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Abstract
Self-assembled protein micro/nanotubule has been aroused considerable interest as a self-assembled supramolecular struc-
ture with bioactive properties. The prime aim of this study is to predict size dependency in the nonlinear forced oscillation 
of the self-assembled nanotubules embedded in an elastic biomedium. To accomplish this end, the nonlocal strain gradient 
elasticity theory including both softening and stiffening features of size effect is applied to the refined hyperbolic shear 
deformable beam model. By using the principle of Hamilton, unconventional governing differential equations of motion 
have been extracted. Subsequently, generalized differential quadrature method in conjunction with the Galerkin technique 
is employed to solve the nonclassical problem numerically. The nonlocal strain gradient frequency response and amplitude 
response relevant to the primary resonance of the self-assembled nanotubules are obtained corresponding to different types 
of boundary conditions. It is anticipated that the nonlocal size effect causes to decrease the excitation amplitudes associated 
with both bifurcation points, but its effect on the first one is more considerable. However, the strain gradient size dependency 
has an opposite influence and leads to increase them. Furthermore, it is found that by changing the end supports from simply 
supported to clamped one, the influence of the nonlocality on the excitation amplitude associated with the bifurcation points 
increases, but the influence of the strain gradient size dependency decreases.

Keywords Nanotechnology · Biomechanics · Size dependency · Nonlinear vibrations · Nonlocal strain gradient elasticity 
theory

1 Introduction

In a living cell, protein micro/nanotubules as an essential 
cytoskeletal component play an important role in making 
the cell shape and its mechanical characteristics. In other 
words, the protein micro/nanotubules are the most rigid of 
the cytoskeletal biopolymers, the bending stiffness of which 
is about hundred times greater than that of actin filaments. 

Zheng et al. [1] reported that through application of tension 
to sensory neurons creates new microtubule assembly con-
comitant. Omelchanko et al. [2] concluded that microtubules 
provide the necessary framework for polarization of fibro-
blasts and epitheliocytes. Gupton et al. [3] anticipated that 
drugs affect the rate of F-actin and microtubule convergence 
as well as microtubule buckling in a central cell region.

The structure of a living cell and its components may 
vibrate in various frequency ranges which causes to transfer 
mass, signals and energy between cells. Pokorny et al. [4] 
indicated that deterministic forces of biological polar mol-
ecules have the capability to transport particles and electrons 
with higher probability than forces of thermal origin only. 
They also analyzed vibration states in cells using numeri-
cal models. They found that the interaction forces between 
cancer cells may be lower than those between healthy cells 
[5]. Atanasov et al. [6] developed a physical model for vibra-
tion behavior of microtubules in living cell corresponding 
to the first four vibration modes relevant to transverse and 
longitudinal waves.
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Due to the micron and submicron size of the microtubule 
dimensions, small-scale effects have significant influence on 
its mechanical behavior. In order to take these size effects 
into consideration, several unconventional continuum theo-
ries of elasticity have proposed and employed to predict size-
dependent mechanical responses of micro/nanostructures 
[7–50]. For instance, Gao and An [51] explored the buckling 
behavior of protein microtubules on the basis of a nonlocal 
anisotropic elastic shell model. Taj and Zhang [52] investi-
gated the free vibration response of microtubules embed-
ded in an elastic medium. Baninajjaryan and Tadi Beni [53] 
developed a size-dependent isotropic shell model based on 
the nonlocal elasticity theory for free vibration analysis of 
microtubules. Civalek and Demir [54] proposed a nonlocal 
finite element method for mechanical characteristics of pro-
tein microtubules. Tadi Beni et al. [55] predicted the size-
dependent buckling behavior of protein microtubule under 
axial and radial compressions based on the couple stress 
theory of elasticity. Sahmani and Aghdam [56, 57] predicted 
the size-dependent nonlinear axial and radial instabilities of 
protein micro/nanotubules embedded in the cytoplasm of a 
living cell. They also anticipated the size-dependent nonlin-
ear vibrations of axially loaded lipid protein micro/nanotu-
bules within the prebuckling and postbuckling domains [58].

