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Abstract
Designing stable and efficient control methods for walking and running of biped robots has been a challenge over the past 
years. The goal of this paper is to design a finite-time controller to stabilize the running gait of a compliant leg biped robot. 
The biped model consists of two springy telescopic legs with flat feet. The robot model has five actuators including a torque 
actuator at the hip joint, two torque actuators at the ankle joints and two force actuators at the legs prismatic joints parallel to 
the springs. Dynamic equations of stance phase, flight phase and touchdown event are derived to build the dynamic model of 
a complete step of running. This robot model has passive periodic running gaits which are unstable. The controller aims to 
stabilize the gaits around the desired limit cycles and reject disturbances. Finite-time sliding mode control is used to design 
controller for the stance phase; the flight phase remains passive. Starting from various deviated initial conditions, the state 
space trajectory of the system with the designed control law is derived and its convergence to the desired trajectory is shown. 
The result of the controller is also compared with an event-based linear controller from previous references.

Keywords Finite-time-control · Biped robot · Telescopic legs

1 Introduction

The use of robots in industry has been become very wide-
spread and is rapidly increasing. Robots with special appli-
cations are also increasing, and multifunctional robots are 
progressing and being industrialized. An important type of 
multifunctional robot is the biped robot with a humanlike 
appearance moving on two legs. Biped robots are likely to be 
able to do most of the daily tasks of humans and undertake 
different missions in the future with low limitations. How-
ever, due to high degrees of freedom and hybrid dynamics 
biped robots are one of the most complex systems in terms 
of locomotion and control.

Locomotion is the ability of moving from one place to 
another and includes various forms such as swimming, fly-
ing, walking and running. Legged locomotion is the most 
efficient form of natural locomotion on land; birds and 
amphibian having wings and fins are also equipped with legs 
to walk and run. For legged robots, the design and analy-
sis of efficient gaits are still a challenging problem because 
fundamental principles of this type of locomotion are not 
completely understood. Humans and animals, for instance, 
can intrinsically distinguish proper gait specifications such 
as body trajectory or stride length to adapt terrain condition. 
This has motivated many attempts to design comprehensive 
mechanisms of legged locomotion [1, 2]. Legged robots 
possess a better mobility compared to wheeled vehicles. 
For instance, wheeled robots cannot pass through stairs or 
uneven terrain or complicated paths. Furthermore, similari-
ties of biped robots to human kind make them ready to help 
people in many tasks of modern life. Another important 
aspect of legged robots is that they can have high degrees of 
freedom (DOF) making them able to cover a larger work-
space [3–6]. These characteristics lead to a wide spectrum 
of applications such as hazardous inspection, giving service 
in crowded hospitals, companion and entertainment jobs at 
home.
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The gait dynamics in various biped robot structures have 
already been investigated by researchers [4–7]. Raibert [3] 
designed and built spring-loaded inverted pendulum (SLIP)-
like one-legged robots for 2D and 3D hopping gaits. The 
robots used pneumatic actuators, and their hopping motion 
was stabilized by controlling forward speed, hopping height, 
and body angle independently. McGeer introduced passive 
walking [8] and running [9] gaits and proved their stabil-
ity for biped models with arc feet. Cherouvim et al. [10] 
investigated energy transfer between the single actuated 
DOF and other unactuated DOFs of a monopod model to get 
stable hopping motion. Hyon et al. [11] proposed an energy-
preserving control method for planar running of a springy 
telescopic leg biped model with torso. Hu et al. [12] studied 
generating passive running gaits for a telescopic springy leg 
biped model with three point masses and then designed an 
event-based controller to stabilize it. Dadashzadeh et al. [4] 
generalized this control method to active running gaits of 
telescopic and kneed biped models on even and sloped ter-
rains. The controller was a discrete state feedback controller 
on Poincare map.

Another control approach is to use continuous time con-
trollers over running gait. Tzafestas et al. [13] designed a 
sliding mode controller (SMC) to stabilize the running gait 
without flight phase for a 5-link biped model. SMC method 
also has been used for tracking control of manipulators [14] 
and to stabilize biped walking gaits during double-support 
[15] and single-support phases [16]. Finite-time control-
ler (FTC) is an extension of SMC that was introduced by 
Haimo [17] and generalized by Bhat [18]. Hong et al. [14] 
designed an FTC using state feedback and output feedback 
for a manipulator. Guo et al. [5] successfully applied FTC 
method to stance phase of a three-link hopper with foot and 
obtained stable hopping gaits. They also used an LQR con-
troller for the flight phase due to its underactuation. The lack 
of applying FTC method to bipedal running is noticeable in 
the previous works. Convergence time is very important in 
controller design for bipedal running because of limited time 
intervals of running phases.

