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Abstract
In this wok, chaos analysis along with chaos control is studied in vertical model of the vehicle system. The chaotic behavior 
has been demonstrated in the suspension system under the specific initial conditions, values of parameters, and profile of road 
roughness. In order to analyze chaos in the dynamical model, the power spectrum density and Lyapunov exponent methods are 
used. Moreover, the phase portrait and Poincare’ sections of the simulations verify numerically chaos in uncontrolled system. 
For the purpose of chaos control, a novel optimal sliding mode control strategy is designed for stabilization of the system’s 
behavior via the semi-active suspension using MR fluid damper. As results, the optimal sliding mode control eliminates the 
chattering phenomenon in the responses and suppresses the chaotic oscillations in comparison with ordinary sliding mode 
control system. Responses of the feedback system depict the far-better performance of the proposed optimal sliding mode 
control from the viewpoint of reducing the settling time, overshoot, energy, and amortization in the suspension system.

Keywords Chaos · Power spectrum density · Optimal sliding mode control · Control Lyapunov function · Semi-active 
suspension

List of symbols
x(t), θ(t)  Vertical displacement and pitch angular 

motion of sprung mass
x1(t), x2(t)  Heave motion of the unsprung masses
m, I  Mass and inertia moment of chassis
m1 , m2  Masses of front and rear unsprung
l1 , l2  Length of front and rear axels
xrp1 , xrp2  Applied excitation displacement from the road 

surface on the front and rear tires,
Kt1 , Kt2  Front and rear tire stiffness
Ct1 , Ct2  Front and rear tire damping coefficient
fs , Δs  Dynamic force and change of length of 

springs
ks  Stiffness of the springs
fd  Dissipative force in the MR fluid damper
Cd , C0  Viscous damping at low and high velocity,

x0  Piston relative displacement
�  Scaling value for the Bouc–Wen hysteresis 

loop

1 Introduction

Some of the vertical vibrations in the vehicle’s chassis refer 
to the chaotic oscillations which cannot be damped using 
the passive suspension system. In the vertical motion of the 
vehicles, chaos phenomenon can be appeared due to the road 
surface unevenness and other properties of the nonlinear 
model. In addition to the passengers comfort subject in the 
vehicles, the chaotic vibrations can be caused the fatigue 
failure in the components of chassis and suspension sys-
tem. Consequently, the researchers are motivated recently to 
analyze and control the vertical oscillations based on chaos 
[1–5]. In the vibrational analysis of bounce motion, first 
problem is the distinction of chaotic vibrations from the sto-
chastic oscillations. For this purpose, chaotic behaviors can 
be proved using the mathematical and numerical methods 
for instance power spectrum density, Lyapunov exponent, 
and Poincare’ sections [6–9].

Another main problem in the vertical displacement 
of vehicle is the control of chaotic vibrations using the 
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suspension system. Chaos control can be carried out via 
the nonlinear control algorithm based on the controllable 
suspension system. Therefore, the semi-active suspension 
on the basis of the magnetorheological (MR) fluid damper 
can be used to adjust the damping coefficient in the damper 
because of its simple structure and fast operation. The semi-
active suspension utilizes a smart fluid with controllable 
viscosity in the MR fluid damper. The applied appropriate 
electrical current on the damper is produced using the con-
troller system. Consequently, proper dissipative force in the 
damper is established in the suspension system in order to 
damp the bounce vibrations [10–12].

Due to highly nonlinear behavior in the MR fluid damper, 
a nonlinear control strategy must be designed for elimination 
of unwanted vibrations in the chassis of automobile. Sliding 
mode control algorithm is an appropriate robust controller 
especially for uncertain system. The parametric uncertain-
ties in the system include the viscosity changes of oil with 
respect to temperature changes in damper, and changes in 
the mass of vehicle. The feedback semi-active suspension 
can be stabilized quickly using the SMC system. However, 
due to the switching function in SMC structure, the chatter-
ing phenomenon is occurred in the control system. In order 
to best eliminate the chattering, the optimal strategy can be 
combined with the SMC structure [13–16].

In the optimal sliding mode control (OSMC) scheme, the 
control signals are designed optimally according to the cost 
function in the control algorithm. In order to solve the opti-
mal problem in the OSMC, the control Lyapunov function 
(CLF) method is used to find the optimal inputs and control 
gains. Thus, the CLF solves the Hamilton–Jacobi–Bellman 
equation with respect to the performance index via the Son-
tag’s formula. Consequently in the OSMC, beside the quick 
stabilization due to the variable structure controller based on 
SMC, the chattering phenomenon can be rejected success-
fully because of the optimal system [15–21].

