
Vol.:(0123456789)1 3

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:439 
https://doi.org/10.1007/s40430-019-1950-1

TECHNICAL PAPER

Importance of entropy generation and infinite shear rate viscosity 
for non‑Newtonian nanofluid

F. Sultan1 · W. A. Khan2,3 · M. Ali1 · M. Shahzad1 · H. Sun2 · M. Irfan4

Received: 2 February 2019 / Accepted: 12 September 2019 / Published online: 20 September 2019 
© The Brazilian Society of Mechanical Sciences and Engineering 2019

Abstract
This study addresses the novel characteristics of infinite shear rate viscosity and entropy generation in magneto-mixed 
convective flow of cross-nanomaterial toward a stretched surface. Moreover, analysis of current research work has been 
prepared for Brownian moment and thermophoresis deposition. Radiation and viscous dissipation aspects are accounted. 
More specifically, roles of activation energy and Lorentz force on nanofluids transportation are examined. ODEs are acquired 
from PDEs via implementation of suitable transformations. Numerical algorithm is implemented to tackle the nonlinear 
system for numerical results. Discussion on rheological parameters involved in current research work is presented through 
graphs. Results demonstrate the significant rise in temperature and nanoparticles concentration with the intensification of 
Brownian moment aspects. More specially, we perceived that entropy rate is significantly affected by radiation parameter and 
Brinkman number. Intensification in entropy rate is observed for rising values of magnetic parameter, radiation parameter 
and Brinkman number.
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List of symbols
u, v	� Velocity components
x, y	� Space coordinates
�	� Density of fluid
�	� Kinematic viscosity
�	� Dynamic viscosity
n	� Power law index
B0	� Uniform magnetic field strength
(�c)f	� Heat capacity of fluid

T 	� Ratio of heat capacity
(�c)p	� Effective heat capacity
�	� Thermal diffusivity
�∗∗	� Stefan–Boltzmann constant
DT	� Thermophoresis effect
kf 	� Thermal conductivity
cp	� Specific heat capacity
m∗	� Mean absorption coefficient
DB	� Brownian motion
T	� Temperature
T∞	� Ambient temperature
C∞	� Ambient concentration
Tw	� Surface temperature
Cw	� Surface concentration
k2
r
	� Reaction rate

Ea	� Activation energy
� 	� Time material constant
�∗	� Ratio of viscosities
C	� Concentration
m	� Fitted rate constant
c	� Dimensional constant
Uw	� Stretching velocity
�	� Dimensionless variable
We	� Weissenberg number
Pr	� Prandtl number
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M	� Magnetic parameter
Nr	� Buoyancy ratio parameter
�	� Mixed convection parameter
R	� Thermal radiation parameter
Nb	� Brownian motion parameter
Nt	� Thermophoresis parameter
Ec	� Eckert number
Sc	� Schmidt number
�	� Dimensionless reaction rate
E	� Dimensionless activation energy
�	� Temperature difference parameter
�w	� Wall shear stress
qw	� Wall heat flux
f 	� Dimensionless velocities
�	� Dimensionless temperature
�	� Dimensionless concentration
NG	� Entropy generation rate
�2	� Dimensionless temperature ratio variable
�1	� Dimensionless concentration ratio variable
L	� Diffusive variable
Br	� Brinkman number
Cfx	� Skin fraction
Nux	� Local Nusselt number
Rex	� Local Reynolds number

1  Introduction

In today’s world, the ever-increasing consumption of energy 
demands preservation in its transportation and utilization. 
More specifically, nanotechnology is proved to be the best 
mean of heat transportation and preservation among the 
thermal sources. Thermo-physical properties of working liq-
uid have a great impact on the efficiency of thermal systems. 
Nanofluids (NFs) are obtained by mixing solid nanoparticles 
(NPs) in the base liquids (BLs) which have considerably 
greater thermo-physical properties as compared with base 
liquids (BLs). The achieved NFs have distinct chemical and 
physical features than traditional BLs. Furthermore, NFs 
have vital role in the improvement of cooling rate with supe-
rior thermal efficiency. Khan and Khan [1] considered rheo-
logical properties of NPs for Oldroyd-B fluid with heat sink-
source. Sheikholeslam et al. [2] studied the aspects of NPs 
for CuO–water NFs with Lorentz forces. Khan and Khan 
[3, 4] reported characteristics of non-Newtonian fluid in the 
presence of NPs. Waqas et al. [5] deliberated characteristics 
of non-Newtonian fluid with appliance of NPs. Khan et al. 
[6] analytically analyzed properties of 3D Burgers nanofluid 
(NF) by considering revised heat flux relation. Khan and 
Khan [7] investigated appliance of NPs for Burgers NFs in 
the presence of heat sink-source. Hayat et al. [8] analyzed 
Lorentz forces and porosity aspects to investigate appliance 
of NFs for exponentially stretched surface. Ahmad et al. [9] 