In this research, a finite-time sliding mode controller is 
designed for a biped robot which contains two telescopic 
legs. The biped model consists of two springy legs with 
feet and is fully actuated in stance phase. The contribu-
tions of this work consist of showing the effectiveness of 
finite-time control strategy to stabilize bipedal running, 
and comparing the results with an event-based controller. 
This work differs from the previous work [5] by the way 
that it controlled hopping of a one-legged hopper with 
three rigid links, but this work is about bipedal running 
with telescopic springy legs that needs also swing leg 
control. Biped robots with telescopic springy legs have 
passive-based running gaits and can be more efficient than 
kneed mechanism. The other difference is that in Ref [5], 

a LQR controller was used in flight phase but in this work 
fight phase is passive and the running gait is stabilized 
only by FTC in stance phase. The passive flight phase is 
advantageous for the gait efficiency and minimal control 
effort. In addition, we have optimized controller param-
eters to achieve smaller foot length to reject disturbance.

2  Dynamic modeling

The biped robot model of this paper contains two prismatic 
springy legs with flat feet, a point mass mh on the hip and 
two same point masses m on the middles of thighs. Each 
prismatic joint of the legs contains a massless spring k and 
a force actuator parallel to the spring. A torque actuator 
is located in hip joint between two legs, and two torque 
actuators are located in ankle joints. According to sche-
matic structure of the robot shown in Fig. 1, it is clear 
that all joints are active and the system is fully actuated 
in stance phase provided that stance foot is in static equi-
librium on the ground. It is assumed that shanks and feet 
are massless. Rest length of the spring is b0 , while b repre-
sents its current length. Running gait dynamics is divided 
to two continuous time phases called stance phase and 
flight phase and two instantaneous transition phases called 
takeoff and touchdown. In Fig. 1, q1 is the angle between 
stance leg and horizontal and q2 is the angle between two 
legs. Counterclockwise rotation is positive, and clockwise 
is negative. The position of center of mass (CoM) is shown 
by 

(
Xcm, Ycm

)
∈ ℝ

2 . The values of parameters applied in 
the model are listed in Table 1. In the following subsec-
tions, derivation of dynamic equations of the system is 
explained.

Fig. 1  Schematics of the robot in stance phase
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2.1  Stance phase model

In the stance phase, one leg is on the ground and the 
other leg swings around the hip. During this phase, it 
is assumed that the foot of swing leg is parallel to the 
ground and length of swing leg is constant (equal to 
a + b0) so the system has three DOF. Also it is assumed 
that a mechanism shortens the massless part of the swing 
leg to clear it from ground with zero energy assump-
tion. To derive the dynamic equation, we use Lagrange 
method. Stance phase-generalized coordinates vector is 
denoted by qs =

[
q1, q2, b

]T in which b the length of stance 
leg is. The Lagrangian function is

where T is the total kinetic energy and V is the total potential 
energy. Using Lagrange equation,

the dynamic model of the stance phase is summarized as

in which, Ms

(
qs
)
 is inertia matrix, hs

(
qs, q̇s

)
 is Coriolis and 

centrifugal matrix, Gs

(
qs
)
 is a vector related to potential 

energy, us =
[
�1, �2,F1

]T is the control input vector contain-
ing torques of the ankle and hip actuators and force of the 
prismatic actuator of the stance leg, respectively.

It can be proven that Ms and hs have the below proper-
ties [19]:

1. Ms is positive definite and dminIn×n ≤ Ms ≤ dmaxIn×n , 
in which dmin is the minimum eigenvalue and dmax is 
the maximum eigenvalue of matrix Ms.

2. hs will be chosen such that Ṁs − 2hs is a skew-symmetric 
matrix.