In accordance with reviewing the historical background, 
it is common that size effect in type of the stress nonlocality 
demonstrates softening influence caused a reduction in the 
stiffness, while the strain gradient small-scale effect plays 
a hardening role made an increment in the value of stiff-
ness. It means that the previously proposed unconventional 
continuum theories have not the capability to cover the size 
dependencies in a perfect way. As a consequence, a new 
size-dependent theory of elasticity, namely as nonlocal strain 
gradient theory, was developed by Lim et al. [59] includ-
ing simultaneously both softening and stiffening features of 
size effects. Thereafter, several investigations have been car-
ried out using the newly proposed nonclassical continuum 
theory of elasticity. For instance, Li and Hu [60] employed 
the nonlocal strain gradient theory of elasticity to analyze 
the nonlinear buckling characteristics of Euler–Bernoulli 
nanobeams. Additionally, they predicted the nonlocal strain 
gradient frequency of wave motion on nanotubes conveying 
fluid [61]. Yang et al. [62] anticipated the critical nonlocal 
strain gradient voltages associated with the pull-in instabil-
ity of functionally graded nanoactuators. Simsek [63] con-
structed a nonlocal strain gradient beam model for nonlinear 
vibrations of functionally graded Euler–Bernoulli nanobe-
ams. Farajpour et al. [64] examined buckling behavior of 
orthotropic nonlocal strain gradient plates using a new size-
dependent plate model. Tang et al. [65] analyzed the nonlo-
cal strain gradient wave propagation in a viscoelastic nano-
tube. With the aid of the strain gradient elasticity theory, 
Sahmani and Aghdam [66] studied the linear and nonlinear 

vibrations of supramolecular lipid micro/nanotubules within 
both prebuckling and postbuckling domains. Li et al. [67] 
anticipated the size-dependent bending, buckling and free 
vibration characteristics of axially functionally graded non-
local strain gradient beams. Lu et al. [68] explored the influ-
ences of nonlocality and strain gradient size dependency on 
the free vibration behavior of beams at nanoscale. Sahmani 
and Aghdam [69, 70] reported analytical expressions for the 
nonlocal strain gradient nonlinear buckling and postbuckling 
behavior of hydrostatic pressurized multilayer functionally 
graded nanoshells. Wang et al. [44] introduced a nonlocal 
strain gradient beam model for complex modal analysis for 
vibrational response of axially moving beams at nanoscale. 
Sahmani et al. [71–73] developed nonlocal strain gradient 
beam and plate models to analyze size-dependent nonlinear 
mechanical behaviors of functionally graded porous micro/
nanostructures. Zhen et al. [74] employed the local adaptive 
differential quadrature method and the nonlocal strain gradi-
ent free vibrations of viscoelastic nanotubes.

In the present work, for the first time, the size-dependent 
nonlinear primary resonance of the protein micro/nano-
tubules under soft harmonic excitation and embedded in 
an elastic biomedium is investigated. To accomplish this 
purpose, the nonlocal strain gradient elasticity theory is 
employed within the framework of the refined hyperbolic 
shear deformable beam model. Via the Hamilton’s principle, 
the nonclassical governing differential equations of motion 
are constructed. After that, a numerical solution method-
ology based upon the generalized differential quadrature 
(GDQ) method in conjunction with the Galerkin technique 
is utilized to solve the nonlinear problem.

2  Mathematical formulations

As depicted in Fig. 1, a protein micro/nanotubule created by 
twisting of bilayer stripe protein molecules is considered. 
Due to the chirality, the protein molecules cannot pack paral-
lel of themselves. The lipid micro/nanotubule is modeled as 
a beam-type structure with length L, thickness h and mid-
radius R. Also, a coordinate system is attached to the lipid 
micro/nanotubule in such a way that its z-axis is along tubule 
thickness and its x-axis is along tubule length.

Based upon the hyperbolic shear deformation beam the-
ory [75], the displacement field along different coordinate 
directions can be written as

where u and w in order are the displacement components of 
the biological lipid tubule along x- and z-axis. Additionally, 

(1a)
ux(x, z, t) = u(x, t) − zw,x(x, t) +

[
z cosh (1∕2) − h sinh (z∕h)

]
�(x, t)

(1b)uz(x, z, t) = w(x, t)
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� represents the rotation with respect to the cross section of 
the micro/nanotubule at neutral plane normal about y-axis.

Consequently, the nonzero strain components are derived 
as

in which �xx and �xz denote, respectively, the normal and 
shear strains.

