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Abstract
The main objective of this paper is to enhance the robustness of an on–off attitude control under uncertainties while limiting 
the probability of failure in attitude control. To do this, the concept of system optimization is utilized for detailed engineering 
of spacecraft control using reliability-based robust design optimization (RBRDO). The probability of failure of the attitude 
control is chosen by the system designer as the input of the RBRDO algorithm. The single-axis spacecraft attitude is con-
trolled using a combination of the observer-based anti-windup modified PI-D with pulse-width pulse-frequency modulator in 
the presence of external disturbance. The on–off thruster is modeled with a delay followed by a second-order transfer func-
tion. The input frequency of the thruster is limited to 50 Hz. The uncertain parameters are given as the spacecraft moment of 
inertia, thrust level, and thruster delay. The controller gains are determined by using traditional, robust, and reliability-based 
robust design optimizations under uncertainties and disturbance. The simulations are carried out using quasi-normalized 
equations, along with reducing problem variables and computational burden, to obtain more applicable results for a pre-
liminary design. The traditional optimization gives the highest pointing accuracy without uncertainty, whereas the robust 
optimization obtains an approximately flat behavior for the mean of absolute pointing error under uncertainties. Under this 
situation, RBRDO could satisfy the prescribed reliability with a small loss in accuracy for the on–off attitude control of 
spacecraft, but under system limitations.

Keywords  Satellite attitude control · Reliability-based robust design optimization · On–off thruster · Uncertainty

1  Introduction

Spacecraft optimization algorithms are widely used and 
improved in many fields, especially in engineering to 
reduce the cost of design and/or to enhance the performance. 
These algorithms are increasingly utilized to enhance the 
performance of dynamical systems. In solving and optimi-
zation problem, an extremum point is obtained; however, 
the system performance reduces from a suboptimal and/or 

unreliable design to even an unstable behavior under uncer-
tainties. For such situations, uncertainty-based optimization 
methods are suggested. Robust design optimization (RDO) 
algorithms have been developed to increase the robustness 
of systems under uncertainties. To ensure a level of safety, 
reliability-based design optimization (RBDO) has been 
introduced in order to achieve a prescribed probability of 
failure. This approach can also be utilized for subsystem 
design such as control systems [1, 2].

Most of the studies on uncertainty-based optimization 
deals with the system design such as a high-speed PM motor 
design [3], aerospace vehicles [4], and multidisciplinary sys-
tem design for ship [5], satellite, and orbit design [6] using 
robust optimization. A benchmark study of numerical meth-
ods for RBDO is given in [7] describing mono-level RBDO 
approaches, two-level RBDO approaches, decoupled RBDO 
approaches; each of them consists of several methods.

The robust design optimization algorithm was first pub-
lished by Taguchi in 1986 [8]; however, associated sub-
jects such as sensitivity analysis, worst-case analysis, and 
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stochastic linear programming had been utilized before [1]. 
Mulvey presented the benefits of his RDO framework and 
compared it with stochastic linear programming in several 
examples [9].

In this context, several algorithms and frameworks intro-
duced for RDO based on evolutionary algorithms such as 
genetic, simulated annealing, and tabu search algorithms [1, 
10]. The classification of the RDO has been introduced and 
modified as described in details by [1]. The application of 
RDO on subsystem design is increasingly presented, espe-
cially in detailed engineering such as turbomachinery cas-
cades [11], power capacity expansion [12], hybrid electric 
vehicles [13], and aerodynamic loadings for airfoil inverse 
design [14]. Also, robust design optimization is utilized in 
control of dynamical systems such as in [15–17]. In 2016, 
RDO was first utilized in control of satellite by Bruni and 
Celani. They obtained the controller gains for stabilization 
mode with magnetic actuators [18], on–off attitude control 
with observer-based PI-D using Schmitt trigger [19] and 
PWPF modulator [20], and recently, robust technique using 
an integration of global and local derivative-free optimiza-
tion [21].

Under uncertainties and randomness of parameters, the 
design constraints are usually violated, especially in tradi-
tional optimization. Although RDO improve the robustness 
of the design with respect to traditional optimization, it does 
not guarantee the design reliability. The concept of RBDO is 
introduced, when the safety is ensured in uncertain param-
eters and models [1, 2]. The framework and algorithm of 
RBDO are presented and modified in [22–25].

In 1998, the combination of robust and reliable optimiza-
tion was intended and utilized by Wang and Wue [26]. There 
are several frameworks which have presented by researchers 
to improve the reliability-based robust design optimization 
process. This concept is also utilized in crashworthiness 
design of vehicle structure [27] and water supply system 
[28]. There are several works on subsystem design utilizing 
RBDO [29–31] and in aerospace system design such as the 
design of a satellite constellation using collaborative opti-
mization [32], conceptual remote sensing satellite design 
optimization [33], and multidisciplinary system design opti-
mization of on-orbit satellite [8].

There are various control strategies for continuous and 
on–off spacecraft actuation systems. In robust control design 
with continuous actuation, which is beyond the scope of this 
work, two different methods have recently been utilized in 
[34, 35]. In on–off actuation systems, the modulators are 
developed in order to convert the continuous control sig-
nals to on–off signals. The pulse-width pulse-frequency 
(PWPF) modulator is common in on–off attitude control 
due to numerous advantages such as high precision, quasi-
linear behavior, vibration reduction, and low fuel consump-
tion [36]. Modulators are utilized in conjunction with other 

controllers such as proportional–integral–derivative (PID) 
and sliding mode [37]. The PID-type controllers are of high 
interest in practice, because of their simplicity, ease of use, 
and proper performance [38].

There are several PID modifications to improve the per-
formance, namely conditional integration, proportional 
band and conditioning, back calculation, observer-based 
PID controllers, and hybrid algorithm [35, 38]. In the con-
trol literature, when the derivative is fed back, instead of 
a derivative in forward path, the controller is denoted by 
PI-D. The observer-based PID is an anti-windup modifica-
tion, utilized in on–off satellite attitude control using PWPF 
modulator [39]. To reduce the total of design variables and 
computational burden, quasi-normalized equations are uti-
lized as treated in [20].

