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Abstract
In this article, wave propagation characteristics of a size-dependent graphene nanoplatelet (GNP) reinforced composite cylin-
drical nanoshell coupled with piezoelectric actuator (PIAC) and surrounded with viscoelastic foundation is presented. The 
effects of small scale are analyzed based on nonlocal strain gradient theory (NSGT) which is an accurate theory employing 
exact length scale parameter and nonlocal constant. The governing equations of the GNP composite cylindrical nanoshell 
coupled with PIAC have been evolved using Hamilton’s principle and solved with assistance of the analytical method. For 
the first time in the current study, wave propagation electrical behavior of a GNP composite cylindrical nanoshell coupled 
with PIAC based on NSGT is examined. The results show that, by decreasing the PIAC thickness, extremum values of phase 
velocity occur in the lower values of the wave number. Another important result is that, by increasing GPL%, the effects of 
PIAC thickness on the phase velocity decrease. Finally, influence of PIAC thickness, wave number, applied voltage, and 
different GPL distribution patterns on phase velocity is investigated using mentioned continuum mechanics theory. Useful 
suggestion of this research is that for designing of a nanostructure coupled with PIAC attention should be given to PIAC 
thickness and applied voltage, simultaneously. The outputs of the current study can be used in the structural health monitor-
ing and ultrasonic inspection techniques.

Keywords  Wave propagation · Maxwell equation · Graphene nanoplatelet · Piezoelectric actuator · NSGT · Applied voltage

1  Introduction

Regarding the new progressions in science and technology, 
GNPs have engrossed significant attention. Some applica-
tions of GNP reinforcement are shown in Ref. [1]. Suna 
et al. [2] as an experimental study, compared the fracture 
behavior of functionally graded cemented carbide reinforced 

with and without the GNPs. In addition, they represented 
microstructure of the nanocomposites. Figure 1 shows the 
GNP layered in the matrix of the nanocomposites. They in 
this paper reported an attractive result that role of GNPs in 
the nanocomposites is the crack stopper (Fig. 2).

Nieto et al. [3] presented the effect of GNP value frac-
tion on grain size and mechanical property of the GNP-rein-
forced tantalum composite. Their result showed the SEM 
micrographs of the tantalum/GNP composites (Fig. 3). The 
grain size of tantalum/GNP composites with different value 
fractions of GNP is shown in Fig. 4. It should be noted that 
the results of Fig. 4 are obtained from micrographs similar 
to Fig. 3.

According to Figs. 3 and 4, by increasing value fraction 
of GNP into nanocomposite, it is a reason for production 
finer grain. It is worth to mention that grain refinement has 
an important role on the mechanical properties. Rafiee et al. 
[4] compared the mechanical properties of epoxy nano-
composites refined with 1% value fraction of single-walled 
carbon nanotubes (SWNT), multiwalled carbon nanotube 
(DWNT) and GNP with each other. Their results show that 
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Young’s modulus, ultimate tensile strength, fracture tough-
ness, fracture energy and fatigue resistance of the GNPs are 
more than other materials (Fig. 5). So that GNP materials 
can be replaced instead of SWNTs and MWNTs in many 
applications.

Researches proved that subjoining even a very meager 
amount of graphene into primary polymer matrix can des-
perately improve its mechanical, thermal and electrical prop-
erties [5–9]. It is worse to mention that nanostructures rein-
forced with GNP are more applicable in engineering design, 
so focus on dynamic modeling of the nanostructure with 
GNP reinforcement is useful and important. Furthermore, 
polymer matrix reinforced by various types of nanofillers 
is one of the most efficient and easily extruded nanocom-
posite materials with a wide range of applications such as 
field effect transistors, electromechanical actuators, biosen-
sors and chemical sensors, solar cells, photoconductor and 
superconductor devices. For this reason, the investigation of 
their mechanical characteristics is a great interest for engi-
neering design and manufacturing. In the field reinforcement 

structures, Habibi et al. [10–14] with the aid of some meth-
ods improved the mechanical property of macro-structures. 
Dong et al. [15] presented an analytical study on linear and 
nonlinear vibration characteristics and dynamic responses of 
spinning FG graphene-reinforced thin cylindrical shells with 
various boundary conditions and subjected to a static axial 
load. Dong et al. [16] investigated the buckling behavior of 
FG graphene-reinforced porous nanocomposite cylindrical 
shells with spinning motion and subjected to a combined 
action of external axial compressive force and radial pres-
sure. Dong et al. [17] concerned with free vibration char-
acteristics of the functionally graded graphene-reinforced 
porous nanocomposite cylindrical shell with spinning 
motion. In their result section, detailed parametric studies 
on natural frequencies and critical spinning speeds of the 
GPL-reinforced porous nanocomposite cylindrical shell 
are carried out, especially, effect of initial hoop tension on 
vibration characteristics of the spinning cylindrical shell is 
numerically discussed. Jang et al. [18] presented the post-
buckling and buckling behaviors of FG multilayer nanocom-
posite beams reinforced with graphene platelets (GNPs). 
They investigated that GNPs have a remarkable reinforcing 
effect on the buckling and postbuckling of nanocomposite 
beams. In another work, Feg et al. [19] found out nonlin-
ear bending behavior of a novel class of multilayer polymer 
composite beams reinforced with graphene platelets (GNPs). 
They studied that beam with a higher value fraction of GNPs 
and symmetric distribution in such a way is less sensitive to 
the nonlinear deformation.

