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Abstract
Here, axisymmetric flow of Jeffrey fluid by a rotating disk with variable thicked surface is studied. Heat transfer is discussed 
through Cattaneo–Christov heat flux model. Transformation procedure has been adopted in obtaining ordinary differential 
systems. Convergent series solutions are obtained. Flow, temperature and skin friction coefficient for various parameters of 
interest are graphically illustrated. The radial and tangential velocities are increasing functions of Deborah number.
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1  Introduction

Non-Newtonian fluid has significant applications in indus-
trial and technological processes. It plays a great role in 
food processing, suspensions, certain oils, lubrications, 
nourishment preparing, polymer, biomechanics, manu-
facturing of paints and emulsions, etc. Non-Newtonian 
fluids are much complex because of additional rheologi-
cal parameters in constitutive relationship. Materials like 
soap solutions, ketchup, blood, apple sauce are common 
examples of non-Newtonian fluids. Classifications of non-
Newtonian fluids are through integral, rate and differential 
types. Jeffrey fluid describes the phenomenon of relaxation 
and retardation times. Narayana and Babu [1] investigated 
stretched flow of Jeffrey fluid with magnetohydrodynam-
ics and thermal radiation. Turkyilmazoglu [2] described 
magnetic field and slip effects on the flow and heat transfer 
of stagnation point Jeffrey fluid over deformable surfaces. 
Abbasi et al. [3] presented convective flow of Jeffrey fluid 

in the presence of thermal radiation and magnetohydro-
dynamics (MHD). Shehzad et al. [4] scrutinized MHD 
radiative flow of Jeffrey fluid. Heat transfer in MHD flow 
of Jeffrey fluid over a stretching sheet is inspected by Zee-
shan and Majeed [5]. Dalir [6] focused on stretched flow 
of Jeffrey fluid with entropy generation. Turkyilmazoglu 
and Pop [7] analyzed stagnation point flow of Jeffrey fluid. 
Hayat et al. [8] described three-dimensional flow of Jeffrey 
fluid due to a stretching surface.

Flow due to rotating surfaces has promising applications 
in engineering and industrial sectors such as lubrication, 
air cleaning machine, electric power generating system, 
turbo machinery, gas turbine, food processing technology 
and centrifugal machinery. Flow due to rotating disk is 
initially studied by Karman [9]. He provided von Karman 
transformations to convert Navier–Stokes equations into 
ordinary differential equations. Ming et al. [10] worked 
on steady flow and heat transfer of the power law fluid 
over a rotating disk. Rotating flow of nanofluid with heat 
transfer is illustrated by Turkyilmazoglu [11]. Bayat et al. 
[12] investigated magneto-thermo-mechanical response in 
a functionally graded annular over a rotating disk. Sheik-
holeslami et al. [13] analyzed nanofluid flow due to a rotat-
ing disk. Rotating flow of Jeffrey fluid with magnetohydro-
dynamics is done by Hayat et al. [14]. Turkyilmazoglu [15] 
studied flow and heat transfer due to a rotating disk. Hayat 
et al. [16] presented influence of Cattaneo–Christov heat 
flux in flow of Jeffrey fluid due to a rotating disk. Saidi and 
Tamim [17] examined unsteady flow of nanofluid between 
two rotating disks. Flow of Ostwald–de Waele fluid with 
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heat transfer analysis by a rotating disk is studied by Xun 
et al. [18].

The phenomenon of heat transfer has numerous applica-
tions in industry and engineering processes, e.g., nuclear 
reactor cooling, energy production, cooling of electronic 
devices, transportations, micro electronics and fuel cells, 
etc. Heat transfer phenomenon was successfully presented 
by Fourier heat conduction law [19]. This model has some 
limitations that whole medium is sensed instantly by the 
initial disturbance (main drawback of this model). This 
unrealistic argument is named as “paradox of heat conduc-
tion”. In order to resolve this problem, Cattaneo [20] pro-
posed Fourier law of heat conduction by adding a thermal 
relaxation time. Christov [21] further worked on Cattaneo’s 
model by introducing Oldroyd upper convectived derivative. 
Impact of Cattaneo–Christov heat flux model in the flow 
of viscoelastic fluid is illustrated by Tibullo and Zampoli 
[22]. Han et al. [23] described flow of viscoelastic fluid in 
the existence of Cattaneo–Christov heat flux model. Hayat 
et al. [24] examined effects of magnetohydrodynamic in the 
flow of Oldroyd-B fluid with Cattaneo–Christov heat flux 
model. Analysis of heat transfer through Cattaneo–Christov 
heat flux model in nanofluid flow by a stretched surface is 
studied by Sui et al. [25]. Mustafa [26] discussed rotating 
flow of Maxwell fluid in the presence of Cattaneo–Christov 
heat flux model. Li et al. [27] presented influence of Catta-
neo–Christov heat flux model in viscoelastic fluid flow due 
to a stretching sheet.