(1)L
(
qs, q̇s

)
= T

(
qs, q̇s

)
− V

(
qs
)

(2)
d

dt

(
𝜕L

𝜕q̇si

)
−

𝜕L

𝜕qsi

= Qi, i = 1, 2, 3

(3)

[
Ms

(
qs
)]

3×3

{
q̈s
}
+
[
hs
(
qs, q̇s

)]
3×3

{
q̇s
}
+
[
Gs

(
qs
)]

3×1

=
[
Bs

]
3×3

{
us
}
3×1

2.2  Flight phase model

The flight phase starts when the support foot loses contact 
with ground in stance phase, and the whole robot starts 
to go a ballistic motion. During flight phase, the lengths 
of both legs are constant (equal to a + b0) and the feet are 
assumed to be kept parallel to the ground surface. The 
system is of 4 DOF with generalized coordinates vector 
of qf =

[
q1, q2, xcm, ycm

]T . q1 , q2 are legs angles as defined 
above and xcm , ycm are COM position components. Again, 
using Lagrangian function of the flight phase and Lagrange 
equation for the flight phase as

The dynamic model of the flight phase is written as

where uf = �2 is the control input that has only one ele-
ment of hip actuator torque, Gf

(
qf
)
 is a vector related to 

total potential energy, Mf

(
qf
)
 and hf

(
qf , q̇f

)
 are inertia and 

Coriolis matrices, respectively.

2.3  Takeoff model

The transition phase from stance to flight phase is called 
takeoff. Because of massless foot and shank, takeoff occurs 
when the length of the spring in the stance leg reaches its 
free length, i.e., b = b0 . Due to having no impact in this 
event, energy, angular and linear momentum are conserved 
before and after the takeoff. This keeps all positions and 
velocities of the robot components continuous. Therefore, 
the takeoff model is just a kinematic conversion of pre-event 
stance phase final state to post-event flight phase initial con-
dition as

where superscript “+” indicates the moment just after take-
off and superscript “-” shows the moment just before takeoff 
and fsΔ specifies the stance to flight transition map.

2.4  Touchdown model

Touchdown occurs at the end of flight phase and is fol-
lowed by the next stance phase. At this instantaneous 
phase, an impulse is exerted to the robot leg from the 
ground. In the touchdown modeling, we assume that 
the collision is completely inelastic; there is no rebound 
and no slippage during foot landing. Touchdown does 

(4)
d

dt

(
𝜕L

𝜕q̇fi

)
−

𝜕L

𝜕qfi

= Qi, i = 1, 2, 3, 4,

(5)

[
Mf

(
qf
)]

4×4

{
q̈f
}
+
[
hf
(
qf , q̇f

)]
4×4

{
q̇f
}
+
[
Gf

(
qf
)]

4×1

=
[
Bf

]
4×1

{
uf
}
1×1

(6)
[
q+
f
, q̇+

f

]
= f

s
Δ
(
q−
s
, q̇−

s

)

Table 1  Kinematic and mass properties of the robot

Parameter name Parameter value

mh 10 kg
m 5 kg
k 1000 N/m
b
0

0.8 m
a 0.5 m
g 9.8 m/s2

Foot Length 0.25 m
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not affect the generalized coordinates instead causes an 
instantaneous change in velocities. In addition, because 
the stance leg in post-touchdown step is the swing leg in 
pre-touchdown step, there is a change in legs labeling.

To calculate the generalized velocities after impact, 
we use linear and angular momentum conservation laws. 
The leg “FH” is the contact leg, and point F is assumed 
to behave as an ideal pivot after contact. Due to springy 
massless shank, there is an impulse acting on foot “F” 
perpendicular to the axis of “FH.” Therefore, the angular 
momentum of all parts around point “F” is conserved, the 
linear momentum of all parts is conserved in the direction 
of “FH” and the angular momentum of the leg “AH” is 
conserved around point “H,” i.e.,

where L shows the linear momentum and H shows angular 
momentum. By solving this system of three equations in 
three unknowns, the post-touchdown velocities q̇+

s
 can be 

found.

3  Control algorithm

In this section, a finite-time control architecture is formu-
lated for stable running of the considered biped model. 
To design a finite-time controller, a desired trajectory is 
needed for the generalized coordinates. It has been shown 
that, for any arbitrary forward speed, the considered biped 
model has passive periodic running gaits which are unsta-
ble [4]. These gaits can be stabilized using some linear 
event-based controllers [4]. In this research, we synthetize 
a finite-time controller to generate stable running gaits 
around the passive gaits.

(7)q+
1s
= q−

1f
+ q−

2f

(8)q+
2s
= −q−

2f

(9)q+
3s
= b0

(10)HAHF
F

(
q̇−
f

)
= HAHF

F

(
q̇+
s

)

(11)LAHF
FH

(
q̇−
f

)
= LAHF

FH

(
q̇+
s

)

(12)HAH
H

(
q̇−
f

)
= HAH

H

(
q̇+
s

)

3.1  Stance phase

The basic sliding mode controller has problems such as chat-
tering and not reaching the desired trajectory before takeoff 
event. In fact, a finite-time robust control term can be added 
to the smooth terminal sliding mode controller in order to 
guarantee the desired trajectory to be reached in a finite time 
and to prevent chattering [5].