numerically analyzed features time-dependent Sisko NF. 
Khan et al. [10] described gyrotactic microorganisms for 
Burgers NF with appliance of NPs. Waqas et al. [11] numeri-
cally conveyed characteristics of Williamson fluid account-
ing Brownian moment and thermophoresis aspects. Khan 
et al. [12] scrutinized radiation and Lorentz force aspects 
on 3D Carreau NF utilizing zero flux relation at stretched 
surface. Waqas et al. [13] reported properties of heat sink-
source and stratified flow for Oldroyd-B NF. Sohail et al. 
[14] considered properties of convectively heated surface 
for time-dependent second grade NF in the presence of 
Lorentz force and zero mass flux relation. Khan et al. [15] 
analytically investigated properties of NPs for generalized 
Burgers fluid with chemical phenomenon. Animasaun et al. 
[16] reported the appliance of thermoelectric and Lorentz 
force for CuO–water NF. Recent analysis on NFs subjected 
to distinct flow aspects is reported in Refs. [17–42].

The bonding between the chemical components is loos-
ening by catalysis. The catalytic reactions occur in both 
homogeneous/heterogeneous reactions. In homogeneous 
catalytic reaction system, both the catalytic materials lie in 
the same phase space like (gas, liquid or solid). However, 
in the heterogeneous process, the catalytic material lies in 
different phase space. Nowadays, there are wide applica-
tions of catalysts in industrial processes. More common 
examples that are in the agricultural and industrial process 
are fog formation, production of polymer, etc., when we 
need to start a binary chemical process, we require the 
minimum amount of energy, i.e., activation energy. The 
binary chemical process is a reaction process that occurs 
in two steps. Basically, the binary chemical reactions are 
common in both vapor and liquid deposition process. The 
mass transportation with chemical reaction and activation 
energy has industrial applications such as an oil reservoir, 
chemical engineering, oil emulsion, coating of metallic 
objects and glasses, manufacturing of electronic devices. 
Khan et al. [43, 44] reported properties of chemical pro-
cess for non-Newtonian fluids. Mahanthesh et al. [45] con-
sidered aspects of Lorentz’s force and chemical processes 
for NF utilizing vertical plate. Characteristics of chemical 
processes and modified heat flux relation were deliberated 
by Sohail et al. [46]. Hayat et al. [47] described features 
of Lorentz’s force and chemical reactive species for third 
grade fluid. Irfan et al. [48] considered characteristics of 
variable conductivity and heat sink-source for non-Newto-
nian fluid with chemical processes. Khan et al. [49] char-
acterized entropy generation and activation energy (AE) 
aspects for NF. Khan et al. [50] reported properties of 
AE and radiation for 3D flow of cross-NF with chemical 
processes. Waqas et al. [51] numerically analyzed proper-
ties of Darcy–Forchheimer and activation energy for NF 
in cylindrical surface. Khan et al. [52] reported appliance 
of chemical processes and radiative flow for cross-fluid.



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:439	

1 3

Page 3 of 13  439

Main objective of the present attempt is to examine aspects 
of infinite shear rate viscosity and entropy generation for mag-
neto-mixed convective flow of cross-nanomaterial toward a 
stretched surface. Colloidal analysis for cross-fluid is scruti-
nized by considering Buongiorno relation. Transportation of 
heat-mass analysis is studied by utilizing activation energy 
and Brownian moment aspects. More specifically, aspects of 
viscous dissipation are considered here. System of PDE’s is 
transformed to one and then solved by implementing MAT-
LAB tool bvp4c. Important physical quantities are discussed 
through tables and graphs.

