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Abstract
The forthright intention of this communication is to scrutinize the effect of variable thermal conductivity and thermal radia-
tion on the magnetohydrodynamic tangent hyperbolic fluid in the presence of nanoparticles past a stretching sheet. For heat 
and mass transport phenomena, the collective stimulus of slip and convective conditions with the internal heating, viscous 
dissipation and Joule heating have been taken into account. The boundary layer equations of two-dimensional tangent hyper-
bolic nanofluid have been established with the help of boundary layer approximations. With the assistance of appropriate 
similarity transformation, the governing set of PDEs are rendered into the coupled nonlinear ODEs. The solution of the 
resulting ODEs is obtained with the help of the shooting technique. Furthermore, an authentication of the computed results 
is obtained through benchmark with the previously reported cases. The influence of various pertinent parameters on the 
velocity, temperature and concentration profiles has been analyzed graphically and discussed. The physical behavior of the 
velocity, temperature concentration, skin friction coefficient, the Nusselt and the Sherwood numbers have been investigated 
diagrammatically for various pertinent parameters. It is observed that the velocity profile is declined for the growing values 
of the Weissenberg number and the power law index, whereas the thermal and concentration fields are observed to enhanced 
for the same parameters. Our analysis depicts that the temperature and the concentration profiles are enhanced for the slip 
parameter and the Eckert number.

Keywords Tangent hyperbolic nanofluid · Convective heat transfer · Viscous dissipation · Joule heating

List of symbols
Bi  Biot number
B0  Applied magnetic field
C  Fluid concentration inside the boundary layer
Cp  Specific heat
C∞  Fluid concentration outside the boundary layer
Cf  Skin friction coefficient
Cw  Concentration at wall surface
DB  Brownian diffusion parameter
D  Coefficient of mass diffusion
DT  Thermophoresis diffusion parameter
Ec  Eckert number
hf   Heat transfer coefficient
jw  Local mass flux

k  Thermal conductivity
Le  Lewis number
L  Slip parameter
M  Magnetic number
n  Power law index
Nb  Brownian motion parameter
Nt  Thermophoresis parameter
Nux  Nusselt number
Pr  Prandtl number
qw  Heat transfer rate
qr  Radiative heat flux
Rd  Thermal radiation parameter
Rex  Local Reynolds number
Sc  Schmidt number
Shx  Sherwood number
T  Boundary layer temperature
Tw  Surface temperature
T∞  Ambient temperature
t  Time
u, v  Velocity components
uw  Characteristics velocity
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vw  Stretching rate
We  Weissenberg number
�  Kinematic viscosity
�  Dynamic viscosity
�  Velocity slip parameter
�  Electric charge density
�  Dimensionless concentration
�  Dimensionless temperature
�  Fluid density
�  Similarity variable
(�Cp)f  Heat capacity of the fluid
(�Cp)p  Heat capacity of the nanoparticles
Γ  Time constant

1 Introduction

In recent years, the requirement of the heat transfer in effi-
cient and small-sized electronic devices is continuously 
increasing. The process of cooling is one of the hard chal-
lenges faced in the industries related to automotive and elec-
tronic devices. The usual base fluids like water, ethylene 
glycol and mineral oils do not sufficiently meet the require-
ment of conducting the thermophysical properties. However, 
nanofluids which are the mixture of some nanometer-sized 
particles and the base fluids have the ability to conduct 
heat more effectively. Choi [1] experimentally verified that 
by adding the nanoparticles in the base fluid, the required 
thermal properties can be achieved. The nanofluids have 
extraordinary characteristics to improve the thermophysi-
cal properties. Due to an extensive variety of utilizations in 
all areas of research, these fluids have received a substantial 
appreciation. The effect of magnetic field-dependent vis-
cosity (MFD) on the free convection MHD nanofluid was 
analyzed by Sheikholeslami et at. [2] with the concluding 
report that the Nusselt number increased for the growing 
values of the Rayleigh number. Zaimi et at. [3] used the 
Buongiorno’s model and studied the unsteady flow of a 
nanofluid past a permeable shrinking cylinder and reported 
that the increment in the suction parameter enhances the 
skin friction coefficient and the rate of heat transfer. Oth-
man et at. [4] studied the stagnation point flow of nanofluid 
past a vertically stretching/shrinking sheet by considering 
the mixed convection. The main finding of that analysis was 
that the solution domain increased for the increasing values 
of the mixed convection parameter. Soid et at. [5] scruti-
nized the continuously moving needle in a nanofluid and 
examined that the dual solutions exist only when both the 
free stream and the needle move in the opposite directions. 
One of the recent relevant explorations may include study by 
Fakour et al. [6] regarding the nanofluid thin film flow past 
an unsteady stretching sheet. It was concluded that among 
different types of nanofluids, and water–alumina nanofluid 