None of the above researches have taken size effects into 
account in wave propagation analysis of structures. Con-
tinuum mechanics theories including classical theory [20, 
21] and size-dependent theories are used to model micro/
nanostructures. As classical theory does not consider 

Fig. 1   The GNP layered in the matrix of the nanocomposites

Fig. 2   Role of GNPs as the crack stopper in the nanocomposites
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submicron discontinuities of structure, so it cannot capture 
size-dependent effects when scale turns to micro or nano. 
Size-dependent theories including nonlocal [22–30], strain 
gradient [31, 32] and couple stress [33–38] theories are 
better choices and present more accurate outputs in these 
cases. It should be noted that mentioned theories consist of 
size-dependent parameters which their exact values must be 
determined by experimental data or numerical simulations 

[39–41]. For simple structures such as graphene sheets or 
carbon nanotubes, production of material for experiment or 
simulation is a straightforward process, but for composite 
structures, the process becomes complicated and encour-
ages the researchers to approximate the models through 
mathematics and theories. Gul and Aydogdu [42] employed 
some length scale-dependent theories for investigation of 
wave propagation in double-walled carbon nanotubes. As 

Fig.. 3   SEM micrographs of the pure tantalum and tantalum/GNP composites. a Pure tantalum, b 1 wt% GNP, c 3 wt% GNP, d 5 wt% GNP [3]

Fig. 4   The grain size of tantalum/GNP composites with different 
value fraction of GNP [3]

Fig. 5   Ultimate tensile strength and Young modulus for the baseline 
epoxy and GNP/epoxy, MWNT/epoxy, and SWNT/epoxy nanocom-
posites [4]
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a comparative research, they compared doublet mechan-
ics results with classical elasticity, strain gradient theory, 
nonlocal theory and lattice dynamics. Experimental wave 
frequencies and doublet mechanics theory of graphite have 
good agreement with each other, so they showed that doublet 
mechanics theory has higher accuracy.

Ard and Aydogdu [43] studied torsional wave propaga-
tion for a multiwalled carbon nanotubes in the framework of 
Eringen’s nonlocal elasticity theory. They considered effect 
of van der Waals interaction and reported that the interac-
tion has an important role in torsional wave propagation. In 
another work, Islam et al. [44] represented size effects on 
torsional wave propagation of circular nanostructure, such as 
nanoshafts, nanorods and nanotubes. They demonstrated the 
significance of considering the integral nonlocal model and 
nanoscale relations in dispersion characteristics of circular 
nanostructures. Aydogdu [45] employed nonlocal elasticity 
theory for studying longitudinal wave propagation in multi-
walled carbon with including van der Waals force effect in 
the axial direction. In the result of this paper, the effects of 
various parameters on wave propagation were examined in 
detail. In recent years, incorporating the local and nonlo-
cal curvatures in constitutive relations, NSGT has emerged. 
Based on this theory, the stress of submicron-scale struc-
tures appears in both nonlocal stress and pure strain gradient 
stress fields. Lim et al. [46] used thermodynamic framework 
to derive NSGT equations, so that the higher-order nonlo-
cal parameters and the nonlocal gradient length coefficients 
were considered.

Applications of NSGT in vibration analysis of nanostruc-
tures [47–49] have attracted many researcher’s attentions. 
Zeighampour et al. [50] investigated wave propagation in 
double-walled carbon nanotube surrounded by Winkler 
foundation using the nonlocal strain gradient theory. In their 
results, nonlocal strain gradient theory and classical theory 
were compared in terms of the influences of nonlocal and 
material length scale parameters, wave number, fluid veloc-
ity and stiffness of elastic foundation on phase velocity. In 
another work [51], they modeled a composite cylindrical 
micro/nanoshells and studied the variation of phase velocity 
versus material length scale parameters and nonlocal con-
stant. According to that paper, an increase in material length 
scale increases the phase velocity while nonlocal parameter 
acts vice versa. Zeighampour et al. [52] conducted a wave 
propagation study on a thin cylindrical nanoshell surrounded 
by visco-Pasternak foundation based on nonlocal strain gra-
dient theory. The viscoelastic properties were modeled by 
Kelvin–Voigt theory. They indicated that the structure has 
a better stability condition using strain gradient theory in 
comparison with classical theory. In the field of the wave 
propagation behavior of a structure coupled with piezoelec-
tric actuators, Lat. Am et al. [53] studied wave propaga-
tion of the two-layer piezoelectric composite structure. As 