The robust control design and stability analysis of space-
craft with on–off actuation system are complex because of 
the nonlinearity of the system as treated in [40]. The opti-
mization techniques have opened an alternative approach 
to enhance the performance and robustness of nonlinear 
dynamical systems, especially for spacecraft attitude control. 
In this regard, RDO has recently been utilized in [18, 19] 
as mentioned earlier. A comparative study between RBDO 
and reliability-based robust design optimization (RBRDO) 
in an on–off satellite attitude control has been carried out 
for zero reference input [41]. To the authors’ knowledge, the 
RBRDO in satellite attitude control has not been published 
in the open literature in order to limit the probability of the 
failure of the attitude control, which is the subject of the 
present work. Consequently, an observer-based anti-windup 
modified PI-D with PWPFM is utilized under several practi-
cal limitations.

2 � On–off attitude control

On–off thruster actuators are used in satellite attitude con-
trol, especially when it comes to the need to generate high 
level of torque and fast response of control system. This type 
of actuator requires on–off controllers. A well-known PWPF 
modulator (PWPFM) is combined with classical controllers 
such as PD, PID, and PI-D or modern control algorithms 
such as LQR and sliding mode. In this study, an observer-
based modified PI-D controller described in [20] is, here, 
utilized for satellite attitude control with on–off thruster 
actuators.

2.1 � PWPFM + modified PI‑D controller

The block diagram of a single-axis attitude control of a 
rigid satellite with on–off thruster is shown in Fig. 1 using 
PWPFM and observer-based modified PI-D controller [37]. 
In the block diagram, the angular position of the satellite (�) 
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is compared with the reference input ( �ref ) and generates the 
error signal. This block diagram contains a modified PI-D, 
PWPF modulator, thruster model, satellite dynamic model, 
and feedback loops of attitude and its rate.

The anti-windup modified PI-D is used in order to reduce 
the steady-state error and to improve the performance of the 
attitude control. The modified PI-D controller benefits from an 
anti-windup circuit consisting saturation, integrator, a feedback 
loop, and observer gain as illustrated in Fig. 1. The PI-D gains 
and observer gain are denoted by (KP , KI , KD ) and L , respec-
tively. Also, UP and Ur are the respective saturation input and 
output. The PWPF modulator is shown with dashed-line box 
in the figure. The modulator consists of a low-pass filter with 
a filter gain of K and a time constant Tf  , Schmitt trigger block, 
and a unity feedback. In the Schmitt trigger block, Uon and Uoff 
are on and off thresholds, respectively, Um is maximum torque 
of the modulator, and Y is the modulator output. The frequency 
of the input signal to the thruster, Yf  , is limited to 50 Hz due 
to practical considerations. The thruster actuator dynamics is 
taken as the second-order binomial transfer function with a 
time constant of Ta plus a delay of Td . The external disturbance 
and control torque are denoted by Md and Mc , respectively. The 
transfer function from input external torque to angular rate (Ω) 

of a single-axis rigid satellite is 1∕Js where s is the Laplace 
domain variable and J is the satellite moment of inertia.

2.2 � Quasi‑normalized equations

There are several design parameters for attitude control of a 
satellite as shown in Fig. 1. Using normalized or quasi-normal-
ized forms of parameters reduces the number of system param-
eters. Consequently, the computational burden for optimization 
is reduced, and the obtained results are usable for a wide range 
of satellite specifications. An attitude control block diagram 
with quasi-normalized parameters is depicted in Fig. 2 using 
the following change of variables:

(1a)u =
U

KUm

, uon =
Uon

KUm

, uoff =
Uoff

KUm

, uold =
Uold

KUm

(1b)up =
Up

Um

, ur =
Ur

Um

, umax =
Umax

Um

, umin =
Umin

Um

(1c)md =
Md

Um

,mc =
Mc

Um

, y =
Y

Um

Fig. 1   Block diagram of a satellite attitude control with modified PI-D and PWPF modulator

Fig. 2   Block diagram of a satellite attitude control using modified PI-D and PWPF modulator with quasi-normalized equations for Um, K, J 
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The quasi-normalized state-space equations of the new sys-
tem are given by

where z1 and z2 are the state-space variables in the thruster 
model, xe is the output of the integrator, and

in which umax is the maximum value of the saturation block 
and f (⋅) is the functionality of the Schmitt trigger block. The 
control signal before and after saturation block is denoted up 
and ur , respectively.

The second quasi-normalized form may be utilized when 
the satellite moment of inertia is specified. In this case, 

(1d)� =
J�

Um

, �ref =
J�ref

Um

,� =
J�

Um

, xe =
JXe

Um

(1e)kp =
Kp

J
, kD =

KD

J
, kI =

KI

J
, l = JL

(2a)𝜃̇ = 𝜔

(2b)𝜔̇ = mc + md

(2c)u̇ =
[(
ur − y

)
− u

]
∕Tf

(2d)ẋe =
(
𝜃ref − 𝜃

)
− l

{[
kP
(
𝜃ref − 𝜃

)
+ kIxe − kD𝜔

]
− ur

}

(2e)ż1 = 2
(
yd − z1

)
∕Ta

(2f)ż2 = 2
(
z1 − z2

)
∕Ta

(3)y = f
(
u, uon, uoff, uold, 1

)

(4)yd = yf (t − Td) for t > Td

(5)ur =

⎧
⎪⎨⎪⎩

umax for up ≥ umax

up for umin < up < umax

umin for up ≤ umin

the parameters K and Um are merged to other parameters 
as depicted in Fig. 3. Therefore, several normalized param-
eters are the same as in Eqs. (1a) to (1c), and the others are 
as follows:

3 � Traditional optimization

In the traditional optimization, the modified PI-D controller 
gains are determined using genetic algorithm. Our objective 
is the minimization of the time average value of the differ-
ence between the reference and actual angular position in a 
specified time interval at the end. A final error < 1% of the 
reference value and an overshoot < 10% are considered as 
our problem constraints. The optimization variables, that 
must be obtained, are kP , kD , kI , l , and uoff . The algorithm 
will be stopped when the changes in objective function is 
less than 10−7. In this formulation, the sensor noise can also 
be applied, but not considered here.