has a better rate of heat transfer. By considering the activa-
tion energy and nonlinear thermal radiation, Sajid et al. [7] 
reported that an acclivity in the Biot number results in an 
enhancement in the velocity as well as the concentration pro-
file in the Darcy–Forchheimer flow of Maxwell nanofluid. 
Atif et al. [8] ascertained that the stratified MHD micropolar 
nanofluid past a stretching sheet in the presence of the gyro-
tactic microorganisms and reported that the concentration 
profile is diminished for the enhancement in the mass strati-
fication parameter. For further studies see articles [9–11].

In engineering and industrial applications, non-Newto-
nian fluids being ubiquitous and have been inspected exten-
sively. Generally, these fluids have intricate constitutive 
relationships. These fluids have nonlinear relation between 
stress and strain in rheology and between heat current and 
temperature gradient in thermodynamics. In particular, the 
shear effects are significant in heat transfer of the non-New-
tonian fluids. Due to flow diversity, a single mathematical 
model cannot incorporate all the rheological fluid proper-
ties. A few of the recent explorations may include study by 
Kumar et al. [12] analyzed the boundary layer flow and melt-
ing heat transfer of Prandtl fluid over a stretching surface by 
considering Joule heating effect and reported that the rate of 
heat transfer is decreased by increasing melting parameter. 
Similarity solutions for flow and heat transfer over a per-
meable surface with convective boundary condition were 
determined by Ishak et al. [13] and reported that gradually 
boosting values of the suction parameter increases the sur-
face shear stress and as a consequence the heat transfer rate 
at the surface is increased. Gireesha et al. [14] scrutinized 
the chemical reaction effect on flow and mass transfer of 
Prandtl liquid over a Riga plate in the presence of solutal 
slip effect and observed that the solutal boundary layer thick-
ness decreases for larger values of chemical reaction param-
eter and Schmidt number. Stability of MHD boundary layer 
flow over a Stretching/Shrinking wedge was analyzed by 
Awaludin et al. [15] and reported that the existence of the 
solution depends on the shrinking strength and the angle of 
the wedge, in case of shrinking parameter. Effect of thermal 
radiation and variable thermal conductivity on magnetohy-
drodynamics squeezed flow of Carreau fluid over a sensor 
surface was studied by Atif et al. [16] and reported that the 
skin friction coefficient is declined as the squeezed flow 
parameter is enhanced.

Tangent hyperbolic fluid is one of the non-Newtonian flu-
ids which is capable of describing the shear thinning phe-
nomenon. Lava, ketchup, whipped cream, blood and paints 
are examples of tangent hyperbolic fluid. This rheological 
model has certain advantages over the other non-Newtonian 
fluids formulations, including simplicity, ease of computa-
tion and physical robustness. Furthermore, it is deduced 
from kinetic theory of liquids rather than the empirical 
relation. From laboratory experiments, it is found that this 
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model predicts shear thinning phenomenon very precisely. 
Additionally, this model describes the blood flow very accu-
rately. By considering Biot number effects, Gaffar et al. [17] 
investigated the numerical solution of the heat transfer of 
tangent hyperbolic fluid from a sphere and reported that the 
fluid motion, the temperature, the skin friction coefficient 
and the Nusselt number is upsurged for growing values 
of the Biot number. With partial slip and free convection 
effects, Prasad et al. [18] explored the tangent hyperbolic 
fluid past a vertical porous sheet and reported that the slip 
velocity is enhanced but the Nusselt number is declined as 
the slip parameter is enhanced. Kumar et al. [19] studied 
the melting heat transfer of hyperbolic tangent fluid over 
a stretching sheet with fluid particles suspension and ther-
mal radiation. They concluded that the momentum bound-
ary layer thickness was enhanced for the growing values 
of the melting parameter. By using the second-order slip 
and convective conditions, Ibrahim [20] scrutinized the 
magnetohydrodynamic tangent hyperbolic fluid with nano-
particles past a stretching sheet and found that the surface 
drag coefficient is reduced as the value of the Weissenberg 
number is enhanced. By considering a permeable cylinder, 
Nagendramma et al. [21] deliberated the double stratified 
MHD tangent hyperbolic nanofluid flow and reported that 
the concentration field is appreciated for enhancing values of 
the Weissenberg number but depreciated as the Lewis num-
ber is increased. The thermal radiation phenomenon is one 
of the important heat transfer factors, to which the research-
ers have paid a serious attention. In this phenomenon, the 
energy spreads from a vivid surface to the absorption point 
in the whole region [22–27].