In the first section of this paper, the dynamical formula-
tion of half-car model is derived based on the Newton–Euler 
equations. In the suspension system, in order to adjust the 
damping coefficient for control purposes, the semi-active 
suspension system is used based on the MR fluid damper. 
After simulation of the open-loop system under the fixed 
values of parameters in the MR fluid damper, chaos phe-
nomenon is illustrated in the vertical motion of vehicles. 
In the next section, the power spectrum density (PSD) is 
used to study chaos in the system. Beside the PSD method, 
positive values of the largest Lyapunov exponents verify the 
results of PSD in the vibrating system. Moreover, trajec-
tories of phase plane along with the Poincare’ section of 
the open-loop system satisfy chaos. In the final section, for 
chaos control in the suspension system, the OSMC strategy 
is used to adjust the applied electrical current to the MR 
fluid damper for exact regulation of the viscosity and damp-
ing coefficient in the semi-active suspension. The results of 
the closed-loop system stress the superior performance of 
the optimal SMC system.

2  Dynamical model

In order to derive the mathematical model of the system, the 
equations of motion for the various parts of the system are 
calculated based on the half-vehicle model. The half-vehicle 
model of the system includes the chassis mass, front and rear 
axle mass, tires along with the elastic and dissipative effects 
according to Fig. 1.

The suspension system is also modeled with a semi-active 
type including the main springs and controllable dissipater 
that named MR fluid damper. In the semi-active suspension, 
the dynamical model of MR fluid damper with adjustable 
viscosity is derived on the basis of the modified Bouc–Wen 
model. The vertical displacement of the system is described 
using the second Newton’s law, and the angular dynamics of 
the chassis is stated via the Euler equation as follows [1–3].

(1)mẍ + K1sgn
(
x − x1 − l1sin𝜃

)||x − x1 − l1sin𝜃
||n1 + C1

(
ẏ1 − ẋ1

)
+ K2sgn

(
x − x2 + l2sin𝜃

)||x − x2 + l2sin𝜃
||n2

+ C2

(
ẏ2 − ẋ2

)
= 0

(2)
m1ẍ1 − K1sgn

(
x − x1 − l1sin𝜃

)||x − x1 − l1sin𝜃
||n1 − C1

(
ẏ1 − ẋ1

)
+ Kt1sgn

(
x1 − xrp1

)|||x1 − xrp1
|||
nr1

+ Ct1

(
ẋ1 − ẋrp1

)
= 0

(3)
m2ẍ2 − K2sgn

(
x − x2 + l2sin𝜃

)||x − x2 + l2sin𝜃
||n2 − C2

(
ẏ2 − ẋ2

)
+ Kt2sgn

(
x2 − xrp2

)|||x2 − xrp2
|||
n2

+ Ct2

(
ẋ2 − ẋrp2

)
= 0
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where

and “n(1,2)” represents the nonlinearity order of the springs, 
and “ ẏ(1,2) ” is the internal velocity in the MR fluid damper 
computing as:

In the above formula, indexes of (1, 2) are referred to the 
front and rear suspensions, respectively. Damping force in 
the MR fluid damper can also be calculated as follows:

Also, “Z” is the Bouc–Wen variable and is defined as 
follows.

where �, �, � and “p” are the fixed parameters in order to 
regulate the properties of the hysteresis loop in the MR 
fluid damper with respect to the magnetic field. Also C0 and 
“ � ” are expressed as � = �a + �bI and C0 = C0a + C0bI as a 
functions of the applied electrical current to adjust the mag-
netic field in MR fluid damper. In the model of semi-active 

(4)I�̈� −
[
K1sgn

(
x − x1 − l1sin𝜃

)||x − x1 − l1sin𝜃
||n1 + C1

(
ẏ1 − ẋ1

)]
l1cos𝜃

+
[
K2sgn

(
x − x2 + l2sin𝜃

)||x − x2 + l2sin𝜃
||n2 + C2

(
ẏ2 − ẋ2

)]
l2cos𝜃 = 0,

(5)sgn(x) =

⎧⎪⎨⎪⎩

+1, x ≻ 0

0, x = 0

−1, x ≺ 0

,

(6)

