
Vol.:(0123456789)1 3

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:207 
https://doi.org/10.1007/s40430-019-1705-z

TECHNICAL PAPER

Robust optimization of aerodynamic loadings for airfoil inverse 
designs

C. J. B. Reis1 · N. Manzanares‑Filho1 · A. M. G. de Lima2 

Received: 6 September 2018 / Accepted: 25 March 2019 / Published online: 5 April 2019 
© The Brazilian Society of Mechanical Sciences and Engineering 2019

Abstract
For the modern design of more realistic aerodynamic shapes, disturbances caused by uncertain operating conditions must 
be conveniently considered, since they can affect significantly the performance of the designed systems. In this situation, 
the concept of robust design in conjunction with optimization tools is strongly recommended, since the interest is to maxi-
mize the performance and its robustness, simultaneously. Clearly, the great number of exact evaluations normally required 
to compute the robustness makes the robust optimization in aerodynamics computationally prohibitive, particularly when 
direct methods are chosen. To overcome this drawback, inverse methods appear as an interesting option, provided a robust 
aerodynamic loading can be furnished previously at low computational costs. However, few works have been dedicated to 
this subject in the open literature, which motivates the present study. The focus is to apply the robustness concept to optimize 
the velocity (or pressure) distributions for airfoil inverse designs, using a boundary layer method to predict the aerodynamic 
coefficients prior to the knowledge of the final airfoil shape. Here, the velocity distribution is parameterized using B-spline 
polygons with a set of control points, where the design variables are the ordinates of these points in the parameterization. 
The resulting robust multiobjective optimization problem involves the performance of the airfoil as a first objective func-
tion and its robustness introduced as additional objective to be optimized simultaneously. To illustrate the usefulness of the 
proposed robust design method, an example of drag minimization for an isolated airfoil is addressed and the aerodynamic 
coefficients for the optimal airfoils are compared with the corresponding obtained by experiments from the open literature.
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1 Introduction

Nowadays, it becomes clear the substantial progress in the 
development of high-speed computers and modern digital 
data processing tools. As a result, some complex real-word 
aerodynamic problems that were never fully implemented 
before can now be solved numerically using modern digital 

computers [1]. In the quest for optimization tools coupled 
with computational fluid dynamics (CFD), it is true.

For example, in aerodynamic designs, numerical opti-
mization tools coupled with CFD enable to optimize aero-
dynamic shapes (turbomachinery cascades, blades, wings, 
airfoils, etc.) for a desired application, increasing their effi-
ciency during their useful life and reducing significantly 
the costs of performing a wind tunnel test [2]. However, 
for more realistic situations in which uncertainties are 
present, it is not uncommon to see a naive application 
of numerical optimization tools producing unexpected 
problems with unacceptable optimal results [1]. Hence, 
the designed aerodynamic shapes operate efficiently only 
for the optimized conditions. To overcome this drawback, 
more recently, the robust design concept in conjunction 
with multiobjective optimization tools have emerged as 
a new challenge in the design of aerodynamic shapes. 
The interest is to provide optimal aerodynamic perfor-
mances that remain unchanged, even in the presence of 

Technical Editor: André Cavalieri.

 * A. M. G. de Lima 
 amglima@ufu.br

1 Mechanical Engineering Institute, Federal University 
of Itajubá, Campus Prof. José Rodrigues Seabra, BPS, 1303, 
Itajubá, MG CEP 37500, Brazil

2 School of Mechanical Engineering, Federal University 
of Uberlândia, Campus Santa Mônica, P. O. Box 593, 
Uberlândia, MG 38400-902, Brazil

http://orcid.org/0000-0003-0170-6083
http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-019-1705-z&domain=pdf


 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:207

1 3

207 Page 2 of 12

disturbances caused by manufacturing/assembling errors, 
natural wear or small changes in operational conditions, 
just to mention a few. Clearly, there exist uncertainties 
related to the assumptions adopted in the construction 
of the numerical model [1–4], but in the present study, 
these uncertainties have not been taken into account in 
this study.