a parametric study, they in this work showed the effects of 
volume fraction, thickness and elastic constant on the wave 
dispersion of the structure. Arani et al. [54] investigated 
wave dispersion of the FG carbon nanotube-reinforced pie-
zoelectric composite. They in this work included the visco-
Pasternak in their mathematical modeling. The structure 
was subjected to magnetic and electric fields. Their results 
showed that external voltage has a significant effect on the 
wave desperation behavior. Zhou [55] modeled the piezo-
electric cylindrical shells and investigated surface effect on 
wave dispersion of the nanostructure. Their results presented 
that at the higher mode surface effect has a significant effect 
on the wave propagation of the structure. Bishe et al. [56] 
presented wave propagation in smart laminated compos-
ite cylindrical shells reinforced with carbon nanotubes in 
hygrothermal environments. They investigated the effects 
of temperature/moisture variation, CNT volume fraction 
and orientation,  piezoelectricity, shell geometry, stack-
ing sequence and material properties of the host substrate 
laminated composite shell at different axial and circumfer-
ential wave numbers and the results of their work showed 
that the temperature/moisture variation influences moder-
ately on the dispersion solutions of smart laminated CNT-
reinforced composite shells. Bishe et al. [57] focused on 
the wave propagation in piezoelectric cylindrical composite 
shells reinforced with angled and randomly oriented CNTs. 
Bishe et al. [58] studied and analyzed wave propagation in 
a piezoelectric cylindrical composite shell reinforced with 
CNTs by using the Mori–Tanaka micromechanical model 
and considering the transverse shear effects and rotary iner-
tia via the first-order shear deformation shell theory. Bishe 
et al. [59] investigated wave behavior in a piezoelectric cou-
pled laminated fiber-reinforced composite cylindrical shell 
by considering the transverse shear effects and rotary inertia. 
In the results of their work presented a comparison of dis-
persion solutions from different shell theories with different 
axial and circumferential wave numbers and piezoelectric 
layer thickness is provided to illustrate the transverse shear 
and rotary inertia effects on wave behavior of a laminated 
fiber-reinforced composite shell. Guo et al. [60] analyzed the 
effects of FG interlayers on the wave propagation in covered 
piezoelectric/piezomagnetic cylinders. They in this work 
showed that high-order modes are more sensitive to the gra-
dient interlayers, while the low-order modes are more sen-
sitive to the electromagnetic surface conditions. The wave 
propagation of the porous FG plates with the aid of some 
shear deformation theories was analyzed by Yahia et al. [61]. 
As an application, they showed that their results are use-
ful for ultrasonic inspection. Also, they presented the effect 
of porosity on the wave propagation behavior of the struc-
ture. The present study investigates the wave propagation 
piezoelectric behavior of a GPLRC cylindrical nanoshell 
coupled with PIAC based on NSGT with considering the 
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calibrated values of nonlocal constant and material length 
scale parameter for the first time. In this regard, influence of 
wave number, critical applied voltage and GNP distribution 
pattern on phase velocity are investigated using mentioned 
continuum mechanics theory.

2 � Mathematical modeling

In Fig. 6, a GNPRC cylindrical nanoshell coupled with 
PIAC is modeled. The thickness, length and the middle sur-
face radius of the cylindrical shell are heff

(
h + hp

)
 , L and 

R , respectively. In addition, the nanostructure is subjected 
to the electric potential ( V  ) and z-axis is the poling direc-
tion. The cylindrical nanoshell is made of a new composite 
material.

2.1 � Nonlocal strain gradient theory

According to the nonlocal strain gradient theory, the general 
constitutive equation can be expressed as follows [62]:

where ∇2 = �2∕�x2 + �2∕�(�R)2 , tij , �ck and Cijck are the com-
ponents of nonlocal strain gradient stress tensor, strain tensor 
and elasticity tensor, respectively. Nonlocal strain gradient 
stress tensor is explained in the following form:

where �ij and �(1)

ij
 are classical and size-dependent stresses, 

respectively. The � and l  parameters denote the influ-
ence of noninvariant stress field and higher-order strain 
gradient stress field. The calibrated values of mentioned 

(1)(1 − �2∇2)tij = Cijck(1 − l2∇2)�ck

(2)tij = �ij − ∇�
(1)

ij

size-dependent parameters are determined through experi-
mental studies. These parameters are considered to be con-
stant and stable for the proposed model. The strain tensor 
is written as:

2.2 � Constitutive equations for nanocomposite core 
and piezoelectric layers

The matrix of nanostructure is composed of GNPRC materi-
als. The volume fraction functions of these materials have been 
represented by

where k is number of layers of the microstructure, NL is the 
total number of layers and V∗

GPL
 is the total volume fraction 

of GNPs. The relation between V∗
GPL

 and their weight frac-
tion g

GPL
 can be expressed by:

in which �GPL and �m are the mass densities of GNP and 
the polymer matrix. Based on Halpin–Tsai model, the elas-
tic modulus of composites reinforced with randomly GNP 
approximated by [63]:

(3)�ij =
1

2

(
ui,j + uj,i

)

(4)Pattern1: VGPL(k) = V∗
GPL

(5)Pattern2: VGPL(k) = 2V∗
GPL

||2k − NL − 1||∕NL

(6)
Pattern3: VGPL(k) = 2V∗

GPL

[
1 −

(||2k − NL − 1||∕NL

)]

(7)Pattern4: VGPL(k) = 2V∗
GPL

(2k − 1)∕NL

(8)V∗
GPL

=
gGPL

gGPL + (�GPL∕�m)(1 − gGPL)

Fig. 6   Geometry of GNPRC 
cylindrical nanoshell coupled 
with PIAC
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where E is effective modulus of composites reinforced with 
GNPs and EL and ET are the longitudinal and transverse 
moduli for a unidirectional lamina. In Eq. (9), the GNP 
geometry factors ( �L and �T ) and other parameters are given 
by:

where ℤGPL, hGPL, bGPL are the average length, thickness 
and width of the GPLs. By using the rule of mixture, mass 
density �c and Poisson’s ratio vc of the GPL/polymer nano-
composite are expressed as:

The mechanical properties of the GPLR cylindrical shell 
can be obtained by [63]. In addition, the stress–strain rela-
tion of the composite core can be expressed as follows:

where the stiffness coefficients ( Qij ) are obtained in Ref. 
[64].