ẏ(1,2) =
1

(C0(1,2) + Cd(1,2))

[
𝛼Z + C0(1,2)(ẋ0 − l(1,2)�̇� cos 𝜃)

]

(7)fd = C1,2

[
ẏ(1,2) − ẋ0(1,2)

]

(8)Ż = −𝛾||(ẋ − l1�̇� cos 𝜃) − ẏ1
||Z|Z|p−1 − 𝛽

[
(ẋ − l1�̇� cos 𝜃) − ẏ1

]|Z|p + 𝛿
[
(ẋ − l1�̇� cos 𝜃) − ẏ1

]
,

suspension system, the elastic force in springs is modeled 
as fs = kssgn(Δs)

||Δs
||n based on the nonlinear spring with 

fixed stiffness [11, 12].
In tire model, the spring action is also calculated similar 

to the main springs of the suspensions and dissipative effect 
is computed as fdt = C ẋ(1,2) with constant damping coeffi-
cient. The profile of road unevenness is assumed as sinusoid 
function with frequency “f”, amplitude of “A”, and phase 
difference of “ � ” in order to model the time delay between 
the excitation of the front and rear tires.

2.1  Chaos analysis in the open‑loop system

The mathematical model of the vehicle system is simulated 
numerically using the Runge–Kutta method on the basis of 
the equations of motion. In order to simulate the uncontrolled 
system, a constant value for damping coefficient of the MR 
fluid damper is considered and the behavior of the open-loop 
system is analyzed under the initial conditions and constant 
parameters. Then, the chaotic vibrations are studied using the 

power spectrum density, Lyapunov exponent, Poincare’ sec-
tion, and phase portraits.

Power spectral density (PSD) is a numerical method in 
order to analyze the frequency response in a quasi-periodic or 
chaotic system. In this procedure, the signals are considered 
as independent of time using the Fourier transform of a time 

Fig. 1  Vertical model of the vehicle system along with the semi-
active suspension

Fig. 2  Power spectrum density of the vertical displacement of the 
chassis
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series responses. The PSD is determined as the average of the 
Fourier transform magnitude squared, over a large time inter-
val. Therefore, the PSD of a time series signal of variable x(t) 
can be calculated as follows.

In the chaotic system, graph of PSD versus the frequency 
involves the wide range spectrum of the frequencies, while in 
the quasi-periodic systems the numbers of frequencies are lim-
ited. On the other words, in the chaotic system as Figs. 2 and 
3, the PSD graph is demonstrated as spread spectrum along 
with disturbance [7, 9].

Moreover, the properties of the nonlinear system and chaos 
can be indicated via the Lyapunov exponent using the meas-
urement of the gap between the two neighborhood orbits in 
the phase portrait. The Lyapunov exponent of x(t) is calculated 
as follows.

(9)Sx(f ) = lim
T→∞

{
1

2T

|||||∫
T

−T

x(t) e−j2�ftdt
|||||

2
}

where Ei(x(t)) is the real part of the eigenvalue in the matrix 
that defines the rate of divergence in the system trajectories. 
The Lyapunov exponent of the vertical x(t) and pitch θ(t) 
motion of the chassis are computed using the Wolf algo-
rithm with respect to the damping coefficient of MR fluid 
damper as the control parameter. According to Fig. 4, when 
the damping coefficient is increased, the values of Lyapunov 
exponent become positive. It means the stretching, folding, 
and compressing of the trajectories show the occurrence of 
chaos in the system. On the other hand, the dynamical sys-
tem can depict the hyper chaotic behavior, because the two 
variables of the system have the positive largest Lyapunov 
exponent [5–9].

Chaos analysis using the power spectral density and Lyapu-
nov exponent can be validated via the simulation results based 
on the phase trajectories and the Poincare’ section of the system 
as Fig. 5. According to Fig. 5, the basin of attraction in the 
open-loop system is a strange attractor based on the Fradkov 
definition due to the compressing, folding, and stretching orbits 
in the trajectories of the phase portraits. It means the phase por-
trait trajectories get away from the fixed point and again return 
to the neighborhood of equilibrium point that obviously reveals 
the compressing and stretching of the trajectories along with 
its folding. In fact, the strange attractor is an essential property 
in the chaotic system. Also, the chaotic responses can be illus-
trated due to the treatment of attractor as globally bounded and 
unstable locally on the basis of the Lyapunov stability criterion. 
Furthermore, according to the Devaney definition, chaos can be 
proved using the dense demonstration of points in the Poincare’ 
section [8]. Therefore, chaos in the nonlinear system can be 
initially demonstrated using the phase space trajectories and 
Poincare’ section. Then, chaos in the nonlinear system can be 
proved using the Lyapunov exponent. Finally, the results of 
Lyapunov exponents can be validated via the power spectrum 
density method for the chaotic vibrations.