2 � Problem structure

Here, characteristics of infinite hear rate viscosity and entropy 
optimization rate in mixed convective flow of cross-nanofluid 
are analyzed. Viscous dissipation activation energy aspects 
effects are accounted in mathematical formulation. More spe-
cifically, colloidal analysis of cross-nanofluid is permeated 
through Lorentz’s force aspects. Characteristics of thermopho-
resis and Brownian movement are accounted here. Governing 
equations for considered flow are
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Fig. 1   f �(�) via We
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Eqs. (8)–(13) is given below

3 � Quantities of physical interest

In this section, we express surface drag force 
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)
 and heat/

mass transfer rates 
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)
 in dimensional forms
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Considering the following transformations
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4 � Entropy generation

Here, dimensional form of entropy generation is expressed 
as

In dimensionless, one has

where

Mathematically, Be is defined as
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5 � Graphical consequences and physical 
argument

Here, our objective is to analyze the consequences of sundry 
non-dimensional variables on velocity, temperature, concen-
tration, surface drag force, entropy optimization rate, Bejan 
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number and heat/mass transfer rate. System of nonhomoge-
neous ODEs Eq. (8)–(10), (23) and (26) subjected to condi-
tions given in Eq. (11)–(13) is solved by using MATLAB 
tool bvp4c.

Figure 1 captures influence of We on f �(�) . Here, we 
noticed that for larger values of We the f �(�) is decreased. 
Figure 2 depicts outcomes of Nr on velocity profile ( f �(�) ). 
Clearly, f �(�) enhances against Nr . Figure 3 disclosed the 
effect of � on velocity profile ( f �(�) ). Here, one can note 
that f �(�) is raised against � . In fact, buoyancy forces rise 
for larger � due to which velocity of cross-liquid intensifies. 

Variation of velocity profile ( f �(�) ) through magnetic param-
eter M is examined in Fig. 4. Obviously, f �(�) decreased by 
M . Lorentz force has direct relation with magnetic parameter 
M . Thus, for higher values of M , the Lorentz force enhances 
and consequently more resistance decays the fluid motion. 
Figure 5 shows aspects of �∗ on f �(�) . For higher estimation 
of �∗ , the velocity of cross-nanofluid intensifies.

Behaviors of Ec (Eckert number), Pr (Prandtl number), 
Nt (thermophoresis parameter) R (radiation parameter) and 
�∗ (ratio of the infinite shear rate viscosity to the zero shear 
rate viscosity) on �(�) are sketched in Figs. 6, 7, 8, 9 and 10. 
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Figure 6 addresses the Ec impact on �(�) . Clearly, cross-
nanoliquid thermal field remarkably enhances via Ec . In fact, 
Ec is the ratio between KE (kinetic energy) and enthalpy 
difference. Consequently, larger Ec generates more resist-
ance in liquid motion and therefore �(�) intensifies. Figure 7 
shows the behaviors of Pr on �(�) . It is perceived that �(�) 
declined for lager Pr. Physically, thermal diffusivity deterio-
rates for large Pr and consequently, �(�) decreases. Aspects 
of Nt on �(�) are shown in Fig. 8. An increase in Nt leads to 
an enhancement in �(�) . Physically, reason behind this trend 
of Nt is the gap between reference and surface temperature. 
For larger Nt , this gap rises and consequently the kinetic 

energy of nanoparticles enhances. So, �(�) intensifies. �(�) 
is raised against R . These features are reported in Fig. 9. 
Effect of �1 on �(�) is depicted in Fig. 10. It can be seen from 
Fig. 10 that �(�) intensifies via �1 . Physical reason behind 
this trend of γ is that less resistance is faced by the thermal 
wall which causes an enhancement in convective heat trans-
fer to the fluid.

Rheological properties of Sc (Schmidt number), �2 (con-
centration Biot number), � (dimensionless reaction rate), Nt 
(thermophoresis parameter), Nb (Brownian motion param-
eter) on concentration �(�) are explored in Figs. 11, 12, 13, 
14 and 15. Figure 11 captures influence of �2 on �(�) . Here, 
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Fig. 10   �(�) via �1
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Fig. 11   �(�) via �2
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Fig. 12   �(�) via �
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Fig. 13   �(�) via Nt
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we noted that for larger values of �2 the �(�) is augmented. 
Figure 12 describes the influence of � on �(�) . Concentra-
tion �(�) deteriorates via � . Figures 13 and 14 demonstrate 
the behavior of Nt and Nb on concentration �(�) . Concen-
tration of cross-nanoliquid �(�) is enhanced with larger Nt , 
while �(�) declines for greater Nb . In fact, when we rise Nt 
gap of temperature between surface and at infinity intensifies 
due to which nanofluid moves from higher temperature to 
lower temperature. Consequently, �(�) intensifies. Effects of 
Sc on �(�) are reported in Fig. 15. Clearly, �(�) deteriorates 
via larger Sc .     