Classical approaches used to measure the robustness of a 
set of design variables rely on signal-to-noise ratios (SNR) 
for determining which variables provoke the higher varia-
tions in the response [5]. It requires a full factorial number 
for the aerodynamic evaluation of a set of design variables 
or, at least, a Latin-Hyper-Cube sampling [6]. However, in 
some cases, it becomes prohibitive due to the high compu-
tational burden and time associated with the large number of 
exact evaluations. Gradient optimization methods account-
ing for noisy variables could be used instead, but the conver-
gence is guaranteed only to local optima [7]. In this work, 
the search for the optimal and robust airfoil inverse design 
is based on a multiobjective optimization tool [8–10]. Par-
ticularly, it is adopted herein a variant of the Non-dominated 
Sorting Genetic Algorithm (NSGA II) proposed by Srinivas 
and Deb [10] and available in the MATLAB’s Optimization 
Toolbox [11]. Based on the interaction between the fitness 
and robustness functions, the NSGA II algorithm provides 
compromised solutions or Pareto front of optimal solutions 
in a two-objective space.

In the quest for the optimal design of aerodynamic 
shapes, the methods can be generally classified as direct or 
inverse. The so-called direct methods that act directly on 
the airfoil geometry for a given set of design variables and, 
in the sequence, the aerodynamic properties of the airfoil 
geometry are computed. However, the use of such proce-
dures in conjunction with optimization tools may become 
practically unfeasible as the number of geometric variables 
increase. On the other hand, the so-called inverse methods 
deal with the velocity (or pressure) distributions rather than 
with the airfoil shape directly. Once the target velocity distri-
butions are constructed (or given), the corresponding airfoil 
geometry can be found by using inverse numerical optimiza-
tion tools, with considerably lower computational cost when 
compared with the direct optimization methods [12]. This 
feature makes the inverse methods attractive to be used in 
conjunction with the robust optimization technique proposed 
herein. However, it requires a second phase regarding the 
inversion of the velocity (or pressure) distribution into the 
final airfoil geometry [1].

The inverse design method combined with genetic algo-
rithms tools has been applied by Obayashi and Takanashi 
[12] for isolated transonic airfoils, but without any attempt 
to address the issue of robustness. Despite the fact that much 
research on robust analyses coupled with direct design meth-
ods has been carried out in the open literature, few papers [2] 

have been addressed the robust design strategies for airfoil 
inverse designs, which motivates the present study.

Hence, an attempt was made to investigate the multiob-
jective optimization via NSGA algorithm of inverse design 
airfoils. One of the objectives to be minimized is the vul-
nerability (inverse of robustness) of the airfoil due to small 
perturbations introduced in its final geometry. Starting 
from a baseline airfoil, the aerodynamic loading (velocity 
distribution) over its suction side is allowed to vary within 
boundaries in order to form a population that will evolve 
toward an optimum, according to a desired fitness function. 
Finally, selected cases of optimized loading are transformed 
into airfoils shapes and analyzed directly to assess whether 
the resulting robustness is comparatively like that evaluated 
inversely and the main features and capabilities of the pro-
posed robust design method are highlighted.

2  Description of the optimization problem 
and the airfoil inverse procedure

2.1  Basic methodology

The question to be investigated in this study is whether 
robust airfoil shapes, meaning shapes that are less sensi-
tive to geometrical variability, can be created by means of a 
robust multiobjective optimization that seeks for both high 
performance individuals and individuals that exhibit a low 
variation in the performance given a disturbance in their 
geometry. Being an inverse method, the performance and 
sensitivity analysis are evaluated approximately given only 
the velocity distribution as a function of the airfoil chord. A 
multiobjective genetic algorithm is chosen herein for explore 
that question.

Genetic algorithms simulate natural evolution by selec-
tion of the best fit individuals. These individuals are ranked 
by means of a performance function that, given the char-
acteristics of one individual, produces a score in one or 
multiple aspects, for respectively single or multiobjective 
performance functions. These selected individuals have a 
higher probability of crossing over their characteristics to 
generate new individuals. Individuals that are not selected 
have a lower chance to pass on their “genes” and a few (the 
lower ranking individuals) are eliminated on each genera-
tion step. Dependent from the number of parameters (genes) 
allowed to vary during the optimization process is the size of 
the population. A large number of parameters means a large 
population and each individual must be ranked via the per-
formance function. In present study, the velocity distribution 
on each individual will determine its ability to be selected.

The number of parameters describing the velocity distri-
bution of a two-dimensional isolated airfoil is dependent on 
the parameterization scheme [12]. A common option is the 
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use of global Bezier polynomials to represent the velocity 
curves. However, it has been adopted herein the B-spline 
scheme [13], since it exhibits a relatively greater flexibility 
of the curves generated. Additionally, it provides a wider 
solution space of possible velocity distributions for the pre-
sent problem.

Figure 1 shows the parametric representation of the veloc-
ity distribution over an isolated airfoil, where the lower and 
upper curves represent the pressure side and suction side of 
the airfoil, respectively. By conveniently moving the control 
points, the resulting curve follows a smooth convex hull. 
Hence, these control points can be used to represent the 
velocity distribution, providing a straightforward strategy 
to define the individuals of the population in the optimiza-
tion phase.