2.2  Optimal sliding mode control strategy

The optimal sliding mode control is developed for a class of 
nonlinear systems as follows:

where x =
[
x1, … , xn

]T is the state vector, f is a smooth 
function, and � is a bounded disturbances. In this control 
scheme, a performance index as follows is to be minimized.

(10)� = lim
t→∞

1

t

t∫
0

Ei(x(�))d� = lim
t→∞

1

t
ln
||||
�x(t)

�x(0)

||||,

(11)
{

ẋi = xi+1, i = 1, 2, … , n − 1

ẋn = f (x) + u + 𝜁
,

(12)I =

∞

∫
0

(L(x) + u2)dt,

Fig. 3  Power spectrum density of the pitch angular motion of the 
chassis

Fig. 4  Largest Lyapunov exponent with respect to the damping coef-
ficient of MR fluid damper
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that L(x) ≥ 0 is a semi-definite positive function of the state 
x. For the purpose of the design of the robust control system 
around the fixed point, an integral SMC can be applied in 
the system with uncertainties [12–14]. In order to obtain 
optimality as well as robustness in this control strategy, the 
switching function is defined as:

where c′
i
s are constant parameters. Then, the approximated 

control input in SMC is designed continuously as follows.

where M ≻ sup(𝜁 ) , 𝜀 ≻ 0 is a small constant, ��(.) is satura-
tion function, � is a smooth function that will be defined 
based on the Lyapunov stability via the positive definite Lya-
punov function candidate as V = sTs∕2 where its derivative 
is semi-negative definite as:

(13)s = c1x1 + c2x2 +⋯ + cn−1xn−1 + xn + �,

(14)u = −c1x2 − c2x3 −⋯ − cn−1xn − f − �̇� −M𝜎𝜀(s)

(15)V̇ = SṠ = s
(
𝜁 −

M

𝜀
s
)
= 𝜀(|𝜁 | −M) ≺ 0,

that on the boundary of Ω, s = |� | , and it establishes an 
invariant set in the feedback system. Since S always stays 
inside the Ω, the control input becomes,

Consequently, the dynamics of the closed-loop system is 
derived as:

where xn+1 = � , v = �̇� , and � = M∕� . Then, the matrix form 
of the equations of motions in the feedback system is:

In this manner, the performance index becomes:

(16)u = −c1x2 − c2x3 −⋯ − cn−1xn − f − �̇� −
M

𝜀
s

(17)

⎧⎪⎨⎪⎩

ẋi = xi+1, i = 1, 2, … , n − 1

ẋn = −𝜂c1x1 −
n−1∑
i=1

(ci + 𝜂ci+1)xi+1 − 𝜂xn+1 − v

ẋn+1 = v

,

(18)̇̄x = Ax̄ + Bv

(19)I =

∞

∫
0

(L + f̄ 2 + 2f̄ v + v2)dt,

Fig. 5  Trajectories of phase portrait and Poincare’ section in the open-loop system, a phase plane trajectory of x − θ, b phase plane trajectory of 
x − dx/dt, c Poincare’ section of x − θ, d Poincare’ section of x − dx/dt 
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where A and B are the stabilizable matrices and,

Using the OSMC, the equivalent problem is changed to 
an optimal control problem for a linear system with a non-
quadratic cost function. To ensure the existence and unique-
ness of the optimal control problem, the  ci’s must be chosen 
until L + f̄ 2 ≻ 0 . In order to solve the optimal control prob-
lem for finding the optimal v, the control Lyapunov function 
approach is used [13–19].

3  Simulation of feedback system

In the closed-loop control system, solution of the optimal 
SMC problem based on the control Lyapunov function 
(CLF) method is summarized as follows.