As it has been reported previously, the nonlocal elasticity 
theory and strain gradient elasticity theory do not consider 
size effect comprehensively. The nonlocal theory cannot take 
the higher-order stresses into account. On the other hand, 
the strain gradient theory has the capability to consider only 
local higher-order strain gradients. Motivated by this fact, 
Lim et al. [59] proposed a combination of these theories, 
namely as nonlocal strain gradient elasticity theory, which 
assess small-scale effects more reasonably. Accordingly, the 
total nonlocal strain gradient stress tensor Λ for a beam-type 
structure can be defined as below [59]

{
�xx

�xz

}

=

{
u,x + (1∕2)w2

,x
− zw,xx +

[
z cosh (1∕2) − h sinh (z∕h)

]
�,x[

cosh (1∕2) − cosh (z∕h)
]
�

}

(3a)�xx = �xx − �∗
xx,x

(3b)�xz = �xz − �∗
xz,x

where � and �∗ are the stress and higher-order stress tensors, 
respectively, which can be expressed as

in which C denotes the elastic matrix, ϱ1 and ϱ2 in order 
represent the principal attenuation kernel function in the 
presence of the nonlocality and the additional kernel func-
tion related to the nonlocality effect of the first-order strain 
gradient field,  and  ′ are, respectively, a point and any 
point else in the body, and l is the internal strain gradient 
length scale parameter. In accordance with the method of 
Eringen and assuming ϱ1 = ϱ2 = ϱ, the constitutive equation 
relevant to the total nonlocal strain gradient stress tensor of 
a beam-type structure is constructed as

where µ is the nonlocal parameter. Thereafter, the nonlocal 
strain gradient constitutive relations for a hyperbolic shear 
deformable micro/nanobeam made of nanoporous biomate-
rial can be expressed as

(4a)�ij = �
�

{
�1
(|| � − ||

)
Cijkl�kl

( �
)}

d�

(4b)�∗
ij
= l2 �

�

{
�2
(|| � − ||

)
Cijkl�kl.x

( �
)}

d�

(5a)�xx − �2�xx,xx = Cxxxx�xx − l2Cxxxx�xx,xx

(5b)�xz − �2�xz,xx = Cxzxz�xz − l2Cxzxz�xz,xx

Fig. 1  Schematic view of the 
a living cell including protein 
micro/nanotubules

(6)

�xx − �2�xx,xx =
[
E∕

(
1 − �2

)]{
u,x + (1∕2)

(
w,x

)2
− zw,xx +

[
z cosh (1∕2) − h sinh (z∕h)

]
�,x

− l2
(
u,xxx + w,xxxw,x + w2

,xx
− zw,xxxx +

[
z cosh (1∕2) − h sinh (z∕h)

]
�,xxx

)}

�xz − �2�xz,xx =
[
E∕2(1 + �)

]{[
cosh (1∕2) − cosh (z∕h)

]
� − l2

[
cosh (1∕2) − cosh (z∕h)

]
�,xx

}
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Therefore, within the framework of the nonlocal strain 
gradient hyperbolic shear deformable beam model, the total 
strain energy of a biological lipid protein micro/nanotubule 
can be written as

in which the stress resultants can be introduced as below

where

and

Additionally, the kinetic energy for a biological lipid pro-
tein micro/nanotubule on the basis of the nonlocal strain 
gradient hyperbolic shear deformable beam model can be 
expressed as

(7)

�s =
1

2

L

∫
0

∫
S

{
�ij�ij + �∗

ij
∇�ij

}
dSdx

=
1

2

L

∫
0

{
Nxx�

0
xx
+Mxx�

(0)
xx

+ Rxx�
(2)
xx

+ Qx�
}
dx

(8)

Nxx − �2Nxx,xx = A∗
11

[
u,x + (1∕2)w2

,x
− l2

(
u,xxx + w,xw,xxx + w2

,xx

)]

Mxx − �2Mxx,xx = D∗
11

(
−w,xx + l2w,xxxx

)
+ F∗

11

(
�,x − l2�,xxx

)

Rxx − �2Rxx,xx = F∗
11

(
−w,xx + l2w,xxxx

)
+ H∗

11

(
�,x − l2�,xxx

)

Qx − �2Qx,xx = A∗
44

(
� − l2�,xx

)

(9)

{
Nxx,Mxx,Rxx

}
= 2�R

h

2

∫
−

h

2

�xx{1, z, z cosh (1∕2) − h sinh (z∕h)}dz

Qx = 2�R

h

2

∫
−

h

2

�xz{cosh (1∕2) − cosh (z∕h)}dz

(10)