The methodology employed herein is described as 
follows:

(1) A baseline airfoil is selected, based upon its response 
for the desired application: general aviation, wind tur-
bines, turbomachinery, etc.;

(2) For a given design angle of incidence, the velocity dis-
tribution around this baseline airfoil is obtained (via a 
physical model or a numerical simulation, for instance) 
and tabulated as a function of the normalized boundary 
layer length, or the normalized length from the stagna-
tion point to the trailing edge. The velocity distribu-
tion is then interpolated into a B-spline function, with 
a selected number of control points (as an example, see 
Fig. 1);

(3) For an application, geometrical errors are introduced 
in the original airfoil shape. For example, dirt build-up 
on gas turbine compressor blades and vanes, economi-
cal manufacture (airfoil shape precision) on low cost 
applications, ice deposition on wings. For the disturbed 
shapes, the velocity distribution is obtained (again, via 
a physical model or a numerical simulation), tabulated 
and also mapped into B-splines. The deviation of the 
control points to the baseline velocity distribution is used 
to give an idea of the order of magnitude of the amount 
to be added or subtracted from the control points in the 
individuals to be ranked by the performance function 
during the genetic algorithm optimization;

(4) Upper and lower ranges of variability for each control 
point are determined with the aim of allowing the con-
trol points to generate the majority of the possible dis-
tributions of velocity due to the geometry variation;

(5) Based on the number of variables (control points) to 
be optimized, the initial population is generated within 
the variability ranges set on the previous step, and the 
genetic algorithm will simulate the evolution until 
stabilization or a maximum number of generations is 
achieved. The evolution of the performance function 
estimates the main objective (low drag, high lift-to-drag 
ratio, or another suitable performance indicator), and 
the variability of the main objective when subjected to 
the application of a known group of disturbances, one 
at a time;

(6) The resulting Pareto front is verified, and a few individ-
uals are manually selected to be inverted to geometry 
and for evaluation of their properties.

2.2  Performance index for the robust optimization 
problem

As stated by Kumar et al. [14], the robust design optimiza-
tion in aerodynamics can be formulated as a multiobjective 
optimization problem in which both the expectation and 
variance of a performance index are minimized simultane-
ously. For the robust multiobjective optimization problem 
considered herein, where the drag, C

d
 , and its related stand-

ard deviation, �
Cd

 , are to be minimized simultaneously by 
means of a multiobjective optimization tool, a possible per-
formance index can be given by:

where y is the vector containing the design parameters, C
d
 , 

is the drag coefficient, and �
Cd

=

�
∑N

k=1

�
C
dk
− C

d

�2�
N 

is its standard deviation, which is considered herein to be 
equal to the vulnerability. N indicates the number of samples 
of the perturbed velocity distribution of an individual. 

(1)J(y) = min
[
C
d
, �

Cd

]

Fig. 1  B-spline parameterization of the velocity distribution and the 
control points
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Instead of Cd, another performance characteristic could be 
used (lift, lift-to-drag ratio, and so on).

To address the optimization problem (1), the lower and 
upper velocity limits (as defined in Table 1), the pressure 
side velocities, the required lift C

l
 , and airfoil thickness 

t  have all been specified. Also, the number of inflection 
points on velocity curves is required to be lower than 2, 
to avoid excessive undesirable oscillations in the result-
ing shape (as per Obayashi and Takanashi [12]; see also 
Drela [15] for further examples with inverse design airfoil 
optimization). The constraint relation, dCp,s∕dx ≤ 2.5 , has 
been imposed, where Cp,s is the pressure coefficient on 
the suction side of the airfoil. The airfoil thickness t  is 
approximated by [12]:

where M
∞

 is the Mach number of the free stream and Cp,p 
is the pressure coefficient distribution on the pressure side 
of the airfoil.

The Squire–Young equation in its reduced form [16, 
17] has been also used to relate the momentum thickness 
provided by the boundary layer method with the potential 
velocity at the trailing edge. It enables to estimate the vis-
cous drag as:

where �te is the momentum thickness at the trailing edge 
normalized by the airfoil chord, and Ute and U∞ are, respec-
tively, the trailing edge and free stream velocities.

It is important to emphasize that Eq. (3) is valid only 
for incompressible flows, which is the situation focused on 
this work, corresponding to, M

∞
= 0 , in Eq. (2).