The non-Newtonian MHD fluids have fundamental and 
practical significant applications. The properties of such types 
of fluids play a vital role in the industrial biological and engi-
neering applications. Few of the examples are micro-MHD 
pumps, micro-mixing of physiological samples, drug deliv-
ery biological transportation and petroleum production, etc 
[28]. MHD viscous flow past a stretching sheet was solved 
by the modified homotopy perturbation method by Fathiza-
deh et al. [29]. Das et al. [30] scrutinized the mixed convec-
tion MHD flow past an inclined plane in the presence of Joule 
heating and viscous dissipation and found that the velocity 
and the thermal fields are enhanced as the thermal buoyancy 
force is increased. Numerical study of MHD Casson fluid 
with slip boundary and Joule heating was analyzed by Kam-
ran et al. [31] with the main finding that an increment in the 
Reynolds number enhances the entropy of the system. Vijay-
alaxmi et al. [32] observed the stagnation point flow of MHD 
Eyring–Powell nanofluid with convective conditions past 
an exponential stretching sheet. Effect of Joule heating and 
viscous dissipation on MHD flow and melting heat transfer 
over a stretching sheet was observed by Kumar et al. [33] with 
main finding that the fluid and the dust phase temperature was 

enhanced as the Eckert number is enhanced. Entropy analysis 
of MHD squeezing flow of nanofluid with Cattaneo–Christov 
model was analyzed by Naveed et al. [34]. A key observation 
was that an increment in the magnetic number results an incre-
ment in the temperature and the entropy of the system.

The main purpose of the present article is to study the 
influence of the viscous dissipation, thermal radiation and 
variable thermal conductivity on the magnetohydrodynamic 
tangent hyperbolic nanofluid past a stretching sheet. The 
governing equations are solved via the shooting technique. 
The demeanor of all the assorted physical parameters on 
velocity, temperature and concentration is displayed graphi-
cally and discussed.

2  Physical model and mathematical 
formulation

2.1  Tangent hyperbolic constitutive model

A single mathematical model cannot incorporate all the rhe-
ological fluid properties. A variety of fluid models address-
ing different fluid features is available in the literature. The 
tangent hyperbolic fluid is four-constant fluid model which 
has an ability of describing shear thinning effects. The 
apparent viscosity gradually varies between zero shear rate 
and infinite shear rate. The constitutive equation represent-
ing the tangent hyperbolic fluid is given by

where Γ , n, � represents the time constant, the power law 
index and the extra stress tensor, respectively. �0 and �∞ 
represents the zero shear rate viscosity and infinite shear rate 
viscosity. The shear rate Ω̇ is given by

Here 
∏

 is the second invariant of the strain rate tensor and 
is given by

Due to the assumption �∞ = 0 and the fact, we are focus-
ing on the shear thinning behavior of the fluid therefore for 
ΓΩ̇ < 1 the extra stress tensor � reduces to, 

2.2  Problem formulation

An incompressible, two-dimensional, electrically conduct-
ing tangent hyperbolic nanofluid flow past a stretching sheet 
with slip and convective boundary conditions has been con-
sidered for the analysis. The Cartesian coordinate system 

� =
[
𝜇∞ +

(
𝜇0 + 𝜇∞

)
tanh(ΓΩ̇)n

]
Ω̇,

Ω̇ =

√
1

2

∑
i

∑
j

Ω̇ijΩ̇ji =

√
1

2

∏
.

∏
=

1

2
tr
[
(grad �) + (grad �)T

]2
.