To design the controller for stance phase, we first define 
the tracking error of stance phase as

where qd is the desired trajectory. The sliding surface is then 
defined as

where A = diag
(
�1, �2, �3

)
,𝜆i > 0 , v(t) is the desired tracking 

error, w(t) is the difference between real and desired error

and reference trajectory qr is defined as

To obtain a smooth trajectory for the system, the desired 
tracking error is defined as a third-order polynomial during 
time of convergence 

(
Tcs

)
 . It is equal to zero after Tcs . Hence

In order to start from the deviated position with slope 
zero and reach the desired position with slope zero, the coef-
ficients of polynomial v are chosen as follows

It is evident that

By differentiating Eq. (16), we will have

Replacing Eqs. (14) and (18) into Eq. (3), the dynamic 
equations of stance phase are rewritten as

Theorem 2-1 proved by Guo et al. [5] can now be restated 
here as follows:

For the system “Eq. (3),” consider the following control 
rule

(13)q̃s = qs − qd

(14)s = ̇̃qs + Aq̃s − v̇(t) − Av(t) = ẇ(t) + Aw(t) = q̇ − q̇r

(15)w(t) = q̃s − v,

(16)q̇r = q̇d − Aq̃s + v̇ + Av.

(17)v(t) =

{
p0 + p1t + p2t

2 + p3t
3 t ∈

[
0, Tcs

]
0 t ∈

[
Tcs,∞

]

(18)

⎧⎪⎪⎨⎪⎪⎩

p0 = q̃s(0)

p1 = ̇̃qs(0)

p2 = −
3

(Tcs)
2 q̃s(0) −

2

Tcs

̇̃qs(0)

p3 =
2

(Tcs)
3 q̃s(0) +

1

(Tcs)
2
̇̃q(0)

(19)v(0) = q̃(0), v̇(0) = ̇̃q(0), s(0) = 0,w(0) = 0

(20)q̈r = q̈d − A ̇̃qs + v̈ + Av̇

(21)Msṡ + hss = Bsu −Msq̈r − hsq̇r.
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where  B#
s
 i s  pseudo- inverse  o f  matr ix  Bs  , 

K1 = diag
(
k11, k12, k13

)
 , K2 = diag

(
k21, k22, k23

)
 with kij > 0,  

and function sig� (s) is

Then, trajectory of the system is bounded for t > 0 and 
sliding surface will be bounded by s ≤ s∗, where s∗ is the 
unique solution of equation of

w h e r e  k1min = min
(
k11, k12, k13

)
 a n d 

k2min = min
(
k21, k22, k23

)
.

Therefore, applying the control law of “Eq. (22)” to the 
system of “Eq. (3)” generates the state trajectory convergent 
in a finite time. The last term of the control law in “Eq. (22)” 
is a finite-time robust control term which prevents torque and 
force from chattering. The time of convergence Tcs should be 
chosen to be less than the stance phase interval to guarantee 
the convergence before the takeoff event.

3.2  Flight phase

Since the system is underactuated in flight phase, the finite-
time controller “Eq. (22)” is not applicable in this phase. 
Stance phase controller has a vital role in rejecting distur-
bances and stabilizing the running gait. It brings back the 
state vector to the desired trajectory before touchdown and 
generates flight initial condition coincident to the desired 
condition. Therefore, we assume the robot moves passively 
in flight phase with no actuators. The only external force 
acting on the system during this phase is gravity. If the ini-
tial condition of the system in the flight phase is the same 
as the desired initial condition, the robot follows the desired 
trajectory [4].All disturbances in the flight phase can be con-
sidered as an initial condition deviation of the next stance 
phase.

4  Simulation results

In this section, we apply the control law introduced in Sect. 3 
on the dynamic model of the robot and present the simula-
tion results for both phases of running. Running gait starts 
with the stance phase, and we test the controller convergence 
by taking 1%, 4% and 8% deviation of the norm of initial 
conditions from the desired condition. The results are then 

(22)u = B#
s

(
Msq̈r + hsq̇r + Gs −MsK1s −MsK2sig

𝛾 (s)
)

(23)sig𝛾 (s) =

⎡
⎢⎢⎣

��s1��𝛾sign
�
s1
�

��s2��𝛾sign
�
s2
�

��s3��𝛾sign
�
s3
�
⎤
⎥⎥⎦
, 0 < 𝛾 < 1.