Present analysis examines the axisymmetric three-dimen-
sional flow of Jeffrey fluid due to a rotating disk with vari-
able thickness. Heat transfer analysis is examined by Cat-
taneo–Christov heat flux. Solution expressions of nonlinear 
problem are obtained by homotopy analysis method [28–35]. 
Influence of various involved parameters on axial, radial and 
tangential velocities, temperature and surface drag force is 
discussed graphically.

2 � Model development

Here, we have an interest to examine flow of Jeffrey fluid by 
a disk with variable thickness. Disk rotates with constant 
angular velocity Ω . Temperatures at disk and away from it 
are denoted by Tw and T∞ (see Fig. 1). The resulting equa-
tions for flow and thermal fields [18] are

(1)
�u

�r
+

u

r
+

�w

�z
= 0,

with

where u(r, �, z), v (r, �, z) and w(r, �, z) are components of 
velocity � , � denotes the kinematic viscosity, � the dynamic 
viscosity, � the density of fluid, m the disk thickness index, 
R0 the dimensional constant, Cp the specific heat, a the thick-
ness coefficient of disk, �1 the ratio of relaxation to retar-
dation times and �2 the retardation time. Here, heat flux � 
obeys

in which k and � elucidate the thermal conductivity and 
relaxation time. Incompressible situation leads to
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,

(4)�Cp

(

u
�T

�r
+ w

�T

�z

)

= −�.�,

(5)
u = 0, v = Ωr,w = 0, T = Tw at z = a

(

r

R0

+ 1

)−m

,

u = 0, v = 0, T = T∞ when z → ∞,

(6)� + �

(

��

�t
+ �.∇� − �.∇� + (∇.�)�

)

= − k∇T ,

Fig. 1   Flow geometry
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Expressions (4) and (7) give

Following transformations

Using Eq. (9), Eqs. (1–3) and (8) become

Letting

we have

(7)� + �

(

��

�t
+ �.∇� − �.∇�

)

= − k∇T ,

(8)

u
�T
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+ w
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�z
=

k
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�2T

�z2
− �

[
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.

(9)

u = rΩF(�), v = rΩG(�),w = −R0Ω

(

1 +
r
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)−m
(
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0
�
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1
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z
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0
�

�

)
1

n+1(

1 +
r

R0

)m

,Θ =
T − T∞

Tw − T∞
.

(10)J� + 2F + m��F� = 0,

(11)

Re
1−n

1+n (1 + r
∗)2mF�� + �Re

1−n

1+n (1 + r
∗)2m

(
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�
F
��
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2 + JF
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(12)

Re
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∗)2mG�� + �Re

1−n

1+n (1 + r
∗)2m

(

2FG�� + 4m�FG�� + 2m��FG��� − 2JG���

+F�
G
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G

� + m��F�
G

�� − J
�
G

��
)

−(1 + �1)(2FG + JG
� + m��FG�) = 0,

(13)

1

Pr
Re

1−n

1+n (1 + r
∗)2mΘ�� − �

(

m(m − 1)��2F2Θ��

+J2Θ�� + m�JFΘ� + m��F2Θ�

+m
2�2�2FF�Θ� + m��JF�Θ� + m�r∗FJ�Θ� + JJ

�Θ
)

−m��FΘ� − JΘ� = 0,

(14)
F(�) = 0,G(�) = 1, J(�) = 0,Θ(�) = 1,

F(∞) = 0,G(∞) = 0,Θ(∞) = 0.