(2)t =

(√
1 −M2

∞

/
2

) 1

∫
0

[(
Cp,p + Cp,s

)/
2
]
dx

(3)Cd = 2�te

(
Ute∕U∞

)3.2

2.3  Airfoil inversion procedure

For the inverse design itself (i.e., to find the airfoil shape 
knowing the velocity distribution), one uses herein an 
improved version of the controlled random search (CRS) 
evolutionary algorithm, known as CRS-VBR, proposed ini-
tially by Manzanares-Filho et al. [18]. The problem is based 
on a single objective function to be minimized, which rep-
resents the differences between the optimized velocity dis-
tributions and the velocity distributions for the searched air-
foil geometry. To verify the airfoil shape, a two-dimensional 
Martensen-derived vortex panel method has been used [19]. 
Also, a “fairing-in” correction of the trailing edge flow has 
been performed to reduce the errors due to the lack of the 
viscous flow and transpiration effects in the vortex panel 
method, as detailed by Gostelow [20] and implemented by 
Manzanares-Filho [21].

The velocity distribution resulting from the vortex panel 
method is split at the stagnation point and the lengths of the 
suction and pressure sides are normalized for comparison 
purposes with the desired distribution. The number of panels 
used was 120 with a finer discretization near the leading and 
trailing edges. The angle of attack was forced to be close 
to the angle of the baseline airfoil within a hundredth of a 
degree.

It is emphasized that the inversion method implemented 
herein is independent from the optimization phase. There-
fore, more efficient and reliable methods (of higher fidelity) 
could be used, if available. Here, the results obtained were 
within 0.1% average error between the required aerodynamic 
loading and the corresponding one produced by the airfoil 
geometry found. Thus, in terms of applicability, the pro-
posed inverse method used to reconstruct the airfoil geom-
etry is intended to be acceptable.

3  Description of the example

3.1  Main setup, boundary layer methods and NSGA 
II

For the example addressed herein to verify the methodol-
ogy described above, it will be used as baseline the lami-
nar airfoil NACA  651-412 in the optimization phase. Only 
the velocity distribution on the suction side of the airfoil 
is varied and the abscissa of the control points are fixed. A 
total of 12 control points are retained in the parameteriza-
tion scheme, where the first point indicates the stagnation 
point of the airfoil, fixed at the origin with abscissa equal to 
0, and the last one, with abscissa equal to 1, coincides with 
the velocity at the trailing edge (also fixed). Thus, a total 
number of 10 design variables (ordinates) can vary within 
their lower and upper admissible limits, as indicated by the 

Table 1  Admissible variations of the control points for the velocity 
distribution

Abscissa (x) Ordinate (y) 
(suction side)

Lower limit Upper limit Admissible 
variations

0.001 0.475 0.47 0.48 0.01
0.010 1.260 1.00 1.50 0.50
0.025 1.280 1.10 1.50 0.40
0.050 1.300 1.10 1.50 0.40
0.100 1.270 1.10 1.50 0.40
0.200 1.270 1.10 1.50 0.40
0.400 1.320 1.10 1.50 0.40
0.600 1.240 1.10 1.40 0.30
0.800 1.100 1.00 1.20 0.20
0.970 1.000 1.00 1.10 0.10
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dashed lines depicted in Fig. 2. Table 1 shows the lower and 
upper limits of the 10 design variables (velocity ordinates of 
control points) used herein to generate the initial population 
and its evolution along the optimization process.

The upper limits were adjusted to fit the solution to one 
that is not so far from the original velocity distribution, 
especially near the airfoil trailing edge. To avoid the occur-
rence of curvature discontinuity at the leading edge of the 
resulting airfoil after inversion from velocity distribution to 
geometry, the limits of the second control point located at 
the y axis are set quite close, to prevent it from moving from 
the suction side to the pressure side. Also, unlike classical 
representations of velocity distributions, where the abscissa 
are generated in terms of percentages of the airfoil chord, 
here, the abscissa of the distribution shown in Fig. 2 were 
normalized by the boundary layer length.

The drag C
d
 has been computed by using the integral 

boundary layer methods using the known velocity distri-
butions of an individual as input. The laminar portion of 
a boundary layer is computed by applying the so-called 
Thwaites’ method and the transition is predicted by the 
Michel criterion and the turbulent portion is estimated by 
the Head method [22], respectively. The authors understand 
that these criteria are semiempirical and may be subjected 
to criticism. But, as they will be applied uniformly and sys-
tematically to all individuals, it becomes possible to perform 
a comparative study.