First, consider a single-axis attitude control with observer-
based modified PI-D, according to Fig. 2, for rest-to-rest 
maneuvers. The values of fixed parameters in our optimization 
are listed in Table 1. The initial values of angular position and 

(6)� =
�

Um

, �ref =
�ref

Um

,� =
�

Um

, xe =
Xe

Um

Fig. 3   Block diagram of a satellite attitude control using modified PI-D and PWPF modulator with quasi-normalized equations for Um and K 

Table 1   The values of 
parameters in traditional 
optimization

Parameters Value

uon 0.045
umax 1
umin − 1
Tf 0.2 (s)
Td 0.02 (s)
Ta 0.01 (s)
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velocity are set to zero. The normalized external disturbance 
is given md = 0.02 . Using genetic algorithm the problem vari-
ables are obtained, as shown in Table 2, for different values 
of �ref = 15, 30, 45, 60 s2 deg . For this case, the objective is 
the minimization of the time average of the absolute point-
ing error. The absolute pointing error of the time average is 
restricted to 0.1 deg. To compute the objective function, a 
specified time interval of 20 s is chosen after an initial time 
interval of 10 s. For example, the behavior of the system with 
different initial values of angular position and velocity are 
shown in phase plane method for �ref = 15 s2 deg in the pres-
ence of md = 0.02 . The � − � trajectory falls into a pseudo-
limit cycle behavior as seen in the magnified part of Fig. 4.

To obtain a more quantitative sense, the optimization has 
also been carried out according to Fig. 1 for reference inputs 
of 0, 5, 15, 30, 45, and 60 deg. The values of parameters are 
set to be Td = 0.02 s , Ta = 0.01 s , Tf = 0.2 s , J = 10 kg m2 , 
Um = 1Nm . The initial values of angular position and 
velocity are set to zero, and the external disturbance is 
Md = 0.02Nm . The results of optimization are given in 
Table 2 and utilized for robustness study of the control law. 
For this case, the attitude control response is shown in Fig. 5. 

The control response is chosen to be fast, because the objec-
tive function of the pointing error is computed after 10 s 
from rest. Depending on application, the control response 
can be chosen slower, as usual in most applications.

For the performance study of the optimized attitude con-
trol, at least ± 20% uncertainties are considered for the moment 
of inertia, thruster level, external disturbance, and the actua-
tor delay, according to Fig. 6. In this figure, the effects of the 
uncertainties on fuel consumption and thruster firings are plot-
ted, separately for each uncertainty when the others are set to 
their nominal values. Fuel consumption is proportional to the 
integral of the absolute value of thruster output Mc , denoted by 
ΔV . For each reference input, the related determined param-
eters have been utilized according to Table 3. As expected, the 
graphs are symmetrical about �ref = 0 . Although the depicted 
results show that the obtained parameters give an acceptable 
performance, it may not provide, in some situations, an accept-
able performance due to uncertainties. In other words, the tra-
ditional optimization does not guarantee the performance of 
the system out of the nominal values of the optimized param-
eters. It seems there is a trade-off between the design based on 
low sensitivity due to uncertainties and increasing fuel con-
sumption or thruster activities.

Table 2   The values of controller 
gains

Θref (deg) K
P
 (N m/rad) K

D
 (N m s/rad) K

I
 (N m/rad) L (rad/N m) Uoff (N m)

0 24.41 22.03 10.45 14.95 0.104
5 29.4 23.17 5.458 0.132 0.477
15 56.257 48.171 22.108 0.207 0.137
30 59.074 46.79 31.653 0.155 0.14
45 59.632 50.091 28.44 0.287 0.134
60 69.793 44.974 31.297 0.083 0.149
75 78.146 38.033 34.44 0.517 0.347

Fig. 4   Phase plane of the attitude control response for different initial 
conditions

Fig. 5   Response of attitude control for different input angles
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4 � Robust optimization

The behavior of a typical attitude control system in the 
presence of uncertainties has been studied in Sect. 3. The 
performance of the system usually decreases in the pres-
ence of uncertainties. It may be unacceptable, and the 

Fig. 6   Fuel consumptions and 
thruster firings versus uncer-
tainties

(a) (b)

(c) (d)

(e) (f)

Table 3   The values of the determined variables

Variable Value

kP = KP∕J 2.956 (1∕s2 rad)
kD = KD∕J 2.757 (1∕s rad)

kI = KI∕J 0.019 ( 1∕s3 rad)
l = JL 1.028 ( s2 rad)
uoff = Uoff∕KUm 0.015
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control response may violate the problem constraints due 
to uncertainties, even in a stabilized situation.

In robust optimization methodology based on evolutionary 
algorithm, statistical properties of uncertainties are consid-
ered in the optimization process as inputs of algorithms in 
order to increase the robustness of the system. A framework 
of reliability-based robust methodology, as illustrated in Fig. 7, 
including the following robust optimization statements, was 
presented in [33] as follows:

where y and x are the respective variable and parameter 
vectors of the optimization; F is the deterministic objective 
function; E and � are the respective expected value and the 
standard deviation of F ; and PE and P� are constant weight 
coefficients of robust objective function � , respectively. The 
Latin hypercube sampling (LHS) method is utilized to gen-
erate the Gaussian random variables as in [31]. The robust 
objective function includes a weighted combination of E 

(7)

Find(y)

Minimizing �(y, x) = PEE
[
F(y, x)

]
+ P��

[
F(y, x)

]
+ Penalty(y, x)

Subject to �i(y, x) = Gi(y, x) ≤ 0, i = 1,… I

y
jmin ≤ yj ≤ yjmax

and � and a penalty function of Penalty(y, x) . To decrease 
the computational burden in optimization, penalty function 
method is considered. According to Fig. 7, the penalty func-
tion takes a very large value, when the constraints are vio-
lated; otherwise, the penalty function is zero. The number 
of constraints is denoted by I and Gi is the ith constraint 
(i = 1,… , I) . In the robust optimization algorithm, the 
dashed-line box in Fig. 7 is omitted; therefore, �i becomes 
equal to Gi in Eq. (7). The maximum and minimum range 
of variables in y construct the components of vectors yjmax 
and yjmin , respectively. The stopping criterion is 𝜙 < 𝜀 where 
� takes a very small value.