� = 𝜇0

[
(𝛾Ω̇)n

]
Ω̇ = 𝜇0

[
(1 + 𝛾Ω̇ − 1)n

]
Ω̇ = 𝜇0

[
1 + n(𝛾Ω̇ − 1)

]
Ω̇
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is taken in such a way that the horizontal axis is chosen in 
the direction of the stretching sheet with stretching velocity 
u = ax and vertical axis is normal to the stretching surface. 
The flow is restricted in the region y > 0 . The surface is 
heated with convective temperature Tf  with hf  as the heat 
transfer coefficient. The ambient temperature, concentra-
tion at the surface and ambient concentration are denoted 
by T∞ , Cw and C∞ , respectively. A uniform magnetic field of 
strength B0 is applied in the positive y-axis direction. A mag-
netic Reynolds number is assumed to be very small such that 
the induced magnetic field is neglected. The physical layout 
of the modeled problem is illustrated in Fig. 1. Additionally, 
no nanoparticles flux condition and thermophoresis effect is 
implemented in the boundary condition. The Joule heating 
and viscous dissipation effects have also been incorporated.

Being within the above constraints, governing equations 
of the tangent hyperbolic nanofluid flow are formulated 
under the boundary layer approximation

2.2.1  Continuity equation

2.2.2  Momentum equation

(1)
�v

�y
+

�u

�x
= 0,

(2)

u
�u

�x
+ v

�u

�y
= �

�
(1 − n) +

√
2nΓ

�
�u

�y

��
�2u

�y2
−

�B2
0

�
u,

2.2.3  Energy equation

2.2.4  Concentration equation

2.2.5  Boundary conditions

The boundary conditions are as follows

In above equations, � represents the electrical conductivity, n 
the power law index, �f the density of nanofluid, Λ the ratio 
of the specific heat capacity of nanoparticles to the specific 
heat capacity of fluid, �p the density of the nanoparticles, 

(3)

u
�T

�x
+ v

�T

�y
=

�

�y

�
�(T)

�T

�y

�
+

�

Cp

(1 − n)

�
�u

�y

�2

+
�nΓ√
2Cp

�u

�y

�
�u

�y

�2

−
1

�Cp

�qr

�y
+

�B2

0

�Cp

u2

+ Λ

�
DB

�C

�y

�T

�y
+

DT

T∞

�
�T

�y

�2
�
,

(4)u
�C

�x
+ v

�C

�y
= DB

�2C

�y2
+

DT

T∞

�2T

�y2
.

(5)

u = ax + L
�u

�y
, v = 0, − k

�T

�y
= hf (Tf − T),

DB

�C

�y
+

DT

T∞

�
�T

�y

�
= 0 at y = 0,

u → U∞ = 0, v = 0, T → T∞,

C → C∞ as y → ∞.

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Fig. 1  Flow configuration
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(Cp)f the specific heat of fluid, L the slip parameter, (Cp)p 
the specific heat of nanoparticles and �(T) the temperature-
dependent thermal conductivity of the tangent hyperbolic 
nanofluid, expressed as

Furthermore, in (3), qr is the Rosseland radiative heat flux 
and is defined as [22–27]

where �∗ is the mean absorption coefficient and �∗ is the 
Stefan–Boltzmann constant. Using Taylor series [35] and 
neglecting the higher power terms, T4 can be written as

In order to make the modeled equations dimensionless, the 
following transformations [20] have been introduced.

As a result, (1) is satisfied identically and Eqs. (2)–(4) yield 
the following equations:

The transformed boundary conditions are

In above equations, Pr denotes the Prandtl number, Nb the 
Brownian motion parameter, We the Weissenberg number, Le 
the Lewis number, Bi the Biot number, M the magnetic number, 
Ec the Eckert number, Nt the thermophoresis parameter, Rd the 
thermal radiation parameter, Rex the Reynolds number and � 
the velocity slip parameter. These parameters are formulated as 
Pr =

�

�
 ,      Nb =

ΛDB(Cw−C∞)

�
 ,      We =

√
2a

3
2 xΓ√
v

 ,      Le = �

DB

,  

 Bi = h

k

√
�

a
,   M =

�B2
0

a�
 , Ec = a2x2

(Cp)f(Tf−T∞)
 ,    Nt = ΛDT(Tf−T∞)

�T∞
,  

 Rd =
4�∗T3

∞

k∞�∗
 ,    Rex =

ax2

�
 ,    � = A

√
a

�
 , where A is a constant.

�(T) = k∞

(
1 + �

T − T∞

ΔT

)
.

qr = −
4�∗

3�∗

�T4

�y
.

T4 ≈ 4T3
∞
T − 3T4

∞
.

(6)

� = y

�
a

�
, � = x

√
a�f (�), �(�) =

T − T∞

Tf − T∞
, �(�) =

C − C∞

Cw − C∞

.