{
A
∗
11
,D∗

11

}
=
[
2�RE∕

(
1 − �2

)]
h

2

∫
−

h

2

{
1, z2

}
dz

{
F
∗
11
,H∗

11

}
=
[
2�RE∕

(
1 − �2

)]
h

2

∫
−

h

2

{
z
2 cosh (1∕2) − zh sinh (z∕h),

(z cosh (1∕2) − h sinh (z∕h))2
}
dz

{
A
∗
44

}
=
[
2�RE∕2(1 + �)

]
h

2

∫
−

h

2

{cosh (1∕2) − cosh (z∕h)}dz

where

The external work performed by the elastic biomedium 
can be written as

in which k1 and k2 represent the normal and shear stiffness 
of the elastic biomedium, respectively.

Moreover, the performed work associated with the exter-
nal transverse force q can be defined as below

Afterward, based upon the Hamilton’s principle, the gov-
erning differential equations of motion in terms of stress 
resultants are derived as

Consequently, through inserting Eq. (8) in Eq. (14), the 
size-dependent equations of motion can be rewritten as

�T =
1

2

L

∫
0

∫
S

�

{(
ux,t

)2
+

(
uz,t

)2}
dSdx

=
1

2

L

∫
0

{
I0

(
u,t

)2
+ I2

(
w,xt

)2
+ I3w,xt�,t + I4

(
�,t

)2
+ I0

(
w,t

)2}
dx

(11)

{
I0, I2, I3, I4

}

= 2�R�

h

2

∫
−
h

2

{
1, z2, z2 cosh (1∕2) − zh sinh (z∕h), (z cosh (1∕2) − h sinh (z∕h))2

}
dz

(12)�P =

L

∫
0

(
k1w

2 + k2w
2
,x

)
dx

(13)�w =

L

∫
0

q(x, t)wdx

(14a)Nxx,x = I0u,tt

(14b)
Mxx,xx +

(
Nxxw,x

)
,x
− k1w + k2w,xx + q = I0w,tt − I2w,xxtt − I3�,xtt

(14c)Rxx,x − Qx = I3w,xtt + I4�,tt

(15a)

A
∗
11

[
u,xx + w,xw,xx − l

2
(
u,xxxx + 3w,xxw,xxx + w,xw,xxxx

)]

= I0

(
u,tt − �2

u,xxtt

)

(15b)

D∗
11

(
−w,xxxx + l2w,xxxxxx

)
+ F∗

11

(
�,xxx − l2�,xxxxx

)

+ A∗
11
�1 − l2A∗

11
�2 − �2A∗

11
�3 + �2l2A∗

11
�4

= I0
(
w,tt − �2w,xxtt

)
− I2

(
w,xxtt − �2w,xxxxtt

)

− I3
(
�,xtt − �2�,xxxtt

)
− q + �2q,xx + k1

(
w − �2w,xx

)

− k2
(
w,xx − �2w,xxxx

)
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where

In order to perform the numerical solving process in a 
more general form, the following dimensionless parameters 
are taken into consideration

As a result, the dimensionless form of the size-depend-
ent governing differential equations of motion can be con-
structed as

(15c)

(
F
∗
11

(
−w,xxx + l

2
w,xxxxx

)
+ H

∗
11

(
�,xx − l

2�,xxxx

)

−A∗
44

(
� − l

2�,xx

)
= I3

(
w,xtt − �2

w,xxxtt

)
+ I4

(
�,tt − �2�,xxtt

))

(16)

�1 = u,xxw,x + u,xw,xx + (3∕2)w,xxw
2
,x

�2 = u,xxxxw,x + u,xxxw,xx + 4w,xw,xxw,xxx +
(
w,xx + w,xxxx

)
w2
,x

�3 = u,xxxxw,x + 3u,xxxw,xx + 3u,xxw,xxx + u,xw,xxxx + 3w3
,xx

+ 9w,xw,xxw,xxx + (3∕2)w2
,x
w,xxxx

�4 = u,xxxxxxw,x + 3u,xxxxxw,xx + 3u,xxxxw,xxx + u,xxxw,xxxx + 8w,xxw
2
,xxx

+ 10w,xxxxw
2
,xx

+ 4w,xxw
2
,xxx

+ 14w,xw,xxxw,xxxx + 8w,xw,xxw,xxxxx + 6w,xw,xxw,xxx

+
(
w,xxxx + w,xxxxx

)
w2
,x
+ 2w3

,xx

X =
x

L
, U =

u

h
, W =

w

h
, � = � , �1 =

l

L
, �2 =

�

L
, � =

h

L

(17)