In order to apply the uncertainty of the moment of inertia, 
the quasi-normalized form, described in Fig. 3, is utilized as 
mentioned earlier. Here, the modified PI-D controller gains 
(KP,KD,KI , L) of the quasi-normalized attitude control in 
Fig. 3 are obtained using the mentioned framework of the 
robust optimization in the presence of uncertainties. Uncer-
tainties in thrust level, moment of inertia, thruster delay, and 
external disturbance take into consideration according to 
Table 4. A constant external disturbance is considered with 
an uncertainty, which has a different value for each run. The 
formulation of robust optimization (7) in the satellite attitude 
control, illustrated in Fig. 7, can be written as follows:

where (KP,KD,KI , L) is variable vector y; (J,Um, Td,Md) 
is parameter vector x; Err is the quasi-normalized pointing 
error; and

in which tf = 30 s is the final time of the numerical simula-
tion. The time average of the absolute value of the quasi-
normalized pointing error, ē , is considered as the original 
(traditional) objective function (F) , computed after 10 s to 
the final time. The problem constraint is the maximum of 

(8)

Find
(
KP,KD,KI , L

)
Minimizing 𝜙(y, x) = PEE[ē] + P𝜎𝜎[ē] + Penalty(y, x)

Subject to G1 ∶ (Max(|Err|) − 0.1) ≤ 0 (I = 1)

0.1 ≤ KP,KD,KI , L ≤ 200

(9)ē =
1

(tf − 10) ∫
tf

10

|Err|dt

Fig. 7   Reliability-based robust optimization flowchart [31]

Table 4   The specifications of uncertain parameters

Parameters Mean value Standard devia-
tion

Distribution

J
(
kg m2

)
10 2 Normal

Um (Nm) 1 0.2 Normal
Md (Nm) 0.02 0.02 Uniform
Td (s) 0.02 0.01 Normal
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the absolute value of the quasi-normalized pointing error 
in interval [10 tf  ] is ≤ 0.1 . The objective function (�) is the 
weighted combination of the expected value and standard 
deviation of ē . The penalty function is added to � when the 
constraint is violated. In RO algorithm, each run is repeated 
500 times, and then the expected value and standard devia-
tion of the original objective function are evaluated.

First, the controller gains are obtained for each parameter 
uncertainty when uoff∕uon = 0.5 and �ref∕Um = 15 deg∕N m . 
For the optimization, we set � = 10−7 , P�∕PE = 200 , and 
Penalty = 100000 . The obtained gains of controller are pre-
sented in Table 5 for each parameter uncertainty, and the last 
row shows the results for all of the uncertainties together.

The expected value and standard deviation of ē are com-
pared in Figs. 8, 9, 10, and 11 versus the value of the stand-
ard deviation of each uncertain parameter (as the input) 
for the traditional and robust optimization. Moreover, for 
simplicity, a same level of uncertainty is considered for the 
four mentioned uncertainties, as independent variables, and 
the results are plotted in Fig. 12; otherwise, the simulation 
results will be difficult to be illustrated. According to Figs. 8, 
9, 10, 11, and 12, the expected value of ē for the traditional 
optimization is better than the value for robust optimization 

when the standard deviation is small. Increasing the stand-
ard deviation to its nominal point, decreases the difference 
between the performances of the two optimization methods, 

Table 5   The obtained gains of 
controller for traditional and 
robust optimization

Optimization Uncertainty K
P
(N m∕rad) K

D
(N m s∕rad) K

I
(N m∕rad) L (rad∕N m)

Traditional – 107.64 75.33 48.75 3.36
Robust Um (Nm) 99.89 77.12 43.07 18.78
Robust J

(
kgm2

)
119.98 94.67 49.36 2.32

Robust Md (Nm) 108.99 99.54 38.53 12.67
Robust Td (s) 111.55 90.23 37.3 24.19
Robust Um, J,Md ,Td 108.83 97.32 38.38 24.92

Fig. 8   Expected value and standard deviation of ē versus uncertainty 
in Um Fig. 9   Expected value and standard deviation of ē versus uncertainty 

in J 

Fig. 10   Expected value and standard deviation of ē versus uncertainty 
in Td
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but at a point lower than the nominal value of the standard 
deviation, the quasi-normalized pointing error of the tradi-
tional optimization increases significantly.

It should be noted that, for example, a standard devia-
tion of thrust level uncertainty of 0.2 N m is set as the input 
(nominal) value of the RO as shown in Table 6, but the simu-
lation results are carried out for the range of 0.04–0.22 N m 
which means an uncertainty of − 80% to + 10% for the 
nominal value of �

(
Um

)
 . For other uncertain parameters, 

the nominal values of the standard deviations of the uncer-
tainties are listed in Table 6 as mentioned before.