The samples used to evaluate the standard deviation of 
the optimal solutions have been obtained by adding/sub-
tracting from each control point ordinate (design variable) 

a percentage (± 5%) of its allowable range of variations 
(seen in the last column of Table 1). In this way, a set of 20 
disturbed velocity distributions (two times the number of 
design variables) have been generated for each individual. 
Note that, the amount of the perturbation is dependent on 
the abscissa of the control point. Since these abscissas are 
the same for all the individuals, it provides a way to perform 
a comparative measure of the deviation from the non-per-
turbed state between individuals.

In the quest for penalizations, for the equality constraints, 
airfoil thickness, t , can vary from, ± 5%, of the baseline air-
foil, and the lift, C

l
 , should not be more than, 5%, lower than 

the baseline airfoil. For the inequality constraints, a viola-
tion of the inequality leads to an automatic penalization on 
the individual. If the calculated value, Calc , is greater or 
smaller than the specified value, Spec, a penalty factor of, 
Fp= 10, is applied, according to the first objective related to 
the minimization of the drag:

For the search for the optimal and robust solutions, the 
authors found convenient to use a variant of the so-called 
Non-dominated Sorting Genetic Algorithm (NSGA II) 
[10], available in the MATLAB’s Optimization Toolbox 
[11], which provides a set of compromise optimal solutions 
known as Pareto front. Since none of the non-dominated 
solutions in the Pareto front can be considered as better than 
the others, the final decision about the best design solution 
to be implemented is made a posteriori, accounting for the 
user’s preferences.

It should be mentioned that, the performance index 
defined by Eq. (1) was programmed in FORTRAN 95 and 
coupled with NSGA II algorithm in MATLAB code using 
a set of MEX interface subroutines. The number of popula-
tions was of 15 times the total number of design variables, 
which is 10, resulting in a population of N = 150 individu-
als in each generation. The renovation rate was adopted as 
100%, crossover function was chosen as “scattered” and the 
mutation function chosen as “uniform,” with a ratio of 0.05. 
Other parameters used the default settings for MATLAB 
multiobjective genetic algorithm for example: the stopping 
criterion of average change in the spread of the Pareto front 
over 100 generations below  10−4 and the Pareto fraction of 
35%. The Pareto fraction and the distance function control 
the elitism in the MATLAB implementation of NSGA II 
[23]. All calculations have been performed in a modern digi-
tal computer model Intel Core i7-6700K CPU @ 4.00 GHz, 
16 GB RAM, 64 bits.

3.2  Numerical results and discussions

To demonstrate the main features and capabilities of the 
robust optimization method for airfoil inverse designs, the 

(4)C
d
= C

d
+ Fp|1 − Calc∕Spec|

Fig. 2  Variations of the suction side for the population in the optimi-
zation
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chosen baseline airfoil NACA  651-412 was tested with angle 
of attack 1.75°, Reynolds number 6 × 106 and incompressible 
flow (M∞ = 0) . Also, the boundary layer transition points 
were allowed to vary according to the Michel’s criterion.

Figure 3a shows a typical evolution of the population 
in the objective space using for clarity only a few selected 
generations: 1st, 30th, 60th, 90th and 103th, which was the 
last (i.e., the “spread of Pareto front” criterion was satisfied 
with 103 generations with a total of 15,450 evaluations of 
the objective functions). Figure 3b shows a zoom close to 
the resulting Pareto front. The agglomeration of points of 

previous generations and the last one indicates a conver-
gence trend. It is important to emphasize that getting the 
true Pareto front is not a prime objective here, but rather to 
get substantially improved solutions at the capability level of 
NSGA II algorithm with the adopted parameters.

The resulting front of Pareto optimal solutions is better 
shown in Fig. 4. It is observed the appearance of two distinct 
groups of airfoils, called herein as families 1 (low drag front) 
and 2 (drag plus penalty). The obtained characteristics for 
the baseline and selected airfoils are given in Table 2.