In the above optimal problem, the constraint is described 
as differential equations based on the dynamical model of 
the suspension system according to Eqs. (1–8). In order to 
solve the optimal control, firstly, V(x) is selected as a candi-
date Lyapunov function. If V(x) is a CLF, then it can solve 
the Hamilton–Jacobi–Bellman equation. Therefore, a sub-
optimal control input for the system with respect to the cost 
function in Eq. (12) can be given by Sontag’s formula as 
following [17].

where Vx = �V∕�x . In fact, in order to use the Sontag’ for-
mula, we need to find a CLF for the original system. On the 
other hand, using the optimal SMC, the nonlinear system 
can be transformed to a linear system as Eq. (18). Therefore, 
the appropriate values for ci’s must be selected that all the 
eigenvalues of matrix A are non-positive and different or 
have only one zero eigenvalue. In this manner, the switching 
function is derived in the new coordinate as:

According to the following Lemma and theorem, the 
appropriate CLF can be calculated to solve the optimal con-
trol problem [17].

(20)f̄ = f + 𝜂c1x1 +

n−1∑
i=1

(ci + 𝜂ci+1)xi+1 + 𝜂xn+1

(21)

⎧⎪⎨⎪⎩

Min
u

∞∫
0

(L(x) + u2)dt

subjected to ∶ ẋn = F(x) + G(x)u

(22)u∗ =

�
−

VxF+
√
(VxF)

2+L(VxG)
2

VxG
; VxG ≠ 0

0 ; VxG = 0
,

(23)
s = c1x1 + c2x2 +⋯ + cnxn + xn + xn+1 = Cx̄ =

[
c1 … cn−1 1 1

]
x̄

Lemma 1 Matrix A has all distinct eigenvalues in the left 
half of the plane with at most one at the origin; there exists 
a constant vector H ∈ ℝ

1×(n+1) such that the Lyapunov equa-
tion PA + ATP = −HTH has a positive semi-definite and 
symmetric solution P.

Theorem  1 If 
{
BTP, H, C

}
 are linearly independent 

vectors in ℝ1×(n+1) and P + CTC∕2 ≻ 0, then function 
V = x̄TPx̄ + s2∕2 is a CLF for the system where P is the sym-
metric and positive semi-definite solution to the Lyapunov 
equation PA + ATP = −HTH [17].

Remark If P ≻ 0 , then P + CTC∕2 ≻ 0 is satisfied for any 
C [18].

According to Lemma 1, the solution of P in the Lyapunov 
equation is calculated as follows:

The equations of motion based on the relations (1–8) are 
expressed again as state-space equation with definition of 
the following state variables as:

After simplification, in the closed-loop dynamical system 
based on the optimal SMC as Eq. (18), the linear matrices 
A and B are derived as:

Whereas the matrix H is fixed, H is assumed as 
H =

[
1 … 1

]
1×9

 . In order to calculate P based on Eq. (24), 
we have

that �1 to �9 are the eigenvalues of the A and T is a matrix 
that its columns are the eigenvectors of A. After calculating 
P, the CLF is derived as equation V = x̄TPx̄ + s2∕2 . Conse-
quently, with substituting the V(x) as a CLF into the Sontag’ 
formula, we can obtain a suboptimal SMC structure. In order 
to apply the Sontag’s formula, the cost function is modified 

(24)P =

∞

∫
0

etA
T

HTHetAdt

(25)x̄T =
[
x1 … x8

]T
=
[
x ẋ x1 ẋ1 x2 ẋ2 𝜃 �̇�

]T

(26)

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 … 0

0 0 1 … 0

⋮ ⋮ ⋮ … ⋮

−�c1 −(c1 + �c2) … … −�

0 0 … … 0

⎤
⎥⎥⎥⎥⎥⎦9×9

, B =

⎡
⎢⎢⎢⎢⎢⎣

0

⋮

0

−1

1

⎤
⎥⎥⎥⎥⎥⎦
9×1

(27)etA = T

⎡⎢⎢⎢⎣

e�1t 0 … 0

0 ⋱ ⋮

⋮ ⋱ 0

0 … 0 e�9t

⎤⎥⎥⎥⎦
T−1,
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by neglecting the cross term between the state and the con-
trol input as:

where L̄ = L + f̄ 2 . Then, the switching function in this algo-
rithm is become:

(28)I =

∞

∫
0

(L + f̄ 2 + v2)dt =

∞

∫
0

(L̄ + v2)dt,

(29)s =

n−1∑
i=1

cixi + xn + �

Finally, the control input is computed as follows.

which in that,

(30)u = −

n−1∑
i=1

cixi+1 − f − �̇� − 𝜂s,

(31)�̇� =

�
−

VxAx̄+
√
(VxAx̄)