T =
t

L

√
A∗
11

I0
,

{
a
∗
11
, a

∗
44
, d

∗
11
, f

∗
11
, h

∗
11

}
=

{
A∗
11

A∗
11

,
A∗
44

A∗
11

,
D∗

11

A∗
11
h2

,
F∗
11

A∗
11
h2

,
H∗

11

A∗
11
h2

}

{
I∗
0
, I∗

2
, I∗

3
, I∗

4

}
=

{
I0

I0
,
I2

I0h
2
,
I3

I0h
2
,
I4

I0h
2

}
,

 =
qL2

A∗
11
h
,
{
K1,K2

}
=

{
L4k1

A∗
11
h2

,
L2k2

A∗
11
h2

}

(18a)a∗
11

[
U,XX + �W,XW,XX − �2

1

(
U,XXXX + 3�W,XXW,XXX + �W,XW,XXXX

)]
= I∗

0

(
U,TT − �2

2
U,XXTT

)

(18b)

d∗
11

(
W,XXXX − 𝜂2

1
W,XXXXXX

)
− f ∗

11

(
𝛹,XXX − 𝜂2

1
𝛹,XXXXX

)
+ K1

(
W − 𝜂2

2
W,XX

)

− K2

(
W,XX − 𝜂2

2
W,XXXX

)
− a∗

11
𝛤1 + 𝜂2

1
a∗
11
𝛤2 + 𝜂2

2
a∗
11
𝛤3 − 𝜂2

1
𝜂2
2
a∗
11
𝛤4

=  − 𝜂2
2
,XX − I∗

0

(
W,TT − 𝜂2

2
W,XXTT

)
+ I∗

2

(
W,XXTT − 𝜂2

2
W,XXXXTT

)

+ I∗
3

(
𝛹,XTT − 𝜂2

2
𝛹,XXXTT

)

(18c)

f
∗
11

(
W,XXX − �2

1
W,XXXXX

)
− h

∗
11

(
�,XX − �2

1
�,XXXX

)

+ a
∗
44

(
� − �2

1
�,XX

)
= − I

∗
3

(
W,XTT − �2

2
W,XXXTT

)

− I
∗
4

(
�,TT − �2

2
�,XXTT

)

in which

3  Numerical solution methodology

The nonlocal strain gradient governing equations of motion 
are solved numerically with the aid of a solution methodol-
ogy based upon the GDQ method together with the Galerkin 
technique [76–78]. Consequently, in order to discretize X 

(19)

𝛤1 = 𝛽U,XXW,X + 𝛽U,XW,XX + (3∕2)𝛽2W,XXW
2

,X

𝛤2 = 𝛽U,XXXXW,X + 𝛽U,XXXW,XX + 4𝛽2W,XW,XXW,XXX

+ 𝛽2
(
W,XX +W,XXXX

)
W

2

,X

𝛤3 = 𝛽
[
U,XXXXW,X + 3U,XXXW,XX + 3U,XXW,XXX + U,XW,XXXX

]

+ 𝛽2
[
3W

3

,XX
+ 9W,XW,XXW,XXX + (3∕2)W2

,X
W,XXXX

]

𝛤4 = 𝛽
[
U,XXXXXXW,X + 3U,XXXXXW,XX + 3U,XXXXW,XXX + U,XXXW,XXXX

]

+ 𝛽2
[
10W,XXXXW

2

,XX
+ 12W,XXW

2

,XXX
+ 14W,XW,XXXW,XXXX

+8W,XW,XXW,XXXXX + 6W,XW,XXW,XXX

+
(
W,XXXX +W,XXXXX

)
W

2

,X
+ 2W

3

,XX

]

domain, the shifted Chebyshev–Gauss–Lobatto grid point 
is put to use as below

(20)
Xi = (1∕2)

[
1 − cos (�(i − 1)∕(n − 1))

]
, i = 1, 2, 3,… , n
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Thereby, the discretized governing equations of motion 
can be written in terms of mass matrix, damping matrix and 
stiffness matrix as below

where

in which

(21)�̈ + �̇ +
L
� +

N
=  cos (𝛺T)