(15)
j(�) = j(� − �) = J(�), f (�) = f (� − �) = F(�)

g(�) = g(� − �) = G(�), �(�) = �(� − �) = Θ(�),

(16)j� + 2f + m(� + �)�f � = 0,

with

Here, Re depicts the Reynolds number, � the dimension-
less coefficient of disk, � the dimensionless constant, r∗ the 
radius parameter, Pr the Prandtl number, � the nondimen-
sional thermal relaxation parameter, � the Deborah number 
and n the power law exponent of fluid. Also, (f, g,  j and �) 
are dimensionless (radial, tangential and axial) velocities 
and temperature.

Skin friction coefficient in radial and axial directions are

in which radial shear stress (�wr) and tangential shear stress 
(�w�) satisfy

Radial and tangential skin friction coefficients are

(17)

Re
1−n
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(
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3 � Solutions procedure

Initial guesses j0(�), f0(�), g0(�) and �0(�) are

where linear operators j , f  , g and � are

with

in which ci (i = 1 − 7) denote the constants.

3.1 � Zeroth‑order deformation problems

Considering p ∈ [0, 1] as embedding and ( ℏj, ℏf , ℏg and ℏ�) 
the nonzero auxiliary parameters, then zeroth-order defor-
mation problems are

(25)j0(�) = 0, f0(�) = 0, g0(�) = e−� , �0(�) = e−� ,

(26)j = j�,f = f �� − f ,g = g�� − g,� = ��� − �.

(27)

j[c1] = 0,

f

[

c2e
� + c3e

−�
]

= 0,

g[c4e
� + c5e

−�] = 0,

�

[

c6e
� + c7e

−�
]

= 0,

(28)(1 − p)j

[

𝚥(𝜉, p) − j0(𝜉)
]

= p�jj[𝚥(𝜉, p), f̂ (𝜉, p)],

(29)(1 − p)f

[

f̂ (𝜉, p) − f0(𝜉)
]

= p�ff [f̂ (𝜉, p), ĝ(𝜉, p)],

(30)(1 − p)g

[

ĝ(𝜉, p) − g0(𝜉)
]

= p�gg[f̂ (𝜉, p), ĝ(𝜉, p)],

(31)
(1 − p)𝜃

[

𝜃̂(𝜉, p) − 𝜃0(𝜉)
]

= p�𝜃𝜃[𝜃̂(𝜉, p), f̂ (𝜉, p), 𝚥(𝜉, p)],

(32)

j

[

𝚥(𝜉, p), f̂ (𝜉, p)
]

=
𝜕𝚥(𝜉, p)

𝜕𝜉
+ 2f̂ (𝜉, p) + m(𝜉 + 𝛼)𝜖

𝜕f̂ (𝜉, p)

𝜕𝜉
,

(33)

f

[
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]
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𝜕𝜉2
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𝜕3 f̂ (𝜉, p)

𝜕𝜉3

−2𝚥(𝜉, p)
𝜕3 f̂ (𝜉, p)

𝜕𝜉3

+

(

𝜕f̂ (𝜉, p)

𝜕𝜉

)2

+ 𝜖

(

𝜕f̂ (𝜉, p)

𝜕𝜉

)2

+ m(𝜉 + 𝛼)𝜖
𝜕f̂ (𝜉, p)

𝜕𝜉

𝜕2 f̂ (𝜉, p)

𝜕𝜉2

−
𝜕𝚥(𝜉, p)

𝜕𝜉

𝜕2 f̂ (𝜉, p)

𝜕𝜉2

)

−
(

1 + 𝜆1
)

(

(

𝜕f̂ (𝜉, p)

𝜕𝜉

)2

−

(

𝜕ĝ(𝜉, p)

𝜕𝜉

)2

+𝚥(𝜉, p)
𝜕f̂ (𝜉, p)

𝜕𝜉
+ m(𝜉 + 𝛼)𝜖f̂ (𝜉, p)

𝜕f̂ (𝜉, p)

𝜕𝜉

)

,

3.2 � mth order deformation problems

The corresponding problem statements are

(34)

g

[

f̂ (𝜉, p), ĝ(𝜉, p)
]

= Re
1−n
1+n (1 + r∗)2m

𝜕2ĝ(𝜉, p)