5 � Reliability‑based robust design 
optimization (RBRDO)

The controller parameters in the mentioned robust optimiza-
tion are determined by the mean and standard deviation of 
the time average of the absolute value of the quasi-normal-
ized pointing error. The disadvantage of the robust optimiza-
tion is that the controller parameters are not determined by 
the number of the constraint violations. This is accomplished 
using reliability-based robust optimization as formulated 
according to Fig. 7 (including the dashed-line box) as fol-
lows [31]:

where �i is the ith constraints function that obtained from 
the inverse cumulative distribution function (CDF) of Gi . 
The constraint function,�i , guarantees the reliability 
≥ (1 − Pacc

f ,i
) in which Pacc

f ,i
 is the acceptable failure probabil-

ity of a system as described in [30]. Other parameters are 
defined as same as the RO. The acceptable value of the prob-
ability of violating the constraint, Pacc

f ,i
 , is chosen by the 

designer within the limited range related to the nature of a 
system. The formulation of the reliability-based robust opti-
mization for the satellite attitude control illustrated in Fig. 3 
is the same as Eq. (7) except the third line that is modified 
as follows [32]:

(10)

Find (y)

Minimizing �(y, x) = PEE[F(y, x)] + P��
[
F(y, x)

]
+ Penalty(y, x)

Subject to �i(y, x) = CDF−1
Gi

(
1 − Pacc

f ,i

) ≤ 0, i = 1,… I

y
jmin ≤ yj ≤ yjmax

(11)Subject to �i(y, x) = CDF−1
G1

(
1 − Pacc

f ,1

) ≤ 0

Fig. 11   Expected value and standard deviation of ē versus uncertainty 
in Md

Fig. 12   Expected value and standard deviation of ē versus four uncer-
tainties in RO

Table 6   The achieved controller 
gains in reliability-based robust 
optimization

Prescribed probability of 
failure (%)

K
P
(Nm∕rad) K

D
(N ms∕rad) K

I
(Nm∕rad) L (rad∕Nm)

1 101.78 95.1 34.96 10.56
0.75 109.97 83.16 45.84 17.70
0.5 114.56 91.87 44.56 13.58
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The problem constraint of optimization, G1 , i.e., the maxi-
mum of the absolute value of the quasi-normalized pointing 
error is chosen < 0.1 deg∕N m . In other words, ē ≥ 0.1 is 
chosen as the failure of the control system. The reliability-
based robust design optimization has been performed for 
three different values of 0.5, 0.75 and 1% for acceptable 
probability of the failure under all uncertainties 
(Pacc

f ,i
= 0.005, 0.0075, 0.01) . The obtained controller gains 

that achieved according to the flowchart of Fig. 7 are given 
in Table 6.

The probability of the failure is depicted in Fig. 13 versus 
the percentage value of the standard deviation of the uncer-
tain parameters for different values of the acceptable prob-
ability of failure of 0.5%, 0.75%, and 1% as the input of 
RBRDO. These values are marked by dashed-line in the 
figure. The simulation results are shown for − 100% to 
+ 20% uncertainty for the nominal value of the standard 
deviation of the thrust level, moment of inertia, external dis-
turbance, and thruster delay, which means a range of stand-
ard deviation of (0–0.24, Um ), (0–2.4, J), (0–0.024,md ), and 
(0–0.012, Td ) for the mentioned quasi-normalized uncertain-
ties, respectively. According to Fig. 13, the probability of 
failure is lower than the input value for the acceptable prob-
ability of failure, Pacc

f
 , that we have set in RBRDO, as 

expected. Also, increasing the uncertainty in the standard 
deviation increases the probability of the failure. In addition, 
the robustness behavior of the expected value and standard 
deviation of ē is compared with the traditional optimization 
in Fig. 14. Each point in Figs. 8, 9, 10, 11, 12, 13 and 14, 
shown by symbols, is obtained for 10,000 runs in Monte 
Carlo simulations using LHS sampling.

6 � Discussion and results

In the previous sections, the behavior of an on–off satellite 
attitude control with obtained gains by traditional, robust 
and reliability-based optimization was studied. The behav-
ior of the control response with traditional optimization is 
appropriate, but the performance decreases significantly in 
the presence of uncertainties, depending on levels of uncer-
tainties. Robust optimization can increase the robustness 
of the system performance; however, the violation of con-
straints may be increased. The probability of failure can be 
chosen by the designer as an input for RBRDO. As a com-
parative study, the three types of optimizations are applied 
to the attitude control problem. A quantitative comparison 
in robustness and reliability is, here, made among the three 
types of the optimization techniques.

In order to study the robustness, the standard deviation 
of the time average of the absolute value of the quasi-nor-
malized pointing error, i.e., the standard deviation of ē , can 
be evaluated in the presence of uncertainties. The standard 
deviation of ē is plotted in Fig. 15 versus the uncertainty in 
the nominal values of the standard deviation of the param-
eters for the three optimization techniques. The standard 
deviation of ē in the traditional optimization has the most 
variations in high uncertainties, whereas it has the least vari-
ations in the robust optimization as shown in Fig. 15. The 
standard deviation of ē in RBRDO is somewhat between the 
two others. In addition, the expected value of ē versus uncer-
tainty in the nominal values of the standard deviation of the 
parameters is plotted in Fig. 16. As seen in the figure, in the 
traditional optimization, the expected value of ē , E[ē] , is the 

Fig. 13   Probability of failure versus percentage of the standard devia-
tion of the uncertainties

Fig. 14   Expected value and standard deviation of ē versus percentage 
of the standard deviation of uncertainties
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least for low uncertainty, and it is the most for high uncer-
tainty. Although E[ē] of RO or RBRDO is larger than that of 
traditional optimization in low uncertainty, by increasing the 
percentage of uncertainty, E[ē] of RO or RBRDO becomes 
(much) smaller than that of the traditional optimization, 
depending on the value of weight coefficient (P�∕PE) . By 
decreasing the ratio of P�∕PE , the results for RO will be 
closer to that for traditional optimization.

To investigate the rates of failure of the attitude con-
trol, the probability of failure is depicted in Fig. 17 versus 
uncertainty in the nominal values of the standard devia-
tion of the uncertain parameters for the three optimization 

techniques. For instance, the level of 0.5% is chosen as the 
criterion for probability of the failure, i.e., prescribed prob-
ability of failure in RBRDO method is given 0.005. The 
probability of failure increases by increasing the percent-
age of the uncertainty in all the three optimization tech-
niques. In this case study, similar to the cases studied in 
[31], the probability of failure in RO is almost between 
traditional and RBRDO. According to Fig. 17, RBRDO 
provides 100 × (1 − 0.004996) ≃ 99.5% reliability for the 
given nominal values of the standard deviation of param-
eters (associated with the 0.5% of probability of failure), 
whereas the traditional and robust methods provide 99% 
and 99.18% of reliability, respectively. These values of reli-
ability are obtained as 1 minus the probability of failure as 
shown in the figure. Therefore, it has been shown that using 
RBRDO it is possible to tune the probability of the failure 
for an on–off attitude control problem. Moreover, according 
to Figs. 15, 16, and 17, the results obtained from determinis-
tic optimization are appropriate in low uncertainties, but RO 
is suggested in high uncertainties. RBDO is recommended 
to increase the reliability of the system in the presence of 
uncertainties.

