 8.2198 1.3764 8.2110 1.3766 8.1321 1.3781 7.3420 1.3933
100 8.2203 1.3764 8.2121 1.3766 8.1386 1.3780 7.4019 1.3922
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Table 8   Nusselt number data as a function of �De2 in a slit flow for 
different values of Brinkman number

�De2 Br = −1 Br = −0.2 Br = 0 Br = 0.2 Br = 1

0.001 14.3941 8.9427 7.5474 6.1387 0.3682
0.01 14.0384 8.9049 7.5941 6.2719 0.8690
0.02 13.7592 8.8748 7.6297 6.3748 1.2554
0.03 13.5457 8.8516 7.6564 6.4525 1.5472
0.04 13.3728 8.8326 7.6777 6.5148 1.7814
0.05 13.2277 8.8166 7.6954 6.5668 1.9765
0.06 13.1029 8.8027 7.7105 6.6112 2.1435
0.07 12.9934 8.7905 7.7236 6.65 2.2892
0.08 12.8960 8.7796 7.7351 6.6844 2.4183
0.09 12.8084 8.7698 7.7455 6.7152 2.5340
0.1 12.7288 8.7609 7.7548 6.7431 2.6388
0.2 12.1877 8.6995 7.8172 6.9308 3.3436
0.3 11.8674 8.6627 7.8532 7.0403 3.7551
0.4 11.6430 8.6367 7.8780 7.1164 4.0410
0.5 11.4721 8.6169 7.8967 7.1740 4.2576
0.6 11.3352 8.6009 7.9116 7.2201 4.4305
0.7 11.2215 8.5876 7.9239 7.2581 4.5736
0.8 11.1247 8.5763 7.9343 7.2904 4.6950
0.9 11.0409 8.5665 7.9433 7.3183 4.8001
1.0 10.9670 8.5578 7.9512 7.3429 4.8924
2.0 10.5115 8.5039 7.9992 7.4933 5.4584
3.0 10.2712 8.4753 8.0242 7.5721 5.7550
4.0 10.1126 8.4564 8.0405 7.6238 5.9498
5.0 9.9965 8.4425 8.0524 7.6616 6.0921
6.0 9.9059 8.4316 8.0616 7.6910 6.2029
7.0 9.8324 8.4228 8.0691 7.7149 6.2927
8.0 9.7709 8.4154 8.0754 7.7348 6.3678
9.0 9.7183 8.4091 8.0807 7.7518 6.4319
10.0 9.6726 8.4036 8.0853 7.7666 6.4876
20.0 9.4010 8.3708 8.1126 7.8541 6.8174
30.0 9.2641 8.3542 8.1262 7.8980 6.9832
40.0 9.1759 8.3435 8.1350 7.9262 7.0897
50.0 9.1123 8.3358 8.1413 7.9466 7.1664
60.0 9.0634 8.3298 8.1461 7.9622 7.2255
70.0 9.0239 8.3250 8.15 7.9748 7.2731
80.0 8.9912 8.3210 8.1532 7.9853 7.3125
90.0 8.9633 8.3176 8.1559 7.9942 7.3460
100.0 8.9392 8.3147 8.1583 8.0019 7.3750

Table 9   Centerline temperature values as a function of �De2 in slit 
flow for different values of Brinkman number

�De2 Br = −1 Br = −0.2 Br = 0 Br = 0.2 Br = 1

0.001 1.1619 1.2864 1.3197 1.3539 1.5001
0.01 1.1776 1.2932 1.3239 1.3554 1.4893
0.02 1.1894 1.2983 1.3271 1.3566 1.4814
0.03 1.1983 1.3021 1.3295 1.3575 1.4756
0.04 1.2053 1.3051 1.3314 1.3582 1.4711
0.05 1.2111 1.3076 1.3330 1.3588 1.4674
0.06 1.2160 1.3097 1.3343 1.3594 1.4643
0.07 1.2203 1.3116 1.3355 1.3598 1.4616
0.08 1.2241 1.3132 1.3365 1.3602 1.4593
0.09 1.2274 1.3146 1.3374 1.3605 1.4572
0.1 1.2305 1.3159 1.3382 1.3609 1.4554
0.2 1.2506 1.3245 1.3436 1.3630 1.4434
0.3 1.2621 1.3293 1.3467 1.3642 1.4368
0.4 1.27 1.3326 1.3488 1.3651 1.4323
0.5 1.2759 1.3351 1.3503 1.3657 1.4289
0.6 1.2806 1.3371 1.3516 1.3662 1.4263
0.7 1.2845 1.3387 1.3526 1.3667 1.4242
0.8 1.2878 1.3401 1.3535 1.3670 1.4224
0.9 1.2906 1.3413 1.3542 1.3673 1.4209
1.0 1.2931 1.3423 1.3549 1.3676 1.4195
2.0 1.3080 1.3485 1.3588 1.3692 1.4116
3.0 1.3157 1.3517 1.3609 1.3701 1.4075
4.0 1.3207 1.3538 1.3622 1.3707 1.4049
5.0 1.3244 1.3553 1.3632 1.3711 1.4030
6.0 1.3272 1.3565 1.3639 1.3714 1.4016
7.0 1.3295 1.3574 1.3645 1.3716 1.4004
8.0 1.3314 1.3582 1.3650 1.3718 1.3994
9.0 1.3330 1.3589 1.3655 1.3720 1.3986
10.0 1.3344 1.3595 1.3658 1.3722 1.3979
20.0 1.3427 1.3629 1.3680 1.3731 1.3938
30.0 1.3468 1.3646 1.3691 1.3736 1.3917
40.0 1.3494 1.3657 1.3698 1.3739 1.3904
50.0 1.3513 1.3665 1.3703 1.3741 1.3895
60.0 1.3528 1.3671 1.3707 1.3743 1.3887
70.0 1.3540 1.3675 1.3710 1.3744 1.3882
80.0 1.3549 1.3679 1.3712 1.3745 1.3877
90.0 1.3557 1.3683 1.3714 1.3746 1.3873
100.0 1.3564 1.3686 1.3716 1.3747 1.3869
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