(7)
(
1 − n + nWef ��

)
f ��� + ff �� − f �

2

−Mf � = 0,

(8)

(
1 + �� +

4

3
Rd

)
��� + Prf �� + ���

2

+ (1 − n)PrEcf ��
2

+
nPrEcWe

2
f ��

3

+ MPrEcf �
2

+ PrNb���� + PrNt��
2

= 0,

(9)��� + PrLef�� +
Nt

Nb
��� = 0.

(10)

f (�) = 0, f �(�) = 1 + �f ��,

��(�) = Bi(�(�) − 1), Nb��(�) + Nt��(�) = 0,

�
at � = 0,

f �(�) → 0, �(�) → 0, �(�) → 0 as � → ∞.

⎫⎪⎬⎪⎭

3  Physical quantities of interest

The physical quantities of foremost interest are the local skin 
friction coefficient, the local Nusselt number and the local 
Sherwood number.

3.1  The skin friction coefficient

The skin friction coefficient is an imperative boundary layer 
feature and is given by

for the present study the wall shear stress �w is given by

In the dimensionless form, the skin friction coefficient is 
given by

3.2  The local Nusselt number

The Nusselt number is given by

for the present problem the local heat flux qw at the surface 
is given by

In the dimensionless form, the local Nusselt number is given 
by

Cf =
�w

�fu
2
w

,

�w = �

�
(1 − n)

�u

�y
+

nΓ√
2

�
�u

�y

�2
�

y=0

.

(11)Cf

√
Rex = (1 − n)f ��(0) +

n

2
We

�
f ��(0)

�2
.

Nu =
xqw

k(Tf − T∞)
,

qw = −k

[(
1 +

16�∗T∞

3k�∗

)
�T

�y

]

y=0

.

Table 1  Comparison of the presently computed values of the skin 
friction coefficient

M [20] [29] Present result

0 1.0000 1.0000 1.00001
0.25 1.1180 − 1.11803
1 1.4142 1.41421 1.41421
5 2.4495 2.44948 2.44949
10 3.3166 3.31662 3.31662
50 7.1414 7.14142 7.14142
100 10.0499 10.0499 10.0499
500 22.3830 22.3830 22.3830
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3.3  The local Sherwood number

The Sherwood number is given by

for the present study the local mass flux jw is given by

(12)NuxRe
−1∕2
x

= −
(
1 +

4

3
Rd

)
��(0).

Sh =
xjw

DB(Cw − C∞)
,

jw = −DB

(
�C

�y

)

y=0

.

In the dimensionless form, the Sherwood number is given by

where Rex =
ax2

�
.

4  Implementation of the method

In the present article, the shooting method [35] is employed 
to solve the formulated ODEs  (7)–(9), subject to the bound-
ary conditions (10).

Introducing the new variables, y1 = f  , y2 = f � , y3 = f �� , 
y4 = � , y5 = �� , y6 = � , and y7 = �� . Equations.  (7)–(9) 
are converted into the following system of seven first-order 
ODEs:

with boundary conditions:

(13)ShxRe
−1∕2
x

= −��(0),

(14)

y�
1
= y2,

y�
2
= y3,

y�
3
=

1

1 − n + nWey3

�
y2
2
− y1y3 +My2

�
,

y�
4
= y5,

y�
5
= −

3

3 + 3�y4 + 4Rd

�
Pry1y5

+�y2
5
+ (1 − n)PrEcy2

3
+

n

2
PrEcWey3

3

+PrMEcy2
2
+ PrNby5y7 + PrNty2

5

�
,

y�
6
= y7,

y�
7
= −PrLey1y7 −

�
Nt

Nb

�
y�
5
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

 = 0.1, 0.2, 0.3, 0.4, 0.5

(a)

0 0.1 0.2 0.3 0.4 0.5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

n = 0.1, 0.2, 0.3, 0.4, 0.5

(b)

Fig. 2  Skin friction coefficient against M for different values of a � and b n 

Table 2  Variation in the skin friction coefficient due to different val- 
ues M,We, n and � when Bi = 2,Ec = 0.2,Le = 5,Pr = 2,Nb = 0.5,

Nt = 0.5,Rd = 0.8, � = 0.1

We n M �
−CfRe

1

2

x

0.1 0.1 0.2 1 0.425166
0.2 0.424368
0.3 0.423567
0.1 0.2 0.386956

0.3 0.347262
0.4 0.305835
0.1 0.3 0.437683

0.4 0.449105
0.5 0.459587
0.2 2 0.277203

3 0.207546
4 0.166523
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To solve the above system of seven first-order ordinary dif-
ferential equations (14) with the assistance of the shoot-
ing method, seven initial conditions are required. There-
fore, we guess the three unknown conditions as y3(0) = s , 
y4(0) = p , and y6(0) = q . The suitable guesses for s, p, and 