Now, the effect of the ratio of the weight coefficients 
(P�∕PE) on the robustness and reliability of the system 
is studied. For this purpose, the standard deviation of ē 
and the probability of failure are plotted in Fig. 18 ver-
sus P�∕PE for the nominal values of the standard devia-
tions of the uncertain parameters as mentioned in Table 4 
( �ref = 15 deg∕Nm , md = 0.02 , and Td = 0.02 s). As it can 
be seen in the figure, increasing P�∕PE decreases the over-
all standard deviation of ē , i.e., it increases the robust-
ness of the system. According to Fig. 18, the results for 

Fig. 15   Standard deviation of ē versus percentage of standard devia-
tion of uncertainties in traditional, RO, and RBRDO

Fig. 16   Expected value of ē versus percentage of standard deviation 
of uncertainties in traditional, RO, and RBRDO

Fig. 17   Probability of failure versus percentage of standard deviation 
of uncertainties for the three optimization techniques
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RBRDO method, similar to those of RO, are relatively 
close to the results for the traditional optimization when 
the ratio of P�∕PE is small.

We expect a higher reliability for the system in RO 
method in comparison with the traditional optimization. This 
is because RO produces a narrow standard deviation of the 
error with respect to the traditional optimization as stated in 
the literature [35]. In addition, increasing P�∕PE increases 
the overall reliability of the system; however, it is limited by 
dynamics of the system and external disturbances. As seen 
in Fig. 18, the standard deviation of ē and the reliability of 
the system, probably have an asymptotic behavior for very 
large values of P�∕PE.

An alternative approach is a multi-objective optimiza-
tion, as described in the literature [27, 42] uses typically the 
Pareto front instead weight coefficient. For this purpose, two 
objective functions (𝜎[ē],E[ē]) are considered separately in 
a two-objective optimization using Pareto front technique as 
depicted in Fig. 19. As seen in the figure, there is a trade-off 
between the minimum values of 𝜎[ē] and E[ē] . Moreover, 
the results obtained from RO are shown in the figure for 
different values of weight coefficient P�∕PE . The obtained 
results from two-objective optimization agree with those of 
RO and may be considered as a verification of our results.

In this preliminary study, the assumed probability of 
failure has been shown to be achievable for a single-axis 
on–off attitude control for a specified reference input using 
RBRDO in the presence of external disturbance and model 
uncertainties. The controller gains can be determined for 
each specified reference input. However, it is suggested that 
an optimal rest-to-rest maneuver is implemented for the 
transient response. After the transient response, the present 

controller can be utilized for the pointing in the presence of 
external disturbance. For a (near-) zero input reference, the 
controller gains are available in [41]. The obtained results 
for the three-mentioned optimization methods are shown in 
Figs. 20, 21, 22.   

In the analysis, the controller gains have been deter-
mined under some practical limitations, e.g., actuator lag 
and delay, actuator frequency limit, and external distur-
bances. If the thruster actuator is modeled by a transfer 
function and with no limit on its response frequency, the 
achieved pointing accuracy will not be valid, especially 
in the presence of external disturbances. This means an 

Fig. 18   The probability of failure and standard deviation of ē versus 
P�∕PE

Fig. 19   The Pareto front of multi-objective optimization for on–off 
attitude control

Fig. 20   Expected value of ē versus percentage of standard deviation 
of uncertainties for the three optimization techniques
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on–off thruster actuator converts into a continuous-type 
thruster when its input frequency is larger than its opera-
tional frequency.

As a future study, the sensor noise, three-axis control, and 
flexibility of spacecraft should be considered in the opti-
mization problem for a practical design. For this case, the 
(quasi-) normalized form of equations is difficult to obtain; 
therefore, the optimization must be carried out for each set 
of the satellite characteristics and parameters.

Obviously, the optimization algorithm does not guarantee 
the stability of the control system. To investigate the stability 
of the control system in numerical optimization methods, it 
is suggested that engineering codes are developed to deter-
mine the stability regions under model uncertainty. In one 
approach, the failure points can be saved and analyzed for 
stability analysis for sufficiently long time. In the second 
approach, a stability criterion can be added to the optimiza-
tion constraint for relatively short final time due to com-
putational burden in the optimization algorithm. Since our 
sampling may not cover the stability boundaries for uncer-
tain parameters, a safety factor can also be used for each 
corresponding standard deviation.

In each constraint violation, its time duration,Tv , is impor-
tant in pointing mode. If the duration of each constraint vio-
lation is less than Tv , the result may be considered accept-
able as a trade-off. For this case, the reliability of attitude 
control versus Tv is shown in Fig. 23 for the three values of 
prescribed probability of failure (0.5%, 0.75%, and 1%). The 
final time (tf ) is taken 40 s due to computational burden. As 
seen in the figure, the reliabilities are computed 99.46%, 
99.93%, and 99.998% for Tv = 0.1, 1, and 10s respectively; 
when the prescribed value is 99%. If Tv = 20 s, the reliability 
will be 100% for the three-mentioned prescribed reliabilities 
when tf = 500 s under given circumstances. This analysis is 
useful for exponentially unstable behavior, but the results 
must be checked for an oscillatory, unstable behavior.