2.3 � Piezoelectric layers

The relationships between the stress and strain for the piezo-
electric layers are written as follows:

(9)

E =
3

8
EL +

5

8
ET,

EL =
1 + �LnLVGPL

1 − nLVGPL

Em, ET =
1 + �TnTVGPL

1 − nTVGPL

Em

(10)
�L = 2(ℤGPL∕hGPL), �T = 2(bGPL∕hGPL),

nL =
(EGPL∕Em) − 1

(EGPL∕Em) + �L
, nT =

(EGPL∕Em) − 1

(EGPL∕Em) + �T

(11)

Ē = EGPLVGPL + EMVM,

𝜌̄ = 𝜌GPLVGPL + 𝜌MVM,

𝜈̄ = 𝜈GPLVGPL + 𝜈MVM,

𝛼̄ = 𝛼GPLVGPL + 𝛼MVM.

(12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎xx

𝜎𝜃𝜃

𝜎zz

𝜎x𝜃

𝜎xz

𝜎𝜃z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

Q̄11 Q̄12 Q̄13 0 0 0

Q̄12 Q̄22 Q̄23 0 0 0

Q̄13 Q̄23 Q̄33 0 0 0

0 0 0 Q̄44 0 0

0 0 0 0 Q̄55 0

0 0 0 0 0 Q̄66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜀xx

𝜀𝜃𝜃

𝜀zz

𝜀x𝜃

𝜀xz

𝜀𝜃z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�xx

���

�x�

��z

�xz

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎣

c11 c12 0 0 0

c12 c22 0 0 0

0 0 c66 0 0

0 0 0 c55 0

0 0 0 0 c44

⎤⎥⎥⎥⎥⎥⎦

.

⎡⎢⎢⎢⎢⎢⎢⎣

�xx

���

�x�

��z

�xz

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e32
0 0 0

0 e24 0

e25 0 0

⎤⎥⎥⎥⎥⎥⎦

⎧
⎪⎨⎪⎩

Ex

E�

Ez

⎫⎪⎬⎪⎭

where cijkl, emij, din, pi, �ij and sim are the elasticity matrix, 
piezoelectric constants, pyroelectric constants, thermal 
moduli and dielectric constants, respectively. Di and Em 
are electric displacement and electric fields strength of the 
piezoelectric cylindrical shell, respectively. The electric 
and magnetic field strength, i.e., Ex,E� ,Ez which are used 
in Eqs. (13) and (14) could be expressed as follows:

Ghadiri et al. [64] investigated that the potential of electric 
could be assumed as:

in which � = �∕h , Ψ̃ and Φ̃ are the initial external electric 
and magnetic potential, respectively.

2.4 � Displacement field of the cylindrical shell

Based on the first shear deformation theory, the displacement 
field of the cylindrical shell is as below:

Here, U(x, �, z, t) , V(x, �, z, t) and W(x, �, z, t) indicate dis-
placements of the neutral surface along x, � and z directions, 
respectively, and �x , �� show rotations of a cross section 
around � and x-direction. Substituting Eq. (17) into Eq. (3), 
the components of the strain tensor are extracted as follows:

(14)

⎧⎪⎨⎪⎩

Dx

D�

Dz

⎫⎪⎬⎪⎭
=

⎡
⎢⎢⎣

0 0 0 0 e15
0 0 0 e24 0

e31 e32 0 0 0

⎤
⎥⎥⎦
.

⎡
⎢⎢⎢⎢⎢⎢⎣

�xx

���

�x�

��z

�xz

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

s11 0 0

0 s22 0

0 0 s33

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

Ex

E�

Ez

⎫⎪⎬⎪⎭

(15)

Ex = −
𝜕Φ̃

𝜕x

E𝜃 = −
1

R + z

𝜕Φ̃

𝜕𝜃

Ez = −
𝜕Φ̃

𝜕z
.

(16)
Φ̃(x, 𝜃, z, t) = − cos(𝛽z)𝜙(x, 𝜃, t) +

2z𝜙0

h

(17)

U(x, �, z, t) = u(x, �, t) + z�x(x, �, t)

V(x, �, z, t) = v(x, �, t) + z��(x, �, t)

W(x, �, z, t) = w(x, �, t)

(18)

�xx =
�u

�x
+ z

��x

�x

��� =
1

R

�v

��
+

z

R

���

��
+

w

R

�xz =
1

2

(
�x +

�w

�x

)

�x� =
1

2

(
1

R

�u

��
+

�v

�x

)
+

z

2

(
1

R

��x

��
+

���

�x

)

��z =
1

2

(
�� +

1

R

�w

��
−

v

R

)
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2.5 � Derivation of governing equations 
and boundary conditions