In Fig. 5, the velocity distributions and geometries for 
family 1 (airfoils A1, B1, C1 and D1) are plotted after the 
inversion of the velocity profiles. It can be noted a progres-
sive trend toward a more blunt peak for the airfoil D1, when 
compared to airfoil A1. It demonstrates a sharp velocity 
increasing followed by a plateau, which resembles a super-
critical airfoil. This plateau causes the speed to decrease 
more steeply toward the trailing edge than on the airfoils B1, 
C1 and D1. Also, it will control the boundary layer growth 
for a big portion of the airfoil, but it is also expected that 
the following steeper negative gradient will be more sensi-
tive to small perturbations. It is in perfect agreement with 

Fig. 3  a Typical evolution map of the population. b A zoom close to 
the resulting non-dominated set (Pareto front)

Fig. 4  Pareto front for the robust optimization problem

Table 2  Characteristics for baseline and families 1 and 2 airfoils

Airfoils 
tested

t , %chord Incidence (°) Cl Cd �

NACA 
 651-412

12.0 1.75 0.54 0.0049 –

A1 11.4 1.76 0.56 0.0055 2.41 × 10 − 4
B1 12.1 1.76 0.54 0.0058 1.81 × 10 − 4
C1 12.1 1.76 0.54 0.0059 1.35 × 10 − 4
D1 12.7 1.76 0.54 0.0061 1.28 × 10 − 4
A2 13.3 1.74 0.55 0.0051 1.24 × 10 − 4
B2 11.4 1.76 0.54 0.0060 1.03 × 10 − 4
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the relative position of these airfoils in the front of Pareto 
optimal solutions shown in Fig. 4, where the robustness of 
airfoil A1 is lower than the other airfoils in that family.

Figures 6 and 7 enable to compare the Pareto optimal 
solutions for the families 1 and 2 of airfoils in terms of 
their drags and their associated robustness, calculated for 

the obtained geometrical shapes. The obtained geometry 
was also fit in the form of B-splines, in order to use the 
same process of measuring the vulnerability of the airfoils, 
adding a perturbation to the ordinate of each control point 
in the suction side and calculating the standard deviation 
of the drag.

Fig. 5  Family 1 airfoils

Fig. 6  Robustness to geometri-
cal and angular variations—
family 1

Fig. 7  Robustness to geometri-
cal and angular variations—
family 2
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These results correspond to a variation of 2% of the 
chord, applied to the ordinates of the control points defining 
the suction side geometry (see Figs. 6a and 7a. A total of 10 
control points in the suction side were used for stability in 
the inversion process and 8 were allowed to vary, therefore 
producing 16 disturbed geometries. A perturbation on the 
incidence was also applied separately in order to investigate 
its influence on the performance robustness. A variation 
of ± 0.5° was applied on the angle of attack and for com-
parative purposes; the same boundary layer subroutine has 
been used in both inverse and direct calculations.

In the same figures, the perturbed NACA  651-412 is also 
shown. By examining Figs. 6a and 7a, it is possible to con-
clude that, for the same level of geometrical perturbation, the 
airfoils follow the same founding shown in Fig. 4. It implies 
that, the relative robustness is maintained after the inver-
sion process. The non-dominance of the optimal solutions 
was also maintained, meaning that, for some loss in one of 
the objectives (the drag of the airfoil), the second objective 
(the drag standard deviation) reduces in front of the applied 
geometrical perturbations.

Figures 6b and 7b show the influence of the incidence 
(angle of attack) on the angular robustness of the airfoil 
shapes found after the inversion step. It can be noted that, 
for both airfoil families, these results are in perfect agree-
ment with those appearing in Fig. 4. However, it should be 
noted that, the inverse method proposed here is not able to 
completely separate the geometric and angular robustness 
characteristics of the airfoil in advance. Note that, the flow 
incidence is unknown in the first step regarding the robust 
optimization of the velocity distribution. Therefore, only 
after performing the inversion geometry in the second step, 
it is possible to evaluate the relative influence of these sepa-
rate effects to decide which airfoils meet the design require-
ments. A possible way to consider these effects beforehand is 
to apply the thin airfoil theory in order to compute the fitness 
function. However, it should be reminded that, such a theory 
only leads to an estimation of the effects of airfoil curvature 
and angle of attack on the velocity distribution, as well as an 
estimation of the airfoil thickness and lift coefficient.

Now, the designer can make a decision among the avail-
able optimal solutions in the Pareto front for an applica-
tion of interest. For example, if disturbances on the airfoil 
shapes caused by manufacturing or assembling errors can 
be controlled, lower drag airfoils are a good choice in this 
case. But, if it is too difficult to be dealt with, a less sensitive 
airfoil should be more interesting, with a price to be paid in 
aerodynamic performance.

For both airfoils of family 2, the penalization strategy 
defined by Eq. (4) has been not fully effective in the mini-
mization of the drag coefficient during the multiobjec-
tive optimization. From Table 2, it can be noted that, the 
thickness of airfoil A2 remains above the 5% allowed. For 

airfoil B2, the violation of its thickness has been irrel-
evant, as it is not apparent in Table 2, but the minimum 
number of inflections of the velocity curve was exceeded. 
Nevertheless, these shapes still achieve reasonably good 
indexes of drag coefficient and its robustness. Although 
slightly thinner than allowed, airfoil B2 shows an excellent 
robustness characteristic. Airfoil A2 is 6% thicker than 
allowed, but it leads to a very low drag coefficient. Clearly, 
it should be recognized that, the penalization scheme 
adopted herein is considered a weak point of the proposed 
robust optimization for airfoil inverse design.