(15)

y1(�) = 0, y2(�) = 1 + �y3(�),

y5(�) = Bi(y4(�) − 1), y7(�) = −
Nt

Nb
y5(�)

⎫⎪⎬⎪⎭
at � = 0,

y2(∞) → 0, y4(∞) → 0, y6(∞) → 0, as � → ∞

⎫⎪⎪⎬⎪⎪⎭

q are chosen, such that the three known boundary condi-
tions are approximately satisfied for � → ∞ . The Newton’s 
iterative scheme is applied to improve the accuracy of the 
initial guesses s, p and q until the desired approximation is 
met. All the computations in the rest of this article, � has 
been chosen as 10−6 . The computations for different values 
of the emerging physical parameters have been performed 
over the appropriate bounded domain �max instead of [0,∞) . 
It is observed that for increasing values of �max , there is no 
significant change observed in the results. The stopping cri-
teria for the iterative process are

max{|y2(𝜂max) − 0|, |y4(𝜂max) − 0|, |y6(𝜂max) − 0|} < 𝜆,
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Fig. 3  The Nusselt number against M for different values of a Pr and b Ec 
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Fig. 4  The Nusselt number against Nt for different values of a n and b Bi 
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where � is a very small positive real number.

4.1  Validation of numerical scheme

For reliability and validation of the code, we reproduce the 
values of the skin friction coefficient reported by Ibrahim 
[20] and Fathizadeh et al. [29]. Our computations have an 
excellent agreement with the results, which can be seen in 
Table 1.

5  Results and discussion

5.1  The skin friction coefficient

Table 2 is presented to analyze the influence of the perti-
nent parameters on the skin friction coefficient CfRe

1∕2
x  . It is 

noticed that the escalating values of the magnetic number M 
enhance the skin friction coefficient, whereas an enhance-
ment in the power law index n, the Weissenberg number 

Table 3  Variation in the Nusselt number due to different values of Nt, n,We,Bi,Rd and � when M = 0.2,Ec = 0.2,Le = 5,Pr = 2,Nb = 0.5, � = 1

Nt n We Bi Rd �
NuxRe

−
1

2

x

0.1 0.2 0.1 2 1 0.1 0.600319
0.2 0.596317
0.3 0.582176
0.1 0.3 0.590424

0.4 0.566985
0.5 0.539507
0.2 0.2 0.609856

0.3 0.609055
0.4 0.608247
0.1 3 0.638866

4 0.653922
5 0.663282
2 2 0.771764

3 0.926169
4 1.079978
1 0.2 0.596530

0.3 0.583098
0.4 0.570309
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Fig. 5  The Sherwood number against Le for different values of a M and b n 
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We and the slip parameter reduces the surface drag coef-
ficient. Figure 2a, b is prepared to present the effect of (a) 
slip parameter � and (b) the power law index n on the skin 
friction coefficient via magnetic number M. It is concluded 
that the skin friction coefficient is enhanced when magnetic 
number M is increased, whereas it diminished for the grow-
ing values of the slip parameter � and the power law index n 
as shown in Fig. 2a, b.

5.2  The heat transfer rate

Table 3 is presented to investigate the effect of assorted 
parameters on the heat transfer rate or the Nusselt number 
NuxRe

−
1

2

x  . It is noticed that an acclivity in each of the ther-
mophoresis parameter Nt, the power law index n, the Weis-
senberg number We, small parameter � and the Biot number 
Bi, the rate of heat transfer is reduced, whereas an increment 
in the Nusselt number is observed for the growing values 
of the thermal radiation parameter Rd and the Biot number 
Bi. Figure 3a, b is prepared to present the effect of (a) the 
Prandtl number Pr and (b) the Eckert number Ec on the 
Nusselt number via the magnetic number M. It is evident 
from Fig. 3a that the heat transfer rate is declined for the 
higher values of the magnetic number M. However, it is 
enhanced for the increasing values of the Prandtl number Pr 
but deprecated as the Eckert number Ec is increased. Fig-
ure 4a, b is prepared to present the effect of (a) the power 
law index n and (b) the Biot number Bi on the Nusselt 