According to the FSDT and nonlocal strain gradient theory, 
the governing equations and corresponding boundary con-
ditions of the cylindrical shell can be extracted using the 
Hamilton principle as follows:

where K is the kinetic energy, Πs is strain energy and Πw 
is the work done corresponding to external applied forces 
which are, respectively, expressed as:

2.6 � External work

The external work on the GNPRC cylindrical nanoshell with 
piezoelectric layers is due to external electrical load. So that 
the first variation of the work done corresponding to the 
external electric applied force:

where Np

i
 is external electric loads. The electric loads could 

be obtained as follows [64]:

2.7 � Kinetic energy

2.8 � Strain energy

According to nonlocal strain gradient theory, the strain 
energy is defined as follows [65]:

By substituting Eqs. (13), (14) and (18) into Eq. (23), the 
variation of strain energy can be explained as:

(19)∫
t2

t1

(�T − �Πs + �Πw) dt = 0

(20)Πw = ∬
A

[
(NP

1
)w,x�w,x + (NP

2
)v,x�v,x

]
Rdxd�

(21)NP
1
= NP

2
= −2

(
e31 −

c13e33

c33

)
�0

(22)T =
1

2 ∫
Z

∬
A

𝜌
{
u̇2 + v̇2 + ẇ2

}
R dz dx d𝜃

(23)

Πs =
1

2 ∭
Vcore

(
�ij�ij + �

(1)

ij
∇�ij

)
dVcore

+ ∭
Vpiezolayer

(Dx�Ex + D��E� + Dz�Ez)dVpiezolayer

where the force and momentum resultants are:

Governing equations for a cylindrical shell based on the 
FSDT and nonlocal strain gradient theory are derived by 
substituting Eqs. (20), (23) and (24) into Eq. (19) and inte-
grating by parts.

Also, the parameters used in Eq. (31) are expressed as:

(24)

�Π
s
= ∬

A

⎧⎪⎪⎨⎪⎪⎩

Nxx
�

�x
�u +Mxx

�

�x
��x + N��

�
1

R

�

��
�v +

1

R
�w

�

+
1

R
M��

�

��
��� + Qxz

�
��x +

�

�x
�w

�
+ Nx�

�
1

R

�

��
�u +

�

�x
�v
�

+Mx�

�
1

R

�

��
��x +

�

�x
���

�
+ Qz�

�
��� +

1

R

�

��
�w −

1

R
�v
�

⎫⎪⎪⎬⎪⎪⎭

Rdxd�

+ ∫
2�

0
∫

L

0
∫

hp∕2

−hp∕2

⎡
⎢⎢⎢⎢⎣

−Dx

�
cos(�z)

�

�x
��

�

−D�

�
1

R+z

��
cos(�z)

�

��
��

�

+Dz(� sin(�z)�)

⎤
⎥⎥⎥⎥⎦
Rdxdzd�

(25)

{
Nxx,N�� ,Nx�

}
=

heff∕2

∫
−hff ∕2

{
txx, t�� , tx�

}
dz

{
Mxx,M�� ,Mx�

}
=

hff ∕2

∫
−hff ∕2

{
txx, t�� , tx�

}
zdz

{
Qxz,Q�z

}
=

hff ∕2

∫
−hff ∕2

ks
{
txz, t�z

}
dz, ks = 5∕6

(26)�u ∶ Nxx,x +
Nx�,�

R
+ X31�,x =

(
I0u,t2 + I1�x,t2

)

(27)
�v ∶ Nx�,x +

N��,�

R
+

Qz�

R
+

X61

R
�,�

−
ksX24

R
�,� − NP

1
v,x2 =

(
I0v,t2 + I1��,t2

)

(28)
�w ∶ Qxz,x +

Qz�,�

R
−

N��

R
−

ksX24

R
�,�2

− ksX15�,x2 − NP
1
w,x2 −

(Yxx,�x − Y��,x�)

2R
= I0w,t2

(29)
��x ∶ Mxx,x +

M��,�

R
− Qxz + X32�,x + ksX12�,x =

(
I1u,t2 + I2�x,t2

)

(30)
��� ∶

M��,�

R
+Mx�,x − Qz� +

X62

R
�,� + ksX13�,� =

(
I1v,t2 + I2��,t2

)

(31)

�� ∶ ∫
h∕2

−h∕2

{
Dx,x cos(�z) + D�,�

cos(�z)

R + z
+ Dz� sin(�z)

}
dz = 0
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where

In addition, associated boundary conditions are as below:

3 � Solution procedure

Displacement fields for investigation the wave propagation 
analysis of the structure defined as follow:

where u0, v0,w0,�x0
 and ��0

 are wave amplitude parameters. 
m and n are wave number along the directions of x and � , 
respectively, also � is called frequency. With replacing 
Eq. (35) into Eqs. (26–31) achieve to:

(32)

∫
hp∕2

−hp∕2

Dx cos(�z) = X11�,x + X12(�x + w,x),

∫
hp∕2

−hp∕2

D�

cos(�z)

R + z
= X22�,� + X13

(
�� +

1

R
w,� −

v

R

)
,

∫
hp∕2

−hp∕2

Dz� sin(�z) = −X33� + X31u,x + X32�x,x + X61

(
1

R
v,� +

w

R

)
+ X62

(��,�

R

)
.