(22)

� =

⎡⎢⎢⎢⎣

��

�T

�T

⎤⎥⎥⎥⎦
3×n

 =

⎡⎢⎢⎢⎢⎣

− I∗
0

�(0)

X
− �2

2
(2)

X

�
0 0

0 I∗
0

�(0)

X
− �2

2
(2)

X

�
− I∗

2

�(2)

X
− �2

2
(4)

X

�
− I∗

3

�(1)

X
− �2

2
(3)

X

�

0 I∗
3

�(1)

X
− �2

2
(3)

X

�
I∗
4

�(0)

X
− �2

2
(2)

X

�

⎤⎥⎥⎥⎥⎦

L =

⎡⎢⎢⎢⎢⎣

a∗
11

�(2)

X
− �2

1
(4)

X

�
0 0

0 d∗
11

�(4)

X
− �2

1
(6)

X

�
+ K1

�
1 − �2

2
(2)

X

�
− K2

�(2)

X
− �2

2
(4)

X

�
− f ∗

11

�(3)

X
− �2

1
(5)

X

�

0 f ∗
11

�(3)

X
− �2

1
(5)

X

�
a∗
44

�(0)

X
− �2

1
(2)

X

�
− h∗

11

�(2)

X
− �2

1
(4)

X

�

⎤⎥⎥⎥⎥⎦

N =

⎡
⎢⎢⎢⎣

ku
N

kw
N

0

⎤
⎥⎥⎥⎦
3×n
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where c is the damping parameter, ∘ denotes the Hadamard 
product, and the derivative operators corresponding to each 
order can be introduced as

In order to continue the solution methodology, the vari-
able matrix � is expressed separately as below

By inserting Eq. (25) in Eq. (21), one will have

Thereafter, with the aid of the Galerkin technique, the 
Duffing-type equation of motion relevant to the forced oscil-
lations of the lipid protein micro/nanotubule can be extracted 
as

(24)
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i = 1, 2, 3,… , n − 1, j, k = 1, 2, 3,… , n

(25)�(X, T) = �(X)g(T)

(26)��̈ + ��̇ +
L
�� +

N
=  cos (𝛺T)

in which

It should be noted that the expressions for �(X) corre-
sponding to different boundary conditions are actually rep-
resent the associated linear vibrational mode shapes (eigen-
vectors) which can be obtained numerically for each type of 
boundary conditions.

Through definition of T̃ = 𝛺T  , Eq. (28) can be rewritten 
as

Now, in order to discretize the time domain, it is assumed 
that

(27)̂�̈ + ̂�̇ + ̂
L
� + ̂

N

(
�3
)
= ̂ cos (𝛺T)

(28)

̂ = ��
diagonal

�, ̂ = ��
diagonal

�, ̂
L
= ��

diagonal


L
�

̂
N
= ��

diagonal


N
, ̂ = ��

diagonal


(29)𝛺2̂�̈ +𝛺̂�̇ + ̂
L
� + ̂

N

(
�3
)
= ̂ cos

(
T̃
)

(30)T̃i = i∕nt i = 1, 2, 3,… , nt
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Fig. 2  Size-dependent frequency response of the protein micro/nanotubules corresponding to different nonlocal parameters
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Fig. 3  Size-dependent frequency response of the protein micro/nanotubules corresponding to different strain gradient parameters

where nt denotes the number of discrete points on the time 
domain and is an even number.

Consequently, it yields

in which � includes the first m discretized mode shapes 
(eigenvectors) relevant to the Galerkin technique as

and

Also, the time derivative operator corresponding to each 
order can be introduced explicitly in the following matrix 
forms
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Now, by vectorization of matrices � and ̂
N

 [71–73], 
and using Kronecker product, the vectorized definition of 
Eq. (32) can be expressed as

where I
t
 represents the identity matrix (zero order of the 

time derivative).
Finally, the pseudo-arc-length continuation method [79] 

is utilized to solve Eq. (35) as a set of nonlinear equations.