(24)k1mins + k2mins
� = 0

compared to the results obtained from a similar system with 
linear control strategy introduced in Dadashzadeh et al. [4].

4.1  Finite‑time control strategy

The biped model with massless springy feet possesses pas-
sive periodic running gaits which are unstable [4]. The gait 
is found by calculating fixed point of Poincare map of one 
complete running step. The fixed point is in fact a stance 
phase initial state vector which starts a passive running step 
from that condition that results in the same state vector at 
the beginning of the next stance phase. This gait needs a 
stabilizing controller to produce a stable running motion. 
We find a passive running gait with a forward speed of 
10 m/s for our biped model and use its initial state vector 
as the desired initial condition for our finite-time controller 
simulations. Table 2 shows fixed parameters values of our 
finite-time controller. These values have been selected in 
a way to satisfy the required condition defined in Sect. 3. 
The time of convergence ( Tcs ) is selected about 30 percent 
of time duration of the stance phase. Controller coefficients 
K1 = diag

(
k11, k12, k13

)
 , K2 = diag

(
k21, k22, k23

)
 are obtained 

using an optimization problem to minimize the needed foot 
length 

(
Lfoot

)
 or maximum deviation of ZMP to stabilize a 

gait with 4% initial deviation.

Because the dynamic model of the closed loop gait is 
highly nonlinear with large amount of numerical calcula-
tions and optimization parameters number is relatively high, 
it is not claimed that we have found global minimum of this 
problem. Instead, we use a search algorithm that runs the 
model by varying the six parameters within a reasonable 
range. The ranges for each parameter are defined by trial 
and error. Considering three values for each parameter, 729 
times executing the program is needed. After several suc-
cessive runs of the search algorithm, the following optimal 
values of the controller coefficients were found that generate 
Lfoot = 0.162 m . These values will be used in simulations of 
the next subsections.

(25)min
K1,K2

(
ZMPmax − ZMPmin

)

(26)
k11 = 190, k12 = 150, k13 = 90, k21 = 40, k22 = 150, k23 = 210

Table 2  Values of the 
controller-fixed parameters

Parameter name Param-
eter 
value

� 0.6
�
1

15
�
2

15
�
3

25
T
cs

0.2
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Figure 2 shows variation of foot length versus control-
ler coefficients around the found minimum point. In each 
subplot, only one parameter is varied and the others are con-
stant. There was a rough search with resolution of 30 and 
then a finer search around min point with resolution of 5.

4.1.1  One percent deviation of initial conditions

We first simulate the designed finite-time controller with 1% 
deviation in the norm of initial condition from the desired 
condition. Figure 3 shows that the position error of the sys-
tem converges to zero within the defined time of conver-
gence, and Fig. 4 shows that the major amount of velocity 
error subsides within the time of convergence. Small oscilla-
tions around zero in velocity error diagram after the time of 
convergence are due to lack of a positive definite matrix A in 
the definition of sliding surface. It means that the prior aim 
of the controller is lowering position error rather than veloc-
ity error. The results imply that this error does not affect the 
stability of system.

Figure 5 shows the ZMP value during the stance phase. 
The greater the difference between the maximum and the 
minimum value of ZMP, the longer the foot is needed to 
keep the gait stable. Figure 5 shows a difference of 15.1 cm 
between max and min value of ZMP which is a reasonable 
value for the foot length. Choosing a foot length greater than 
this value can guarantee stability of the stance foot on the 
ground during stance phase.

Figure 6 illustrates the control inputs of the robot during 
the stance phase. The maximum torque of motors is 35 N m, 

and the maximum force of prismatic actuator is 20 N, which 
are small values relative to the robot weight 196 N. The 
very small control inputs are justified because we stabilize 
the robot running around an unstable passive periodic gait.

4.1.2  Four percent deviation of initial conditions

We repeat the simulations with 4% deviation of the initial 
condition. The simulation results show that the finite-time 
controller can reject the initial disturbances and bring the 
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Fig. 2  Variation of foot length versus controller coefficients
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Fig. 3  Position error using finite-time controller with 1% initial error
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state of system back to the desired trajectory within the 
specified convergence time (see Figs. 7 and 8). According 
to these figures, the controller makes position and veloc-
ity errors confined within an acceptable vicinity of zero 
at the end of the stance phase. These errors also remain 
close to zero in the passive flight phase with no control 
action and cause a small error for initial condition of the 
next stance phase which can be treated then by the stance 
phase controller. According to ZMP trajectory in Fig. 9, 
the required foot length to stabilize 4% initial deviations 
is 16.2 cm which is acceptable for a robot with the height 
of 1.3 m. Figure 10 depicts that the maximum torque and 
force control efforts are 80 N m and 20 N which is almost 
half of static load of the robot.