Table 4  Variation in the Sherwood number due to different values of n,We,Nt,Nb,Le, andBi when M = 0.2,Ec = 0.2, � = 0.1,Pr = 2,Rd = 0.8,

� = 1

n We Nt Nb Le Bi
− ShxRe

−
1

2

x

0.2 0.1 0.1 0.1 5 2 0.275271
0.3 0.265175
0.4 0.253244
0.2 0.2 0.274879

0.3 0.274485
0.4 0.274087
0.1 0.2 0.536442

0.3 0.793434
0.4 1.030463
0.1 0.2 0.139246

0.3 0.092831
0.4 0.069623
0.1 2 0.279867

4 0.278792
6 0.278263
5 2 0.275271

3 0.288654
4 0.295817

number via the thermophoresis parameter Nt. It is evident 
from the figures that the heat transfer rate is declined for 
the growing values of the thermophoresis parameter Nt and 
the power law index n but increases for the larger values of 
the Biot number Bi.

5.3  The mass transfer rate

Table 4 is prepared to analyze the Sherwood number ShxRe
−

1

2

x  
for the various emerging parameters. It is observed that the 
local Sherwood number is enhanced for each of the gradu-
ally boosting values of the Biot number Bi and the ther-
mophoresis parameter Nt while it is found to decrease as 
the values of the power law index n, the Weissenberg num-
ber We, the Brownian motion parameter Nb and the Lewis 
number Le. Figure 5a depicts that the Sherwood number is 
increased for the larger values of the Lewis number Le and 
the magnetic number M. Figure 5b is prepared to present the 
effect of the power law index n on the Sherwood number via 
the Lewis number Le. From this figure, it is clear that the 
rate of mass transfer is enhanced as the Lewis number Le 
and the power law index n is increased.

In order to execute the numerical simulations, the 
non-dimensional parameters are assigned fixed value as 
Pr = 2,Rd = 0.8,M = Ec = n = 0.2,Bi = 2, � = 0.1,Nt =

Nb = 0.5, Le = 5,We = � = 1 . For the whole study, these 
values remain constant except the varying parameter which 
is presented in the respective figure.
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5.4  Weissenberg number We

A qualitative analysis on the velocity, thermal and concen-
tration field with the Weissenberg number We are deline-
ated in Fig. 6a–c. Figure 6a represents the variation in the 
dimensionless velocity f �(�) due to the Weissenberg number 
We. The curves of this graph show that the velocity field 
is reduced as the value of the Weissenberg number We is 
gradually mounted. Physically, Weissenberg number is the 
ratio of relaxation time to the processing time. Larger value 
of We means an increase in relaxation time due to which 
the fluid motion is decreased, whereas the temperature and 
concentration field is enhanced as sketched in Fig. 6b, c.

5.5  Magnetic number M

Figure 7a–c portrays the impact of the magnetic number M 
on the velocity, temperature and concentration profile. An 
increment in the magnetic number means an increase in the 
Lorentz force which is opposing force, due to this reason the 
velocity and momentum boundary layer thickness is depre-
ciated as presented in Fig. 7a. Due to an increment in the 
magnitude of the opposing force also leads the temperature 
field to enhance as shown in Fig. 7b. It also verifies the 
general behavior of the magnetic effect. The energy field 
rises because the drag force is hiked up with the gradually 
mounting values of the magnetic number, as a result the 
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Fig. 6  Influence of We on a velocity, b temperature and c concentration profile
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resistance increases. Figure 7c represents the impact of M 
on the concentration field. From these curves, it is evident 
that escalating values of M results an enhancement in the 
concentration profile.

5.6  Power law index n

Figure 8a–c is sketched to display the variations in the 
velocity, temperature and concentration fields due to the 
power law index n. Figure 8a is presented to analyze the 
effect of the power law index n on velocity profile. The 
dimensionless velocity is declined for the escalating val-
ues of the power law index n. Figure 8b, c presents the 

variations in the temperature and the concentration fields 
due to n. An enhancement in the power law index n means 
an increment in the viscosity of the fluid. Due to this rea-
son, the velocity of the fluid is declined, whereas the tem-
perature and the concentration fields are enhanced.