In the quest for computing time, limits were applied to 
the number of individuals on the Pareto optimal solutions 
and on the population size. However, the elimination of 
non-compliant individuals can reduce the overall diversity 
of the population, excluding some potential individuals 
that could evolve into better airfoil shapes. Also, since the 
Pareto front is formed by a set of compromise solutions, 
care must be taken in the choice of the penalty function 
to avoid the reduction of the diversity of the population.

The airfoil shapes shown in Figs. 5 and 8 cannot be well 
distinguished. Thus, a shape comparison between the opti-
mized airfoils of low drag A1 (less robust) and C1 (more 
robust) is shown in Fig. 9 by increasing the ordinate scale. 
In the same figure, it is also shown the base airfoil NACA 
 651-412 to enable comparisons. From airfoil A1 to C1, one 
can see a change in the maximum thickness point to a posi-
tion closer to the leading edge. It speeds up the boundary 
layer transition, which in turn, causes an increase in the 
drag coefficient, but also in robustness. For the robustness 
of the incidence, it can be clearly perceived that, airfoil A1 
is closer to the base airfoil, while airfoil C1 is much more 
robust, as demonstrated by the results appearing in Fig. 6b.

Figure 10 enables to compare the lift–drag curves (drag 
polar) for the NACA  651-412 and C1 airfoils. The experi-
mental data for the base airfoil were taken from Abbot and 
von Doenhoff [24]. It is noteworthy that, in the predomi-
nantly laminar flow regime (before the so-called bucket, 
characteristic of laminar airfoils), the model is more pessi-
mistic than the experimental results (greater drag values), 
while in the predominantly turbulent flow regime (after the 
bucket), the model underestimates the actual drag values. 
However, it does not invalidate the inverse robust opti-
mization methodology proposed herein, since the main 
feature of the method is exactly to increase the robustness 
caused by the decrease of this laminar-turbulent transition 
bucket. It is a delicate point, noting that there could be 
a great dependence on the transition model used. Since 
the Michel’s transition criterion has been “calibrated” by 
means of experimental data, like those reported in [21], 
the calculated results shown in Fig. 10 for the baseline 
airfoil reproduce satisfactorily the transition bucket.
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Note that, for the Reynolds value adopted in this study, 
this abrupt transition phenomenon occurs at values of 
Cl ≈ 0.54, which corresponds to an angle of attack close to 
1.75°. For this reason, this value was adopted for carrying 
out the optimization process. That is, one has chosen the 
incidence in which the performance of the base airfoil is less 
robust and applied the proposed inverse optimization meth-
odology in order to find airfoils shapes that are more robust. 
From Fig. 10, it can be also perceived that the characteristic 
laminar-turbulent bucket of NACA  651-412 was eliminated 
in airfoil C1: This optimized airfoil becomes more robust at 
the cost, however, of a higher drag coefficient in the nominal 
condition of Cl = 0.54.

In order to check whether the accuracy of the direct calcu-
lation could be improved, other two CFD alternatives were 
employed for aerodynamic evaluation: (1) the viscous–invis-
cid interaction code MSES [25], which employs an en lam-
inar-turbulent boundary layer transition criterion (MSES 
default options were chosen). (2) The finite volume ANSYS 
Fluent software (version 16.0), with the Langtry–Menter 

Fig. 8  Family 2 airfoils

Fig. 9  Shape comparison 
between NACA  651-412, A1 
and C1 airfoils (y axis magni-
fied for clarity)

Fig. 10  Comparison between the polar curves for Re = 6 × 106
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4-equation transitional SST turbulence model (employing 
2D unstructured meshes with 489,013 triangular volumes 
and 253,659 nodes, and y+ < 1 for the nodes closest to the 
walls). Note that the transitional issue is of paramount 
importance here since it relates to the robustness require-
ments. Turbulence models with poor predictive capabilities 
of boundary layer transition are not eligible here.