In each run, number of violations from a specified Tv , 
is counted and denoted by Ni . If the probability of failure 
is 1%, we have 100 failures among 10,000 runs. For this 
case, we have N1 to N100 (i = 1, 2, … 100). The maximum 
and minimum values for Ni are plotted in Fig. 24. In this 
figure, as expected, the number of violations is decreased 

Fig. 21   Standard deviation of ē versus percentage of standard devia-
tion of uncertainties for the three optimization techniques

Fig. 22   Probability of failure versus percentage of standard deviation 
of uncertainties for the three optimization techniques

Fig. 23   Reliability of attitude control versus Tv
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by increasing Tv until it vanishes. The frequency of isolated 
violations is computed by Ni∕tf  

(
tf = 500 s

)
.

As a modification, it is suggested that an allowable Tv 
and the frequency of isolated violations are considered as 
the constraints of a RBRDO in control applications. For 
this purpose, an inner loop will be added to the flowchart in 
Fig. 7 for the frequency constraint.

7 � Conclusions

In this work, the robustness and reliability of a single-axis 
on–off attitude control for rigid satellites is enhanced using 
reliability-based robust design optimization in the presence 
of uncertainties. In this optimization technique, in addition 
to increase the robustness, a prescribed probability of fail-
ure is achievable. In other words, the controller gains are 
determined according to an acceptable level of probability of 
failure as the constraint of the optimization problem. Here, 
the observer-based anti-windup modified PI-D controller is 
utilized. The control signal is modulated by PWPF modu-
lator and the commanded on–off signal to the thruster is 
limited to 50 Hz. The thruster is taken by a second-order 
transfer function with a delay of 0.02 s. The modified PI-D 
improves the pointing accuracy for an on–off attitude control 
under external disturbances and uncertainties.

In the analysis, the traditional, robust, and reliability-
based robust design optimization techniques are carried 
out for the on–off attitude control problem and their per-
formances are compared together. For this purpose, a level 
of − 100% to + 20% uncertainty is considered for nominal 
values of the standard deviation of the thrust level, moment 
of inertia, external disturbance, and the thruster delay.

Since quasi-normalized forms of equations have been uti-
lized, the results are more applicable for satellites with dif-
ferent characteristics. In the optimization problem, the time 
average of the absolute value of quasi-normalized pointing 
error is chosen as the original objective function. The mean 
value and standard deviation of the original objective func-
tion and the probability of failure of attitude control are our 
problem criteria for the accuracy, robustness, and the reli-
ability of the attitude control algorithm, respectively.

The simulation results show that a prescribed reliability 
for satellite pointing mode is achievable in the reliability-
based robust design optimization, but in a range under limi-
tation of our system dynamics, e.g., actuator lag and delay, 
actuator frequency limit, and external disturbances. The 
traditional optimization gives the best pointing accuracy 
with no uncertainty and even may be preferred in very low 
uncertainties. Increasing the level of uncertainty decreases 
the pointing accuracy significantly. For this case, the robust 
optimization gives an approximately flat behavior for the 
mean of the time average of absolute pointing error versus 
the level of uncertainties, with a small loss in accuracy, with 
respect to the traditional optimization. This accomplished 
with the use of a weighted combination of expected value 
and standard deviation of the time average of the absolute 
value of the quasi-normalized pointing error. In addition, a 
multi-objective optimization utilizing the Pareto front has 
been carried out as a verification of the obtained results for 
robust optimization. The robust optimization shrinks the dis-
tribution of probability of the performance and improves the 
reliability of the system, but a prescribed reliability cannot 
be achieved. Reliability-based robust design optimization 
satisfies the prescribed reliability in the presence of uncer-
tainties, but under system limitations. This approach could 
increase the reliability of the satellite pointing mode in a 
practical situation.

References

	 1.	 Beyer HG, Sendhoff B (2007) Robust optimization—a comprehen-
sive survey. Comput Methods Appl Mech Eng 196(33):3190–3218

	 2.	 Kobis E (2015) On robust optimization. J Optim Theory Appl 
167(3):969–984

	 3.	 Krasopoulos CT, Beniakar ME, Kladas AG (2017) Robust opti-
mization of high-speed PM motor design. IEEE Trans Magn 
53(6):1–4

	 4.	 Yao W, Chen X, Luo W, Tooren M, Guo J (2011) Review of 
uncertainty-based multidisciplinary design optimization methods 
for aerospace vehicles. Prog Aerosp Sci 47(6):450–479

	 5.	 Diez M, Peri D, Fasano G, Campana EF (2010) Multidisciplinary 
robust optimization for ship design. In: 28th symposium on naval 
hydrodynamic, Pasadena, California, USA

	 6.	 Sternberg D, Chodas M, Jewison C, Jones M, De Weck O (2015) 
Multidisciplinary system design optimization of on orbit satellite 
assembly architectures. In: Aerospace conference. IEEE

Fig. 24   Number of violations versus Tv



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:449	

1 3

Page 15 of 15  449

	 7.	 Aoues Y, Chateauneuf A (2010) Benchmark study of numerical 
methods for reliability-based design optimization. Struct Multi-
discip Optim 41(2):277–294

	 8.	 Taguchi G (1986) Introduction to quality engineering: designing 
quality into products and processes. American Supplier Institute, 
Dearborn

	 9.	 Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization 
of large-scale systems. Oper Res 43(2):264–281

	10.	 Chen W, Allen JK, Tsui KL, Mistree F (1996) A procedure for 
robust design: minimizing variations caused by noise factors and 
control factors. J Mech Des 118(4):478–485

	11.	 Reis CJB, Manzanares-Filho N, de Lima AMG (2016) Robust 
optimization of turbomachinery cascades using inverse methods. 
J Braz Soc Mech Sci Eng 38(1):297

	12.	 Malcolm SA, Zenios SA (1994) Robust optimization for power 
systems capacity expansion under uncertainty. J Oper Res Soc 
45(9):1040–1049

	13.	 Hajimiragha AH, Canizares CA, Fowler MW, Moazeni S, 
Elkamel A (2011) A robust optimization approach for planning 
the transition to plug-in hybrid electric vehicles. Trans Power Syst 
26(4):2264–2274

	14.	 Reis CJB, Manzanares-Filho N, Lima AMG (2019) Robust opti-
mization of aerodynamic loadings for airfoil inverse designs. J 
Braz Soc Mech Sci Eng 41(1):207