(33)

X11 = ∫
h∕2

−h∕2

{
s11e

}
(cos(�z))2dz, X22 = ∫

h∕2

−h∕2

{
s22e

}(cos(�z)

R + z

)2

dz,

X13 = ∫
h∕2

−h∕2

cos(�z)

R + z
e24edz, X33 = ∫

h∕2

−h∕2

{
s33e

}
(� sin(�z))2dz,

{
X31,X32

}
= ∫

h∕2

−h∕2

{1, z}� sin(�z) e31edz,
{
X61,X62

}
= ∫

h∕2

−h∕2

{1, z}� sin(�z) e32edz.

(34)

�u0 = 0 or N
xx
d� +

Nx�

R
dx = 0

�v0 = 0 or N
x�
d� +

N
��

R
dx = 0

�w0 = 0 or Q
xz
d� +

Q�z

R
dx = 0

�u1 = 0 or M
xx
d� +

Mx�

R
dx = 0

�v1 = 0 or M
x�
d� +

M��

R
dx = 0

(35)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U(x, �, z, t)

V(x, �, z, t)

W(x, �, z, t)

�x(x, �, z, t)

��(x, �, z, t)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

u0 exp(mx + n� − �t)i

v0 exp(mx + n� − �t)i

w0 exp(mx + n� − �t)i

�x0
exp(mx + n� − �t)i

��0
exp(mx + n� − �t)i

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(36)([K] − �2[M]){d} = {0}

where K and M are the stiffness and mass matrixes, respec-
tively. Also,

In addition, the phase velocity of wave dispersion can be 
calculated by Eq. (30):

In Eq. (38), c and m are called phase velocity and wave 
number of a laminated nanocomposite cylindrical shell. 
These parameters are propagation speeds of the particles in 
a laminated nanocomposite cylindrical shell. With consider-
ing � = 0 , the phase velocity of classical continuum theory is 
computed.

3.1 � Parametric study

Results section are presented by two sections, the first sec-
tion studies the verifications of the results with those avail-
able in the literature. The second section presents the influ-
ence of GPL distribution pattern, applied voltage and GPL 
weight function on phase velocity of the GPLRC cylindrical 
nanoshell coupled with PIAC. The material properties of the 
GPLRC nanoshell are summarized in Table 1.

(37){d} =
{
u0 v0 w0 �x0

��0

}

(38)c =
�

m

Table 1   Material properties of the epoxy and GPL [66]

Material properties Epoxy GPL

Young’s modulus (GPa) 3 1010
Density (kg m−3) 1200 1062.5
Poisson’s ratio 0.34 0.186
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In addition, the material properties of the piezoelectric 
layer are given in Table 2.

As discussed in introduction section, a reliable approach 
to assess the validity of results estimated by various size-
dependent theories is to compare them with those of molec-
ular dynamics simulation. In this regard, Fig. 7 displays 
the variation of phase velocity versus phase number, esti-
mated by different continuum theories of the present study 
and MD simulation of Ref. [48] for (15, 15) single-walled 
carbon nanotube. According to this figure from k = 0 to 
about s = 0.5 (1/m), with increasing the wave number all 
theories show a similar increase in phase velocity. After-
ward, classic theory estimates the phase velocity remains 
constant, while Eringen and strain gradient theories esti-
mate a steady decrease and increase in phase velocity, 
respectively. The best consistency with MD simulation is 
resulted by choosing the appropriate size-dependent param-
eters ( � = 0.55 nm, l = 0.35 nm ) of nonlocal strain gradi-
ent theory which shows a gentle decrease in phase veloc-
ity. Another validation is presented in Fig. 8 indicating 
the effect of radius on phase velocity for a SWCNT with 
R∕h = 12, � = 0.55 nm, l = 0.35 nm, E = 0.83 GPa; =

2270; = 0.317; n = 1 . As illustrated, results of the present 
study are of accurate agreement with those of Ref [67] espe-
cially in smaller radiuses of SWCNT.

As a parametric study in this section of the current article, 
effects of different PIAC thickness, pattern of GNP, mode 
numbers and applied voltage on the phase velocity of the 
nanostructure are studied in Table 3. It is observed that all 
patterns of GNP reinforcement in comparison with pure 
epoxy show the higher values of phase velocity in a cylin-
drical nanoshell. This is because, by adding GNP reinforce-
ment in the structure, the stability increases. Also, it can be 
found from this result that, effect of applied voltage on the 
phase velocity of the nanostructures is inverse. It can be seen 
from the table that for all values of PIAC thickness and mode 
number the phase velocities of the nanostructures with GPL 

Table 2   Material properties 
of piezoelectric layer which is 
composed of BiTiO3–CoFeO4 
[40]