𝜕𝜉2

+ 𝛽Re
1−n
1+n (1 + r∗)2m

(

2f̂ (𝜉, p)
𝜕2ĝ(𝜉, p)

𝜕𝜉2

+ 4m𝜖f̂ (𝜉, p)
𝜕2ĝ(𝜉, p)

𝜕𝜉2
+ 2m𝜖(𝜉 + 𝛼)f̂ (𝜉, p)

𝜕3ĝ(𝜉, p)

𝜕𝜉3

−2𝚥(𝜉, p)
𝜕3ĝ(𝜉, p)

𝜕𝜉3

+
𝜕f̂ (𝜉, p)

𝜕𝜉

𝜕ĝ(𝜉, p)

𝜕𝜉
+ 𝜖

𝜕f̂ (𝜉, p)

𝜕𝜉

𝜕ĝ(𝜉, p)

𝜕𝜉
+ m(𝜉 + 𝛼)𝜖

𝜕f̂ (𝜉, p)

𝜕𝜉

𝜕2ĝ(𝜉, p)

𝜕𝜉2

−
𝜕𝚥(𝜉, p)

𝜕𝜉

𝜕2ĝ(𝜉, p)

𝜕𝜉2

)

−
(

1 + 𝜆1
)

(

2f̂ (𝜉, p)ĝ(𝜉, p) + 𝚥(𝜉, p)
𝜕ĝ(𝜉, p)

𝜕𝜉

+m(𝜉 + 𝛼)𝜖f̂ (𝜉, q)
𝜕ĝ(𝜉, p)

𝜕𝜉

)

,

(35)

𝜃

[

𝜃̂(𝜉, p), f̂ (𝜉, p), 𝚥(𝜉, p)
]

=
1

Pr
Re

1−n

1+n (1 + r∗)2m
𝜕2𝜃̂(𝜉, p)

𝜕𝜉2

− 𝛾

(

m(m − 1)(𝜉 + 𝛼)𝜖2
(

f̂ (𝜉, q)
)2 𝜕2𝜃̂(𝜉, p)

𝜕𝜉2

+(𝚥(𝜉, p))2
𝜕2𝜃̂(𝜉, p)

𝜕𝜉2
+ m𝜖𝚥(𝜉, p)f̂ (𝜉, p)

𝜕𝜃̂(𝜉, p)

𝜕𝜉
+ m(𝜉 + 𝛼)𝜖

(

f̂ (𝜉, q)
)2

𝜕𝜃̂(𝜉, p)

𝜕𝜉
+ m2(𝜉 + 𝛼)𝜖2 f̂ (𝜉, q)

𝜕f̂ (𝜉, p)

𝜕𝜉

𝜕𝜃̂(𝜉, p)

𝜕𝜉
+ m(𝜉 + 𝛼)𝜖𝚥(𝜉, p)

𝜕f̂ (𝜉, p)

𝜕𝜉

𝜕𝜃̂(𝜉, p)

𝜕𝜉
+ m(𝜉 + 𝛼)r∗ f̂ (𝜉, q)

𝜕𝚥(𝜉, p)

𝜕𝜉

𝜕𝜃̂(𝜉, p)

𝜕𝜉
+ 𝚥(𝜉, p)

𝜕𝚥(𝜉, p)

𝜕𝜉
𝜃̂(𝜉, p)

)

− m(𝜉 + 𝛼)𝜖f̂ (𝜉, q)
𝜕𝜃̂(𝜉, p)

𝜕𝜉
− 𝚥(𝜉, p)

𝜕𝜃̂(𝜉, p)

𝜕𝜉
,

(36)
𝚥(0, p) = 0, f̂ (0, p) = 0, ĝ(0, p) = 1, 𝜃̂(0, p) = 1,

f̂ (∞, p) = 0, ĝ(∞, p) = 0, 𝜃̂(∞, p) = 0.