2+L(VxB)
2

VxB
; VxB ≠ 0

0; VxB = 0
,

Fig. 6  Closed-loop responses of the system based on the OSMC against the chaotic open-loop behavior
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and

On the basis of the above-mentioned calculations, simula-
tion of the feedback system based on the OSMC is shown in 
Figs. 6 and 7 under the values of the control gains ci’s as fol-
lowing in Table 1. All of the simulations were carried out on 
the basis of the numerical solution of above equations using 
the fourth-order Runge–Kutta method. Also, the values of 
parameters in the simulation system are stated in Table 2.

(32)�(0) = −

n−1∑
i=1

cixi(0) − xn(0)

Responses of the feedback system based on the optimal 
sliding mode control are demonstrated in Fig. 6. Accord-
ing to these figures, stabilization of the suspension system 
is depicted at a few time and overshoot along with chaos 
suppression. Vertical displacement of chassis, velocity, 
and acceleration of car body and angular pitch motion of 
vehicle is reached to the desired value in less than about 
1.5 s. Whereas the behavior of the system under SMC 
includes the chattering phenomenon, the chattering can 
be eliminated using the combination of optimal control 
with the SMC structure. Therefore, the major point in the 
closed-loop responses is the rejection of chattering phe-
nomenon. Also, behavior of the tires deflection can be 

Fig. 7  Applied electrical current and damping force in the MR fluid damper under the OSMC system

Table 1  The values of the 
control gains in the OSMC 
algorithm

c1 c2 c3 c4 c5 c6 c7 c8

3.85 2.04 0.03 0.17 1.02 0.28 5.12 1.70

Table 2  The values of the parameters of the system

m (kg) I  (kgm2) m1 (kg) m2 (kg) K1 (N/m) K2 (N/m) Ct1 (Ns/m) Ct2 (Ns/m) Kt1 (N/m) Kt2 (N/m) l1 (m) l2 (m)

1800 2200 60 60 35,000 36,000 10 10 190,000 190,000 1.7 1.4
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acceptable against the motion of tires on the sinusoidal 
profile road.

Also, the results of feedback system under the optimal 
sliding mode control in this work are compared with the 
results of paper [2] especially, because the chaotic model 
of vehicle along with the parameters values in this work 
and paper [2] is totally similar. Also, chaos control algo-
rithm in paper [2] is on the basis of the optimal OGY 
method. According to Fig. 6, comparison of simulation 
results depicts that the feedback system under the optimal 
sliding mode control reduces impressively the settling 
time and over shoot relative to chaos controller in [2] due 
to the rapid stabilization to the fixed point in the sliding 
mode control algorithm via the sliding surface properties 
in variable structure control scheme.

Performance of the actuators in feedback system is also 
illustrated in Fig. 7. In the semi-active suspensions system, 
applied forces of the MR fluid damper play the role of con-
trol input. Actually, the vibrations resulting the unevenness 
road surface can be damped using the dissipative force in 
the magnetic dampers. In the MR fluid damper, the damp-
ing forces can be adjusted using the applied electrical cur-
rent to the dampers.

4  Conclusions

In this paper, chaos control in the semi-active suspension 
system is considered on the basis of the chattering-free opti-
mal sliding mode control. For this purpose, the mathematical 
model of the system is first derived using the Newton–Euler 
equations. According to the simulation results of the uncon-
trolled system, the chaotic oscillations are appeared in the 
vertical motion of the suspension system. In order to chaos 
study, the power spectrum density and Lyapunov exponents 
evaluate chaos numerically. The results of the chaotic analy-
sis based on the PSD and LE depict the occurrence of chaos. 
Also, the phase portrait trajectories and the Poincare’ sec-
tion confirm chaos in the system. In order to suppress the 
chaotic vibrations in the system, a feedback controller based 
on the optimal SMC is applied for the semi-active suspen-
sion system. Beside the appropriate stabilization of the cha-
otic vibrations, the major point of the OSMC algorithm is 
the rejection of chattering in comparison with SMC. The 
simulation results of OSMC system demonstrate the reduc-
tion of 31% in the energy consumption relative to [11] and 
the reduction of 14% in comparison with [2]. Moreover, the 
responses of the feedback system depicts the reduction of 
22% in settling time toward [11] and the reduction of 8% 
relative to [2].
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