Figure 11a compares the polar curves for the base airfoil 
NACA  651-412 obtained by the two chosen CFD alterna-
tives, by the simplified boundary layer method employed 

during the inverse step (present code) and experimental 
results. One observes that the results obtained by the three 
calculation methods present marked differences. Qualita-
tively, both MSES and the present code captured reasonably 
the transition bucket shape. However, the present code repre-
sented better the sharp transition location than MSES code, 
which underestimates the drag values over all the bucket 
range (as compared with experimental results). On the other 
hand, the Langtry–Menter model produced unstable values 
of drag for low incidence angles in relation to the sharp 
transition and overestimated the drag coefficient for higher 
lift coefficients in the tests performed. Even though its accu-
racy has not fully met the expectations, the Langtry–Menter 
model was also able to predict the absence of the transition 
bucket for the airfoil C1, as one can see in Fig. 11b. This 
figure also shows that the model produced lower instabilities 
for the C1 airfoil than for the base airfoil, in low incidence 
angles. Thus, all the calculation tools were able to capture 
the expected robustness increase indicated by the proposed 
inverse methodology in the case of C1 airfoil.

Finally, it is important to highlight that, for this example, 
the NSGA II was not able to detect Pareto solutions with 
lower drag in comparison with NACA  651-412 (see Table 2). 
On the other hand, as already discussed, it was possible to 
obtain a solution like the airfoil C1, which is significantly 
more robust (with lower vulnerability) without much drag 
increase. It was verified by the results of direct geometrical 
and angular variations shown in Fig. 6. However, it is pos-
sible that solutions with lower drag could be obtained using 
other ranges for the design variables and other parameters 
of the optimization algorithm. Nevertheless, such solutions 
would probably be as vulnerable (less robust) as NACA 
 651-412.

4  Concluding remarks

This work proposed a low cost multiobjective optimization 
methodology to construct robust aerodynamic loadings for 
two-dimensional airfoil inverse designs. The motivation was 
to verify whether the final airfoils shapes obtained after geo-
metric inversion could keep the robustness characteristics 
of the optimized aerodynamic loadings. Within this aim, 
a two-step methodology has been suggested herein. In the 
first step, a simple and computationally inexpensive inte-
gral boundary layer method was used to assess the nomi-
nal aerodynamic performance index of the individuals. In 
this case, the velocity distribution around the airfoil was 
parameterized by using B-splines curves and the ordinates 
of a selected group of control points were considered as 
design variables. A first objective was to optimize a chosen 
aerodynamic coefficient—in this work, the minimization of 
the drag coefficient was chosen. A second objective was to 

Fig. 11  a Polar curves for the base airfoil NACA  651-412. b Polar 
curves for the base and C1 airfoils using Langtry–Menter 4-equation 
transitional SST model (Re = 6 × 106)
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minimize a vulnerability measure (inverse of the robustness 
measure). Perturbations were applied to the nominal velocity 
curves on the airfoil suction side to estimate their robust-
ness measures. The multiobjective algorithm NSGA II was 
used herein in order to generate the Pareto front, containing 
the fittest velocity distributions. In the second step of the 
proposed methodology, some of the compromise solutions 
in the Pareto front were chosen and subjected to an inverse 
algorithm to find their associated shapes. In the sequence, 
the interest was to evaluate the robustness of the airfoils 
shapes due to small perturbations introduced on their geom-
etry and angle of attack to verify whether the final airfoils 
shapes were able to keep their robustness in comparison with 
the pre-optimized robust loadings.

Based on the numerical applications performed herein, it 
is possible to perceive that, in fact, the final airfoils shapes 
corresponding to selected individuals in the Pareto front 
have kept their robustness (both angular and geometrical) 
due to the perturbations. In other words, robust loading 
distributions can really produce robust shapes. Firstly, this 
conclusion seems to be very promising, since it implies that, 
the aerodynamicist community may benefit of an effective 
robust optimization strategy for airfoil shape design at a low 
computational cost. However, a drawback of the method-
ology should be pointed out: For a certain robust optimal 
velocity distribution, it is not possible to determine a priori 
whether the resulting airfoil shape will be more affected by 
geometric or angular perturbations. Also, as some geometri-
cal and performance constraints like thickness and lift can 
only be evaluated approximately during the optimization 
process, it is too difficult to assess whether the shapes to be 
generated will possess the required characteristics. In this 
case, the thin airfoil theory could be applied to mitigate this 
weakness.

A timely perspective in this way is to use a Navier–Stokes 
solver to evaluate the resulting airfoil shapes computed in 
the inverse step of the methodology (second step). However, 
it is expected that, it will certainly require a higher compu-
tational effort, but it is still relatively affordable as long as a 
boundary layer solver of low cost remains active during the 
robust optimization of the aerodynamic loadings (first step).
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