Material constants BiTiO3–CoFeO4

Elastic (GPa) c11 = 226, c12 = 125, c13 = 124, c33 = 216, c44 = 44.2,

c55 = 44.2, c66 = 50.5

Piezoelectric (C m−2) e
31

= −2.2, e
33

= 9.3, e
15

= 5.8

Dielectric (10−9 C V m−1) s
11

= 5.64, s
22

= 5.64, s
33

= 6.35

Piezomagnetic (N A m−1) q
15

= 275, q
31

= 290.1, q
33

= 349.9

Magnetoelectric ( 10−12 N V C−1) d
11

= 5.367, d
33

= 2737.5

Magnetic ( 10−6 N s2 C−2) r
11

= −297, r
33

= 83.5

Thermal moduli ( 105 N km−2) �
1
= 4.74, �

3
= 4.53

Pyroelectric ( 10−6 C N−1) P
3
= 25

Pyromagnetic ( 10−6 N A m K−1) �
3
= 5.19

Mass density ( 103 kg m−3) � = 5.55

Fig. 7   The comparison of phase velocity obtained by current study 
and MD simulation [50] for different wave numbers and continuum 
theories

Fig. 8   Comparison of phase velocity of isotropic homogeneous 
nanoshells, with different parameters
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Table 3   The effect of different 
PIAC thickness, pattern of GNP 
and mode numbers on phase 
velocity (km/s) of GNPRC 
nanoshell with s = 1(1/nm), 
gGPL = 1%, R = 1 nm, h = R/10

n = 1 n = 2 n = 3

hp= h/20 hp= h/10 hp= h/20 hp= h/10 hp= h/20 hp= h/10

Pure epoxy
 Φ (mVolt)
  0 0.950952 1.135213 0.571641 0.671976 0.750838 0.852311
  1 0.897843 1.098203 0.477231 0.607062 0.682519 0.802453
  2 0.841338 1.059881 0.359352 0.534309 0.606549 0.749282
  3 0.780703 1.020101 0.174627 0.449928 0.519583 0.692037

Pattern 1
 Φ (mVolt)
  0 1.353548 1.438770 0.846692 0.883556 1.207535 1.217339
  1 1.316756 1.409735 0.782695 0.835218 1.166244 1.182940
  2 1.278890 1.380079 0.720790 0.783900 1.123434 1.147509
  3 1.239851 1.349763 0.648726 0.728973 1.078926 1.110948

Pattern 2
 Φ (mVolt)
  0 1.352978 1.438318 0.825098 0.866104 1.120738 1.144654
  1 1.316169 1.409273 0.762958 0.816729 1.076119 1.107998
  2 1.278284 1.379607 0.695278 0.764165 1.029565 1.070087
  3 1.239225 1.349279 0.620248 0.707703 0.980804 1.030781

Pattern 3
 Φ (mVolt)
  0 1.354507 1.439530 0.867739 0.900698 1.287439 1.285275
  1 1.317744 1.410512 0.808897 0.853336 1.248794 1.252744
  2 1.279909 1.380875 0.745417 0.803181 1.208915 1.219345
  3 1.240904 1.350578 0.675993 0.749674 1.167672 1.185005

Pattern 4
 Φ (mVolt)
  0 1.354502 1.439649 0.835099 0.875785 1.168384 1.191728
  1 1.317731 1.410579 0.773634 0.826913 1.125595 1.156530
  2 1.279835 1.380888 0.706837 0.774960 1.081113 1.120225
  3 1.240731 1.350535 0.633021 0.719259 1.034719 1.082703

Fig. 9   Effect of external applied voltage and wave number on the 
phase velocity of the GNPRC nanoshell coupled with PIAC with 
hp= h/15

Fig. 10   Effect of external applied voltage and wave number on the 
phase velocity of the GNPRC nanoshell coupled with PIAC with 
hp= h/100
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distribution pattern 3 are higher than in comparison with 
other patterns. This result shows an increase in the stability 
of nanostructures with GPL distribution pattern 3. In other 
words, O-GPLRC gives larger value of the phase velocity 
than other patterns. The reason for this issue is in the math-
ematical function which is presented in the previous section. 
Besides, it is clearly seen from Table 3 that PIAC thickness 
and pattern of GNP have direct effects on the phase velocity. 
Also, by increasing the mode number from first to second, 
the phase velocity increases but changing from second to 
third, this behavior is inverse.

Figures  9 and 10 present the effects of PIAC 
thickness and applied voltage on phase veloc-
ity of a GNPRC nanoshell covered by PIAC with 
R = 4 nm, h = R∕10,= 0.055 nm, l = 0.03 nm  a n d 
gGPL = 1% . According to Figs. 9 and 10, from one of these 
graphs (for a specific value of PIAC thickness and applied 
voltage), it can be found that first by increasing wave num-
ber the phase velocity increases. After a maximum value 
of the phase velocity, by increasing the wave number, the 
phase velocity decreases until the phase velocity reaches a 
minimum value.

After the minimum value, phase velocity is improved 
with increasing the wave number. Figures 8 and 9 demon-
strate that, by decreasing the PIAC thickness, the minimum 
and maximum values of the phase velocity shift to left. For 
a better comprehensive, by decreasing the PIAC thickness, 
extremum values of phase velocity are seen in the lower val-
ues of the wave number. As an important result, by decreas-
ing the PIAC thickness, the phase velocity decreases in the 
all range of the wave number. In addition, by increasing 
the applied voltage, the phase velocity decreases in the all 
range of the wave number. As a comparison report, the PIAC 

thickness and applied voltage have direct and inverse effects 
on the phase velocity of the nanostructure, respectively. Fur-
thermore, as a new report of literature, comparison of the 
effects of PIAC thickness and applied voltage on the phase 
velocity can be found from these figures which show that by 
decreasing the effect of PIAC thickness the effect of applied 
voltage on the phase velocity become more significant. In 
another word, these figures show that, by increasing the 
PIAC thickness, the graphs of Fig. 9 are closely than the 
graphs of Fig. 10. As a useful suggestion of this research 
is that for designing of a nanostructure coupled with PIAC 
should be attention to the PIAC thickness and applied volt-
age, simultaneously. It is worth to mention that increas-
ing the PIAC thickness and applied voltage has negative 
and positive effects on the stability of the nanostructure, 
respectively.