(37)f

[

jm(�) − �mjm−1(�)
]

= ℏjj,m(�),

(38)f

[

fm(�) − �mfm−1(�)
]

= ℏff ,m(�),

(39)g

[

gm(�) − �mgm−1(�)
]

= ℏgg,m(�),

(40)�

[

�m(�) − �m�m−1(�)
]

= ℏ��,m(�),

(41)j,m(�) = j�
m−1

+ 2fm−1 + m(� + �)�f �
m−1

,



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:149	

1 3

Page 5 of 12  149

The general solutions (jm, fm, gm, �m) with particular values 
(j∗
m
, f ∗

m
, g∗

m
, �∗

m
) are

(42)

f ,m(�) = Re
1−n

1+n (1 + r∗)2mf ��
m−1

+ �Re
1−n

1+n (1 + r∗)2m

m−1
∑

k=0

[

2fm−1−kf
��

k
+ 4m�fm−1−kf

��

k

+ 2m��fm−1−kf
���

k
− 2jm−1−kf

���
k

+ f �
m−1−k

f �
k

+�f �
m−1−k

f �
k
+ m��f �

m−1−k
f ��
k

− j�
m−1−k

f ��
k

]

+
(

1 + �1
)

m−1
∑

k=0

[

−f �
m−1−k

f �
k
+ g�

m−1−k
g�
k
− jm−1−kf

�
k

]

− m(� + �)
(

1 + �1
)

�

m−1
∑

k=0

[

fm−1−kf
�
k

]

,

(43)

g,m(�) = Re
1−n

1+n (1 + r∗)2mg��
m−1

+ �Re
1−n

1+n (1 + r∗)2m

m−1
∑

k=0

[

2fm−1−kg
��
k
+ 4m�fm−1−kg

��
k

+ 2m��fm−1−kg
���
k
− 2jm−1−kg

���
k
+ f �

m−1−k
g�
k
+ m�f �

m−1−k
g�
k

+m��f �
m−1−k

g��
k

− j�
m−1−k

g��
k

]

+
(

1 + �1
)

+

m−1
∑

k=0

[

−2fm−1−kgk + jm−1−kg
�
k

]

− m(� + �)�

m−1
∑

k=0

[

fm−1−kg
�
k

]

,

(44)

�,m(�) =
1

Pr
Re

1−n

1+n (1 + r∗)2m���
m−1

− m(� + �)�

m−1
∑

k=0

��
m−1−k

fk −

m−1
∑

k=0

��
m−1−k

jk

− �

(

���
m−1−l

l
∑

h=0

[m(m − 1)(� + �)�2fl−hfh + jl−hjh]

+�
�

m−1−l

l
∑

h=0

[m�jl−hfh

+m(� + �)�fl−hfhm
2(� + �)�2fl−hf

�
h

+m(� + �)�jl−hf
�
h
+ m(� + �)r∗fl−hj

�
h

]

+ �m−1−l

l
∑

h=0

jl−hj
�
h

)

,

(45)
fm(0) = fm(∞) = gm(0) = gm(∞) = jm(0) = �m(0) = �m(∞) = 0,

(46)𝜒m =

{

0, m ≤ 1

1, m > 1
.

(47)jm(�) = j∗
m
(�) + c1,

(48)fm(�) = f ∗
m
(�) + c2e

−� + c3e
� ,

(49)gm(�) = g∗
m
(�) + c4e

−� + c5e
� ,

(50)�m(�) = �∗
m
(�) + c6e

−� + c7e
� .

Fig. 2   ℏ-curve for j�(0) when m = 1.0, � = 0.15 , Re = 1.0, n = 1.1, 
� = 0.4, r∗ = 0.2, Pr = 1.5 , � = 0.6, �1 = 0.5 and � = 0.25

Fig. 3   ℏ-curve for f ��(0) when m = 1.0, � = 0.15 , Re = 1.0, n = 1.1, 
� = 0.4, r∗ = 0.2, Pr = 1.5 , � = 0.6 �1 = 0.5 and � = 0.25

Fig. 4   ℏ-curve for g�(0) when m = 1.0, � = 0.15 , Re = 1.0, n = 1.1, 
� = 0.4, r∗ = 0.2, Pr = 1.5 , � = 0.6 �1 = 0.5 and � = 0.25
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4 � Analysis

4.1 � Convergence of derived series solutions

The region of convergence of series solutions can be 
adjusted with the help of auxiliary parameters ℏj, ℏf , ℏg and 
ℏ� . For this reason, we have plotted ℏ-curves (see Figs. 2, 3, 
4 and 5 ) of j�(0), f ��(0), g�(0) and ��(0) . Appropriate ranges 
of auxiliary parameters ℏj , ℏf , ℏg and ℏ� are [− 1.49,− 0.3], 
[− 1.15,− 0.4] , [− 1.3,− 0.65] and [− 0.9,− 0.4], respectively. 