Variations of NG (entropy generation) and Bejan number 
(Be) through Br (Brinkman number), L (diffusive variable), 

M (magnetic parameter), �1 (dimensionless concentration 
ratio variable), �2(dimensionless temperature ratio vari-
able) and R (thermal radiation parameter) are presented 
through Figs. 16, 17, 18, 19, 20, 21, 22, 23, 24. Figures 16 
and 17 examined the characteristics of Br on NG and Be . 
Clearly, NG are boosted via larger Be , while Be declines 
for greater Be . Physically, greater Br provides low thermal 
conduction to nanofluid and consequently, NG intensifies 
for larger Br . Outcomes of L (diffusive variable) on NG are 
disclosed in Fig. 18. NG declines for higher values of L . 
Figures 19 and 20 depict outcomes of M (magnetic param-
eter) on NG (entropy generation) and Be (Bejan number). 
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Fig. 14   �(�) via Nb
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Fig. 15   �(�) via Sc

η

N
G
(η
)

0 2 4 6

0

0.02

0.04

Br = 0.1, 0.3, 0.5, 0.7

We = 0.5, M = 0.2, n = 0.8, Pr = 1.4, Ec = 0.2, γ1 = 0.7,

β* = δ = Nr = α1 = 0.4, α2 = R = λ = σ = L = 0.1, Sc = 0.8,

γ2 = 0.9, Nb = 0.4, Nt = 0.2, E = m = 0.3,

Fig. 16   NG(�) via Br
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Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:439	

1 3

Page 9 of 13  439

Clearly, NG boosts against M , while Be deteriorates for M . 
Greater estimation of M (magnetic parameter) offers more 
resistance to the motion of fluid in system and therefore, 
heat in the system intensifies. Consequently, entropy rate 
rises. Impact of �1 (dimensionless concentration ratio vari-
able) and �2(dimensionless temperature ratio variable) on 
entropy rate NG is presented in Figs. 21 and 22. Here, NG 
is an increasing function of �1 and �2 . Figures 23 and 24 
report the impact of R (thermal radiation parameter) on 
NG and Be . Clearly, NG shows rising trend for R , while 
opposite trend is detected for Be . In fact, rise in R pro-
duces greater inertial force, so viscous force deteriorates 
and therefore the entropy rate intensifies.

Features for n (Power law index), M (magnetic parame-
ter), Ec (Eckert number), Pr(Prandtl number), Nr (buoyancy 
ratio parameter), Nt (thermophoresis parameter) R (radiation 
parameter) and �∗ (ratio of the infinite shear rate viscosity to 
the zero shear rate viscosity) on skin friction 

(
Re1∕2Cfx

)
 Nus-

selt and number 
(
NuxRe

−1∕2
x

)
 are computed in Tables 1 and 

2. Here, we observed that surface drag force boosts via larger 
We and M , whereas it declines for larger �, n and �∗ . Table 2 
is prepared to point out aspects of numerous physical param-
eters on 

(
NuxRe

−1∕2
x

)
 . It is scrutinized that transportation 

rate of heat intensifies via larger Pr , whereas it decays for 
larger Ec,Nt and Nb.
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Fig. 18   NG(�) via L
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Fig. 19   NG(�) via M 
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Fig. 20   Be(�) via M 
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Fig. 21   NG(�) via �1
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6 � Concluding remarks

We have the following significant observations.

•	 Lorentz’s force for cross-nanoliquid is used as resistive 
force which controls the liquid motion.

•	 Velocity is increasing function of �∗.
•	 Temperature �(�) intensifies via Nt and Nb , while it is 

reduced with Pr.
•	 Enhancement in �(�) (Concentration) occurs for aug-

mented values of E (activation energy).
•	 NG (rate of entropy generation) boosts for larger Br 

(Brinkman number), M  (magnetic parameter), �1 
(dimensionless concentration ratio variable), �2(dimen-
sionless temperature ratio variable) and R (thermal 
radiation parameter); however, it decayed via larger L 
(diffusive variable).

•	 Bejan number (Be) rises for greater estimation of R 
(thermal radiation parameter), while it deteriorates for 
Br (Brinkman number).
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Fig. 22   NG(�) via �2
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Fig. 23   NG(�) via R
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