5.7  Slip parameter ı

To visualize the behavior of the velocity, temperature and 
concentration profile due to variation in the slip parameter, 
Fig. 9a–c is presented. Figure 9a is presented to analyze the 
impact of the slip parameter � on fluid motion. The velocity 
field is declined for the growing values of � . Figure 9b, c 
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Fig. 7  Influence of M on a velocity, b temperature and c concentration profile
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is prepared to study the influence of � on temperature and 
concentration field. Both the thermal and the concentration 
profiles are escalated for gradually mounting values of �.

5.8  Biot number Bi

The impact of Biot number Bi on temperature and concen-
tration profile is sketched in Fig. 10a, b. The dimensionless 
temperature and the concentration fields both are enhanced 
for the growing values of Bi. Biot number represents the 
ratio between heat transfer resistance inside the body to 
the resistance at the surface of the body. Furthermore, if 
the Biot number is greater than 0.1 then heat convection 
through surface is quicker than heat conduction and the 
temperature gradients are significant. Increment in the Biot 

number means a reduction in the conductivity of the fluid 
due to which the temperature and the concentration profile 
is enhanced.

5.9  Prandtl number Pr

To analyze the influence of Pr on the temperature and the 
concentration field, Fig. 11a, b is sketched. Figure 11a 
reflects the influence of the Prandtl number Pr on the 
thermal profile. The curves of this figure indicate that an 
enhancement in Pr causes a decrement in the energy profile. 
It is due to the reason that the thermal conductivity declines 
with the enhancement in Pr, due to this reason the thermal 
and the concentration profiles are declined. This phenom-
enon is evident from Fig. 11b.
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5.10  Small parameter �

To illustrate the impact of the small parameter � which is asso-
ciated with the variable thermal conductivity, on the tempera-
ture and the concentration, Fig. 12a, b is drawn. Figure 12a 
shows that an acclivity in the small parameter � causes an 
increment in the temperature, whereas the concentration pro-
file is declined near the surface and is enhanced away from the 
surface. This phenomenon is evident from Fig. 12b.

5.11  Thermal radiation parameter Rd

Figure  13a, b is prepared to establish the influence of 
Rd on the temperature and the concentration field. The 

dimensionless temperature is upsurged as the thermal radia-
tion parameter Rd is hiked as shown in Fig. 13a. Physically, 
it strengthens the fact that more heat is produced due to 
the radiation process for which the radiation parameter is 
increased. Figure 13b displays the effect of Rd on concentra-
tion profile. Graphs of this figure show that the concentration 
profile is reduced near the surface but enhanced while mov-
ing away from the surface.

5.12  Eckert number Ec

The Eckert number Ec represents the viscous dissipation 
effect. It is a number that represents the relation between the 
kinetic energy and the enthalpy. Figure 14a is drawn to visu-
alize the impact of Ec on energy profile. It is observed that 
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Fig. 9  Influence of � on a velocity, b temperature and c concentration profile
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an increment in Ec causes an acclivity in the thermal profile. 
Physically, the thermal conductivity of the fluid improves 
as the dissipation is increased which helps to enhance the 
thermal boundary layer thickness. Figure 14b divulges the 
concentration distributions for the boosting values of Ec. 
The concentration field appears to be an increasing function 
of Ec. It is worth mentioning that both the Eckert number 
and the Weissenberg number are the functions of x; there-
fore, there results are locally similar.

5.13  Thermophoresis parameter Nt

In the boundary layer region thermophoresis parameter Nt 
plays a vital role in the energy and the concentration profile. 
These effects are captured in Fig. 15a, b. From these figures, 
it is clear that for gradually increasing values of Nt both 
temperature and concentration profile is increased. Physi-
cally, in themophoresis the particles apply a force on the 
other particles due to which these particles move from the 
hotter region to the colder region. Therefore, an increment in 
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the values of the thermophoresis parameter Nt means more 
application of the force on the other particles and as a result 
more fluid moves from the hotter region to the colder region. 
As a result, an increment in the temperature and the nano-
particles concentration is noticed.

6  Final remarks

In the present article, features of the velocity, temperature 
and concentration profiles affected by various pertinent 
parameters are investigated in detail. The features findings 
of the investigation are enumerated below:

• The velocity distribution decreases for the large value of 
the velocity slip parameter � and the power law index n.

• An increment in the temperature field is observed for the 
growing values of each of the velocity slip parameter � , 
the small parameter � associated with thermal conductiv-
ity, the Eckert number Ec and the Biot number Bi.

• A increment in the concentration field is noticed for grad-
ually mounting values of each of the power law index n, 
the velocity slip parameter � , the Eckert number Ec, the 
Biot number Bi.
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