Figures 11 and 12 present the phase velocity of GNPRC 
nanoshell (pattern 2, 1% GNP, R = 4 nm and h = R/10) 
covered by PIAC and pure epoxy (R = 4 nm and h = R/10) 
for different values of PIAC thickness and applied volt-
age. These figures explain that, for high value of applied 
voltage, by increasing this parameter the phase velocity 
of those nanostructures decreases with an extremely rate. 
As described in the previous section, Figs. 9 and 10 rep-
resent that, by increasing the PIAC thickness, the phase 
velocity of both nanoshells increases in the all ranges of 
the applied voltage. Besides, by comparing these figures, 
the phase velocity of the GNPRC nanoshells is more than 
pure epoxy nanoshells. As a significant suggestion from this 
result, it can be found that, by adding GNP in the pure epoxy 
matrix the dynamic behaviors (phase velocity) of the struc-
ture improves. It is worth to mention that, for pure epoxy 
nanoshells coupled with PIAC, changes of phase velocity 

Fig. 11   Effect of PIAC thickness and external applied voltage on the 
phase velocity of the pure epoxy cylindrical nanoshell coupled with 
PIAC

Fig. 12   Effect of PIAC thickness and external applied voltage on 
the phase velocity of the GPLRC cylindrical nanoshell coupled with 
PIAC
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with increasing applied voltage is nonlinear, especially 
for high values of PIAC thickness, while this behavior for 
GNPRC nanoshells actuated with piezoelectric is linear in 
every value of PIAC thickness. This result is a reaffirm that, 
GPL in the epoxy matrix can prevent from nonlinear changes 
and transform the nonlinear to linear changes.

Figures 13, 14, 15 and 16 present the effects of differ-
ent GPL percentages, PIAC thickness and applied voltage 
on phase velocity of a GNPRC nanoshell covered by PIAC 
with R = 4 nm, h = R/10, � = 0.055 nm, l = 0.03 nm and pat-
tern 2. All of these figures show that, with enhancement the 
nanostructures (GNPRC nanoshell actuated by piezoelectric 
layer) by increasing the GPL%, the phase velocity of the 
nanostructures can be improved for all ranges of applied 
voltage and all values of the PIAC thickness. This result 

demonstrates another advantage of GNP. For low value of 
the GNP% and different PIAC thickness, changing of phase 
velocity with increasing applied voltage is in nonlinear form 
but by increasing the GNP% this nonlinear behavior can be 
similar to the linear. An amazing result is that, in the lower 
values of applied voltage in comparison with higher ones, 
the effect of PIAC thickness decreases. Another important 
result is that, by increasing GPL%, the effects of PIAC thick-
ness on the phase velocity decreases.

Fig. 13   Effect of PIAC thickness and external applied voltage on the 
phase velocity of the GPLRC cylindrical nanoshell with gGPL = 1%

Fig. 14   Effect of PIAC thickness and external applied voltage on the 
phase velocity of the GPLRC cylindrical nanoshell with gGPL = 1.6%

Fig. 15   Effect of PIAC thickness and external applied voltage on the 
phase velocity of the GPLRC cylindrical nanoshell with gGPL = 1.8%

Fig. 16   Effect of PIAC thickness and external applied voltage on the 
phase velocity of t he GPLRC cylindrical nanoshell with gGPL = 2%
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4 � Conclusion

This article studies the wave propagation electrical charac-
teristics of a size-dependent GNPRC cylindrical nanoshell 
coupled with PIAC using NSGT. The governing equations 
of nanostructure have been evolved using Hamilton’s prin-
ciple and solved with assistance of the analytical method. 
For the first time in the current study, wave propagation-
electrically characteristics of a GNPRC cylindrical shell 
coupled with PIAC based on an exact size-dependent 
continuum theory is examined. Finally, influence of wave 
number, critical voltage, PIAC thickness and different 
GNP distribution patterns on phase velocity are investi-
gated using mentioned continuum mechanics theory. In 
this work, the following main results can be achieved:

1.	 The results show that, by decreasing the PIAC thickness, 
extremum values of the phase velocity occur in the lower 
values of the wave number.

2.	 It is observed that, by increasing GPL%, the effects of 
PIAC thickness on the phase velocity decrease.

3.	 The PIAC thickness and applied voltage have direct and 
inverse effects on the phase velocity of the nanostruc-
ture, respectively.

4.	 The results demonstrate that, by adding GNP in the pure 
epoxy matrix, the phase velocity of the nanostructure 
improves.

5.	 Another important result is that, by increasing GPL%, 
the effects of PIAC thickness on the phase velocity 
decrease.
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