4.1.3  Eight percent deviation in norm of initial conditions

Finally, we deviate the stance initial condition from the 
desired path by 8% in the norm and apply the finite-time 
controller in stance phase. Figures 11 and 12 show the con-
vergence of general coordinates of systems to the desired 
path before convergence time. As is seen in Fig. 13, the 
difference between minimum and maximum value of ZMP 
becomes very large so that the minimum length of foot 
should be 58.9 cm which is too long. This is due to the 
large deviation of the initial condition from the nominal gait. 
The larger the initial condition is deviated, the larger is the 
control torque (needed in ankle joint) to return the robot 
to the desired path. A larger ankle torque needs a longer 
foot to keep the stability. Figure 14 shows the joints input 
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Fig. 4  Velocity error using finite-time controller with 1% initial error
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torques and force. The maximum torque and force are less 
than 30 N m and 150 N which are again less than the static 
loads of robot and are acceptable.

4.2  Comparison of the finite‑time controller 
with a linear controller

To evaluate the performance of the presented finite-time 
controller of this paper, we compare the results with 
an event-based discrete LQR controller introduced by 
Dadashzadeh et al. [4]. This controller takes feedback 
only at touchdown event and generates control command 
for entire of the next step using state feedback controller 
for Poincare map. It has been proved to generate stable 

running gaits for both prismatic and kneed biped robots. 
We apply this controller for the same system of this paper 
with point feet. The simulation results show that this con-
troller fails to stabilize the robot running in all cases of 
1%, 4% and 8% initial errors, although it can stabilize the 
system with initial deviations lower than 0.5%. Figure 15 
shows the divergence of the phase diagram of leg 1 for 
each of the tested initial deviation cases using discrete 
LQR controller. This comparison proves higher perfor-
mance of the finite-time controller proposed in this work 
to the event-based LQR controller. However, actuator in 
ankle joint is essential for the finite-time controller and 
optional for LQR controller.
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4.3  Remarks on the performance of the finite‑time 
controller

Regarding simulation results in Sect. 4.1, it is shown that 
control law (22) is suitable for system (3) and converges 
it to the desired trajectory. Due to intrinsic oscillations of 
sliding mode controllers, there is a small deviation from 
the desired trajectory at the end of stance phase that can 
become larger during passive flight phase. Nonetheless, 
deviation value at the end of each flight phase is less than 
its relevant value at the beginning of stance phase. So, if 
the robot’s state converges to the desired trajectory at the 
first stance phase, stability of the next steps is guaranteed.

Considering foot length of the robot to be 30 cm, the 
maximum allowable ZMP interval should be equal to this 
value. By simulating the controller with various amounts of 
initial deviations according to Table 3 and by spline interpo-
lation of the results, we found that the controller with opti-
mized coefficients (26) is robust to stance initial deviations 
up to 5.39%. Initial deviations can be generated by external 
disturbances, friction or tracking errors. So, we consider the 
accumulated errors at the beginning of stance phase that are 
compensated during this phase and the passive flight phase 
starts with very small errors.

5  Conclusion

A finite-time sliding mode controller with optimized gains 
was designed and applied to the running of a biped robot 
with telescopic legs, in this paper. It was shown that the 
tuned finite-time controller acting only in stance phase (with 
passive flight phase) stabilizes the whole cycle of the run-
ning gait. Results showed that, in contrast to the linear con-
trol strategy (reported in the previous works); the finite-time 
method could reject big disturbances and compensate large 
initial deviations from the desired path in the stance phase. 
For the chosen dynamics and optimized control parameters, 
if the norm of deviation from the desired initial condition 
was less than 5.39 percent, the control system could return 
the system to the desired gait having an acceptable foot 
length. For larger deviations, however, an unreasonably large 
foot was needed to keep the gait stable. Nonetheless, the 
controller could stabilize the gait using larger motor torques 
in these cases as well.
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Fig. 15  Phase diagram of leg 1 for running using LQR controller with a 1%, b 4% and c 8% initial error

Table 3  Required foot length 
versus initial deviation Initial deviation 1% 2% 3% 4% 5% 6% 7% 8%

Foot length (m) 0.151 0.156 0.158 0.162 0.264 0.357 0.382 0.589
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