4  Numerical results and discussion

In this section, the nonlinear primary resonance of a lipid 
protein nanotubule with thickness of 1.6 nm, mid-radius of 
10.7 nm and length of L = 20 h is considered. Also, the mate-
rial properties are considered as: E = 0.8 GPa, � = 0.3, and 

(35)

(
𝛺2

((2)

T
⊗ ̂)

+𝛺

((1)

T
⊗ ̂) +

(
I
t
⊗ ̂

L

))
vec(�)

+ vec
(̂

N

(
�3

))
− �

(
I
t
⊗ ̂) = 0

� = 1042 kg/m3 [80]. Three different boundary conditions, 
namely as simply supported–simply supported (SS–SS), 
simply supported–clamped (SS–C) and clamped–clamped 
(C–C), are considered for the two ends of the micro/
nanotubule.

Figures 2 and 3 illustrate the size-dependent frequency 
response curves associated with the nonlinear primary res-
onance corresponding to various nonlocal parameters and 
strain gradient parameters, respectively. It is revealed that 
by taking the nonlocality into account, the peak of jump 
phenomenon for the vibration amplitude increases and it 
is shifted to higher excitation frequency. In other words, 
it means that the nonlocal size effect leads to increase the 
geometrical nonlinearity regarding to the nonlinear primary 
resonance of nanotubules. However, by changing the end 
supports from simply supported to clamped one, the signifi-
cance of this pattern decreases. On the other hand, the strain 
gradient size dependency leads to reduce the peak of jump 
phenomenon for the vibration amplitude and it is shifted to 
lower excitation frequency. In other words, it means that the 
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Fig. 4  Size-dependent amplitude response of the protein micro/nanotubules corresponding to different nonlocal parameters
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strain gradient size effect causes to decrease the geometrical 
nonlinearity regarding to the nonlinear primary resonance 
of nanotubules. It can be seen again that through changing 
the boundary conditions from SS–SS to C–C, the influence 
of the strain gradient size effect decreases.

In Figs. 4 and 5, the size-dependent amplitude response 
curves related to the nonlinear primary resonance of lipid 
nanotubule are depicted corresponding to various values of 
nonlocal and strain gradient parameters, respectively. It is 
observed that by increasing the excitation amplitude, the 

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

Dimensionless excitation amplitude

D
im

en
si

on
le

ss
 v

ib
ra

ti
on

 a
m

pl
it

ud
e

SS-C

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

Dimensionless excitation amplitude

D
im

en
si

on
le

ss
 v

ib
ra

ti
on

 a
m

pl
it

ud
e

C-C

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dimensionless excitation amplitude

D
im

en
si

on
le

ss
 v

ib
ra

ti
on

 a
m

pl
it

ud
e

SS-SS

Fig. 5  Size-dependent amplitude response of the protein micro/nanotubules corresponding to different strain gradient parameters

Table 1  Dimensionless natural frequencies of a nanotubule corresponding to various values of the small-scale parameters and different boundary 
conditions

µ  = 0 nm
l = 0 nm

µ  = 1.5 nm
l = 0 nm

µ = 3 nm
l = 0 nm

µ = 6 nm
l = 0 nm

µ = 0 nm
l = 1.5 nm

µ = 0 nm
l = 3 nm

µ = 0 nm
l = 6 nm

SS–SS boundary conditions
 0.2671 0.2614 (− 2.13%) 0.2457 (− 8.01%) 0.1983 (− 25.76%) 0.2728 (+ 2.13%) 0.2902 (+ 8.65%) 0.3597 (+ 34.67%)

C–SS boundary conditions
 0.6518 0.6357 (− 2.47%) 0.5918 (− 9.21%) 0.4638 (− 28.84%) 0.6682 (+ 2.52%) 0.7177 (+ 10.11%) 0.9153 (+ 40.43%)

C–C boundary conditions
 1.3716 1.3353 (− 2.65%) 1.2370 (− 9.81%) 0.9557 (− 30.32%) 1.4087 (+ 2.71%) 1.5200 (+ 13.83%) 1.9651 (+ 43.27%)
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vibrational response amplitude increases up to the first bifur-
cation point. Thereafter, increase in the vibrational response 
amplitude continues through reduction in the excitation 
amplitude up to the second bifurcation point. It is found 
that the nonlocal size effect causes to decrease the excitation 
amplitudes associated with both of the bifurcation points, 
but its effect on the first one is more considerable. How-
ever, the strain gradient size dependency has an opposite 
influence and leads to increase them. Moreover, it is seen 
that by changing the end supports from the simply sup-
ported to the clamped one, the influence of the nonlocality 
on the excitation amplitude associated with the bifurcation 
points increases, but the influence of the strain gradient size 
dependency decreases.