Convergence of HAM solutions for different order of 
approximations is given in Table 1. Table 2 is constructed 
to compare our results with the previous published Refs. [10, 
18], and the results are found in excellent agreement

Fig. 5   ℏ-curve for ��(0) when m = 1.0, � = 0.15 , Re = 1.0, n = 1.1, 
� = 0.4, r∗ = 0.2, Pr = 1.5 , � = 0.6 �1 = 0.5 and � = 0.25

Table 1   Convergence of HAM solutions for different order of 
approximations when m = 1.0, � = 0.15 , Re = 1.0, n = 1.1, � = 0.4, 
r
∗ = 0.2, Pr = 1.5 , � = 0.6, �1 = 0.5 and � = 0.25

Order of approxi-
mations

−j�(0) −f ��(0) −g�(0) −��(0)

1 0 1.43 0.520 0.776
2 0.0321 0.901 0.544 0.650
5 0.0304 1.12 0.558 0.509
11 0.0327 1.13 0.619 0.462
13 0.0324 1.13 0.621 0.460
16 0.0321 1.12 0.621 0.460
20 0.0321 1.12 0.621 0.460
25 0.0321 1.12 0.621 0.460
30 0.0321 1.12 0.621 0.460
40 0.0321 1.12 0.621 0.460
50 0.0321 1.12 0.621 0.460

Table 2   Comparison of the present solutions with the results in Refs. 
[10, 18] for n = Pr = 1 , m = � = � = �1 = � = 0

Author f �(0) −g�(0) −��(0)

Present 0.51021 0.61592 0.39631
Ming et al. [10] 0.51021 0.61591 0.39632
Xun et al. [18] 0.510231 0.615921 0.396271

Fig. 6   Impact of m on axial velocity

Fig. 7   Impact of � on axial velocity

Fig. 8   Impact of � on axial velocity
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4.2 � Discussion

4.2.1 � Axial velocity profile

Figure 6 analyzes the impact of disk thickness index m on 
axial velocity profile. Here, magnitude of velocity field 
decreases for rising values of m . Influence of thickness 
coefficient of disk � on axial velocity profile is shown in 
Fig. 7. Here, magnitude of velocity profile increases for 
increasing values of �. Figure 8 is plotted to show the 
impact of � on axial velocity profile. Here, axial velocity 
decays for higher values of �.

4.2.2 � Radial velocity profile

Influence of power law exponent of fluid n on radial 
velocity is sketched in Fig. 9. Radial velocity increases 
for ascending values of n. Thickness of disk decreases for 

increasing values of n which enhances the fluid veloc-
ity. Figure 10 demonstrates the impact of thickness index 
parameter m on radial velocity field. Here, radial velocity 
profile enhances for ascending values of m. Variations of 
� and � on radial velocity are plotted in Figs. 11 and 12. 

Fig. 9   Impact of n on radial velocity

Fig. 10   Impact of m on radial velocity

Fig. 11   Impact of � on radial velocity

Fig. 12   Impact of � on radial velocity

Fig. 13   Impact of Re on radial velocity
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It is seen that velocity rises for increasing values of � and 
�. Figure 13 depicts the behavior of Re on radial veloc-
ity profile. Velocity profile shows increasing behavior 
of Re. It is due to the fact that viscosity decays for larger 
values of Re which enhances the fluid velocity. Figure 14 

analyzes the increasing behavior of �1 on radial veloc-
ity profile. It is observed that boundary layer thickness 
rises when �1 is enhanced. It is seen from Fig. 15 that 
radial velocity has direct relation with Deborah number 
� . Boundary layer thickness and velocity profile enhance 

Fig. 14   Impact of �1 on radial velocity

Fig. 15   Impact of � on radial velocity

Fig. 16   Impact of m on tangential velocity

Fig. 17   Impact of � on tangential velocity

Fig. 18   Impact of Re on tangential velocity

Fig. 19   Impact of �1 on tangential velocity
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for larger � . As expected, increasing values of retardation 
time enhance the elasticity.