	15.	 Kerrigan EC, Maciejowski JM (2003) On robust optimiza-
tion and the optimal control of constrained linear systems with 
bounded state disturbances. In: European Control Conference, pp 
1453–1458

	16.	 Lopez RH, Ritto TG, Sampaio R, de Cursi JES (2014) Optimiza-
tion of a stochastic dynamical system. J Braz Soc Mech Sci Eng 
36(2):257–264

	17.	 Haas L, Steinbuch R (2016) Robust and reliable bionic optimiza-
tion of nonlinear control problems. In: International conference on 
intelligent systems design and applications. Springer, pp 165–174

	18.	 Bruni R, Celani F (2017) A robust optimization approach for 
magnetic spacecraft attitude stabilization. J Optim Theory Appl 
173(3):994–1012

	19.	 Bohlouri V, Jalali-Naini SH (2018) Robust optimization of satel-
lite attitude control with thruster actuators based on combined 
objective function. J Space Sci Technol 10(4):55–66 (in Persian)

	20.	 Bohlouri V, Ebrahimi M, Jalali-Naini SH (2017) Robust optimiza-
tion of satellite attitude control system with on-off thruster under 
uncertainty. In: 2017 International Conference Mechanical, Sys-
tem and Control Engineering (ICMSC), pp 328–332

	21.	 Bruni R, Celani F (2019) Combining global and local strategies 
to optimize parameters in magnetic spacecraft control via attitude 
feedback. J Optim Theory Appl 181(3):997–1014

	22.	 Du X, Sudjianto A, Chen W (2004) An integrated framework for 
optimization under uncertainty using inverse reliability strategy. 
J Mech Des 126(4):562–570

	23.	 Motta RDS, Afonso SM (2016) An efficient procedure for struc-
tural reliability-based robust design optimization. Struct Multidis-
cip Optim 54(3):511–530

	24.	 Dizangian B, Ghasemi MR (2016) A fast decoupled reliability-
based design optimization of structures using B-spline interpola-
tion curves. J Braz Soc Mech Sci Eng 38(6):1817–1829

	25.	 Dizangian B, Ghasemi MR (2016) A fast decoupled reliability-
based design optimization of structures using B-spline interpola-
tion curves. J Braz Soc Mech Sci Eng 38(6):1817–1829

	26.	 Wang W, Wu J (1998) Reliability-based robust design. In: 39th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, 
and Materials Conference and Exhibit, p 2052

	27.	 Gu X, Sun G, Li G, Mao L, Li Q (2013) A comparative study 
on multi-objective reliable and robust optimization for crash-
worthiness design of vehicle structure. Struct Multidiscip Optim 
48(3):669–684

	28.	 Chung G, Lansey K, Bayraksan G (2009) Reliable water sup-
ply system design under uncertainty. Environ Model Softw 
24(4):449–462

	29.	 Paiva RM, Crawford C, Suleman A (2014) Robust and reliability-
based design optimization framework for wing design. AIAA J 
52(4):711–724

	30.	 Su CQ, Li LX, Zhang YM (2012) Reliability-based robust opti-
mization design for rubbing rotor system. Appl Mech Mater 
105(1):1100–1104

	31.	 Venanzi I, Materazzi AL, Lerimonti L (2015) Robust and reliable 
optimization of wind-excited cable-stayed masts. J Wind Eng Ind 
Aerodyn 147(1):368–379

	32.	 Budianto IA, Olds JR (2004) Design and deployment of a satellite 
constellation using collaborative optimization. J Spacecr Rockets 
41(6):956–963

	33.	 Jafarsalehi A, Fazeley HR, Mirshams M (2016) Conceptual 
remote sensing satellite design optimization under uncertainty. 
Aerosp Sci Technol 55(1):377–391

	34.	 Guo SX (2014) Robust reliability based optimal design of H∞ 
control of parametric uncertain systems. J Dyn Syst Meas Control 
136(2):024504

	35.	 Kumar CA, Rajeshwaran S, Ganapathy K (2018) Robust propor-
tional integral derivative controller design for various processes 
using novel hybrid metaheuristic algorithms. J Dyn Syst Meas 
Control 140(8):81006

	36.	 Song G, Buck NV, Agrawal BN (1999) Spacecraft vibration reduc-
tion using pulse-width pulse-frequency modulated input shaper. J 
Guid Control Dyn 22(3):433–440

	37.	 Kim J, Crassidis JL (1998) A comparative study of sliding mode 
control and time optimal control. In: AIAA/AAS Astrodynamics 
Specialist Conference and Exhibit, USA

	38.	 Åström KJ, Hägglund T (1995) PID controllers: theory, design, 
and tuning. Instrument Society of America, Research Triangle 
Park

	39.	 Bohlouri V, Jalali-Naini SH (2018) Spacecraft attitude control 
using model-based disturbance feedback control strategy. J Braz 
Soc Mech Sci Eng 40(12):557

	40.	 Wang Z, Su Y, Zhang L (2018) A new nonsingular terminal slid-
ing mode control for rigid spacecraft attitude tracking. J Dyn Syst 
Meas Control 140(5):51006

	41.	 Bohlouri V, Jalali-Naini SH (2018) Reliable robust versus reli-
able optimization for attitude control under uncertainties. In: 17th 
International Conference of Iranian Aerospace Society, Tehran, 
Iran

	42.	 Santos WGD, Rocco EM, Boge T, Benninghoff H, Rems F (2015) 
Multi-objective optimization applied to real-time command prob-
lem of spacecraft thrusters. J Spacecr Rockets 52(5):1407–1416

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Application of reliability-based robust optimization in spacecraft attitude control with PWPF modulator under uncertainties
	Abstract
	1 Introduction
	2 On–off attitude control
	2.1 PWPFM + modified PI-D controller
	2.2 Quasi-normalized equations

	3 Traditional optimization
	4 Robust optimization
	5 Reliability-based robust design optimization (RBRDO)
	6 Discussion and results
	7 Conclusions
	References