In Table 1, the dimensionless natural frequencies of the 
nanotubule with different boundary conditions are tabu-
lated corresponding to various values of the small-scale 

parameters. It is indicated that the nonlocal size effect leads 
to decrease the natural frequency, but the strain gradient 
size effect causes to increase it. However, the increment 
caused by the strain gradient size dependency is more than 
the reduction caused by the nonlocality.

Figure  6 represents the size-dependent amplitude 
response of the lipid nanotubule under different frequency 
ratios. It is revealed that by increasing the value of the exci-
tation frequency, the excitation amplitudes associated with 
the bifurcation points increase. Also, it leads to increase 
the difference between the excitation amplitudes of the two 
bifurcation points, and this pattern becomes more signifi-
cant by changing the boundary conditions from SS–SS to 
C–C. This observation may be related to this point that by 
changing the boundary conditions from SS–SS to C–C, the 
deflection of the excited nanotubule reduces.
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Fig. 6  Size-dependent amplitude response of the protein micro/nanotubules corresponding to different excitation frequencies
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In Fig.  7, the size-dependent frequency response of 
the lipid nanotubule subjected to the soft excitations with 
various amplitudes is shown. It is indicated that through 
enhancement of the excitation amplitude, the peak of the 
jump phenomenon associated with the frequency response 
of nanotubule increases. This pattern is more significant for 
simply supported end conditions than clamped one, which 
may be related to higher deflection of a nanotubule with 
simply supported boundary conditions.

Figures 8 and 9 demonstrate, respectively, the frequency 
response and amplitude response of the lipid nanotubule 
embedded on a different biomedium. It is obvious that by 
taking the elastic biomedium into consideration, the peak 
of the jump phenomenon related to the frequency response 
decreases, especially for SS–SS boundary conditions, due 
to this fact that the elastic foundation causes to reduce the 
deflection of the excited nanotubule. However, it is seen that 

the excitation amplitudes associated with the bifurcation 
points increase. Moreover, it is displayed that this pattern is 
more significant for Pasternak type of biomedium including 
shear stiffness than the Winkler one.

5  Concluding remarks

The prime objective of the current study was to predict the 
nonlinear primary resonance of a lipid protein micro/nano-
tubule in the presence of the nonlocality and strain gradient 
size dependency. To accomplish this purpose, the nonlo-
cal strain gradient elasticity theory was utilized within the 
framework of the refined hyperbolic shear deformation 
beam theory. Through the numerical solving process, the 
size-dependent frequency response and amplitude response 
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Fig. 7  Size-dependent frequency response of the protein micro/nanotubules corresponding to different excitation amplitudes
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Fig. 8  Influence of the elastic biomedium on the size-dependent frequency response of the protein micro/nanotubules

of the lipid micro/nanotubule were obtained corresponding 
to different small-scale parameters.

It was observed that by taking the nonlocality into 
account, the peak of jump phenomenon for the vibration 
amplitude increases and it is shifted to higher excitation fre-
quency. However, the strain gradient size dependency leads 
to reduce the peak of jump phenomenon for the vibration 
amplitude and it is shifted to lower excitation frequency.

It was indicated that by changing the boundary condi-
tions from SS–SS to C–C, the influence of the size effects 
on the frequency response of lipid protein micro/nanotu-
bule reduces. In addition, it was seen that by increasing 
the excitation amplitude, the vibrational response ampli-
tude increases up to the first bifurcation point. Thereafter, 
increase in the vibrational response amplitude continues 

through reduction in the excitation amplitude up to the sec-
ond bifurcation point.

It was seen that the nonlocal size effect causes to decrease 
the excitation amplitudes associated with both bifurcation 
points, but its effect on the first one is more considerable. 
However, the strain gradient size dependency has an oppo-
site influence and leads to increase them.

It was displayed that by increasing the value of the excita-
tion frequency, the excitation amplitudes associated with the 
bifurcation points increase. It was also demonstrated that by 
taking the elastic biomedium into consideration, the peak 
of the jump phenomenon related to the frequency response 
decreases, especially for SS–SS boundary conditions, but the 
excitation amplitudes associated with the bifurcation points 
increase.
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Fig. 9  Influence of the elastic biomedium on the size-dependent amplitude response of the protein micro/nanotubules
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