4.2.3 � Tangential velocity profile

Figures 16 and 17 show distribution of tangential velocity 
profile g(�) for larger values of thickness index parameter 
m and constant � . It is observed that tangential velocity 
enhances for ascending values of m and constant � . Fig-
ure 18 is plotted to demonstrate the impact of Re on tan-
gential velocity. Here, tangential velocity field rises when 
Re is enlarged. Higher values of Re decrease the viscosity, 
and thus, fluid velocity enhances. Variation in tangential 
velocity for larger values of �1 is characterized in Fig. 19. 
We observed that tangential velocity declines for increasing 
values of �1. Since relaxation time increases corresponding 
to larger �1,particles need more time to come back to equilib-
rium system from perturbed system. As a consequence fluid 
velocity decreases. Increment in tangential velocity profile 
for increasing values of Deborah number � is displayed in 

Fig. 20. Tangential velocity increases for rising values of � . 
Fluid velocity and boundary layer thickness are enhanced 
for increasing values of �.

Fig. 20   Impact of � on tangential velocity

Fig. 21   Impact of n on �(�)

Fig. 22   Impact of m on �(�)

Fig. 23   Impact of � on �(�)

Fig. 24   Impact of � on �(�)
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4.2.4 � Dimensionless temperature profile

Figure 21 discloses the behavior of power law exponent n 
on temperature field. Temperature of fluid enhances for 
larger values of n. Figure 22 reveals the variation of index 

parameter m on temperature. Here, increase in m enlarges 
temperature distribution. Influence of thickness coeffi-
cient of disk � on temperature is indicated in Fig. 23. 
Temperature distribution rises corresponding to higher 
values of � . Figure 24 illustrates the variation of � on 

Fig. 25   Impact of Re on �(�)

Fig. 26   Impact of r∗ on �(�)

Fig. 27   Impact of Pr on �(�)

Fig. 28   Impact of � on �(�)

Fig. 29   Behavior of m on Re
n

n+1 Cfr

Fig. 30   Behavior of �1 on Re
n

n+1 Cfr
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temperature field. It is seen that temperature is increas-
ing function of �. Figures 25 and 26 analyze the increas-
ing behavior of Re and r∗ on temperature distribution. 
Impact of Prandtl number Pr on temperature distribution 
is presented in Fig. 27. Here, temperature profile reduces 
when Pr is enhanced. Prandtl number is ratio of momen-
tum diffusivity to thermal diffusivity. Larger values of 
Prandtl number reduce the thermal diffusivity, and so, 
temperature distribution decreases. Figure 28 portrays the 
influence of thermal relaxation parameter on tempera-
ture profile. For higher values of � the temperature and 
thermal layer thickness reduced. In fact, particles require 
more time to transfer heat which decreases the tempera-
ture distribution.

4.2.5 � Radial skin friction coefficient

Behavior of thickness index parameter m (via n) on radial 
skin friction coefficient is examined in Fig. 29. Surface drag 
force enhances for larger m. Figure 30 illustrates the impact 
of �1 on radial skin friction coefficient against Re . Here, 
surface drag force rises for ascending values of �1.

4.2.6 � Tangential skin friction coefficient

Figures 31 and 32 reveal the impact of � and � on tangential 
skin friction coefficient. Here, we noticed that magnitude 
of skin surface drag force decreases for ascending values 
of � and �.

5 � Concluding remarks

Axisymmetric flow of Jeffrey fluid by a rotating disk with 
variable thicked surface is studied. Heat transfer is discussed 
through Cattaneo–Christov heat flux model. HAM is used 
to obtain analytical solutions. It is observed that for larger 
values of the ratio of relaxation to retardation times �1, the 
velocity along radial direction increases, while it reduces 
along tangential direction. Radial and tangential velocities 
have direct relation with Deborah number �. An increase 
in retardation time enhances elasticity. Since elasticity and 
viscosity effects are inversely proportional to each other, 
decrease in viscosity enhances the fluid velocity. For larger 
thermal relaxation time parameter, particles require more 
time to transfer heat which decreases the temperature distri-
bution. Higher thickness index of disk m implies an enhance-
ment in the skin friction coefficient in redial direction.
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