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Abstract
The aim of this article is to investigate the heat and mass diffusion (Cattaneo–Christov model) of the upper convected 
Maxwell nanomaterials passed by a linear stretched surface (slip surface) near the stagnation point region. Convocational 
Fourier’s and Fick’s laws are employed to investigate heat and mass diffusion phenomena. Using the similarity transforma-
tions, the governing PDEs are rendered into ODEs along with boundary conditions. The boundary value problem is solved 
numerically using RK-4 method along with shooting technique (Cash and Karp). The effects of embedded parameters, 
namely fluid relaxation parameter, Hartmann number, Brownian moment, thermophoresis parameter, thermal relaxation 
parameter, Lewis number, chemical reactions concentration relaxation parameter, and slip parameter on velocity, temperature, 
and concentration distributions, are deliberated through the graphs and discussed numerically. The skin friction coefficient 
is deliberated numerically, and their numerical values are accessible through graphs and table. The comparison of current 
article is calculated in the last section, and a good agreement is clear with the existing literature.

Keywords Maxwell nanofluid · Generalized Fourier’s and Fick’s laws · Slip conditions · Stagnation point · Chemical 
reaction · Shooting method

1 Introduction

Nanotechnology has important interest in manufacturing, 
aerospace, and medical industries. The term nanofluid was 
generated by Choi [1] in 1995, designated as fluids that 
contain solid nanoparticles having 1–100 nm size dispersed 
in the base fluids, namely ethylene, water, toluene, oil, etc. 
Nanoparticles such as coppers, silicone, aluminum, and 
titanium tend to improve the thermal conductivity and con-
vective heat assignment rate of liquids. Impact of variable 
viscosity on flow of non-Newtonian material with convective 

conditions over a porous medium is investigated by Rundora 
et al. [2]. Babu and Sandeep [3] discussed the numerical 
solution on MHD nanomaterials over a variable thickness of 
the surface along with thermophoresis and Brownian motion 
effects. Haiao [4] presented the numerical solution of mag-
netohydrodynamic micropolar fluid flow with the addition 
of nanomaterials toward a stretching sheet with viscous 
dissipation. Mahdavi et al. [5] illustrated the slip velocity 
along with multiphase approach of nanofluids. Xun et al. 
[6] obtained the numerical solution of bioconvection heat 
flow nanofluid flow over a rotating plate with temperature-
based viscosity. Khan et al. [7] numerically analyzed heat 
and mass diffusion in Jeffery nanofluid passed by inclined 
stretching surface. Lebon and Machrafi [8] analyzed the 
two-phase change in Maxwell nanofluid flow along with 
thermodynamic description. Ansari et al. [9] investigated 
the comprehensive analysis in order to calculate the rela-
tive viscosity of nanofluids. Khan et al. [10] considered the 
chemical reaction on Carreau–Yasuda nanomaterials over a 
nonlinear stretching surface.

Magnetohydrodynamic (MHD) flow of heat and mass trans-
fer Maxwell fluid flow over a continuous stretching surface has 
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great significance in several applications in engineering such 
as melts, aerodynamics extrusion of plastic sheet, geothermal 
extractions, and purification of molten metals. Numerous 
researchers have made great interest and evaluated the trans-
port phenomena for magnetohydrodynamic. Zhao et al. [11] 
solve the differential equations labeling MHD Maxwell fluid 
in permeable sheet by considering Dufour and Soret impact. 
Hsiao [12] investigated the combined effects of thermal extrac-
tion on MHD Maxwell fluid over stretching surface with vis-
cous dissipation and energy conversion. Ghasemi and Siavashi 
[13] demonstrated the Cu–water MHD nanofluid in square 
permeable surface with entropy generation. Nourazar et al. 
[14] illustrated the heat transfer in flow of single-phase nano-
fluid toward a stretching cylinder with magnetic field effect. 
Dogonchi and Ganji [15] addressed the unsteady squeezed 
MHD nanofluid flow over two parallel plates with solar radia-
tion. Hayat et al. [16] investigated the heat and mass diffusion 
for stagnation point flow toward a linear stretching surface 
along with magnetic field. Sayyed et al. [17] investigated the 
analytical solution of MHD Newtonian fluid flow over a wedge 
occupied in a permeable sheet. Representative analyses on 
MHD flow can be seen in Refs. [18–20].

The Maxwell model is a subclass of rate-type fluids, 
which calculates stress relaxation so it has become popu-
lar. This model also eliminates the complicating behavior 
of shear-dependent viscosity and is thus useful for focusing 
exclusively on the impact of a fluid’s elasticity on the charac-
teristics of its boundary layer. Nadeem et al. [21] deliberated 
the numerical study on heat transfer of Maxwell nanofluid 
flow over a linear stretching sheet. Reddy et al. [22] studied 
the approximate solution of magnetohydrodynamic Max-
well nanofluid flow over exponentially stretching surface. 
Liu [23] indicated the 2D flow of frictional Maxwell fluid 
over a variable thickness. Solution of the differential equa-
tions was obtained numerically here by L1 technique. Yang 
et al. [24] considered the fractional Maxwell fluid through a 
rectangular microchannel.

Inspired by the above studies, the current study illustrates 
the MHD Maxwell nanofluid flow over a linearly stretched 
sheet near the stagnation point and slip boundary conditions. 
Fourier’s and Fick’s laws are presented in the constitutive 
relations. The nonlinear ODEs are deduced from the non-
linear PDEs by similarity transaction. The solutions are 
obtained via shooting method (Cash and Karp). The differ-
ent involved physical parameters are examined for velocity, 
concentration, and temperature fields.

2  Mathematical formulation

Let us consider two-dimensional laminar steady heat and 
mass transfer flow of an electrically conducting Maxwell 
nanofluid flow passed by a linear stretched surface placed 

along x-axis and y-axis vertical to the sheet with stagnation 
point at the origin (as illustrated in Fig. 1). The free stream 
velocity � = �e(�) = �� and the velocity via which sheet is 
stretched are � = �w(�) = �� , where a and c are positive 
constants. The temperature at the surface is conserved at 
Tw and T∞ far away from the plate; in similar a manner, the 
nanoparticle volume fractions are Cw and C∞ . An external 
magnetic field H0 is applied normal to the sheet.

Under the above assumptions, the required equations are 
as follows:

where � is the density, �e is the magnetic permeability veloc-
ity, � is the electrical conductivity, � is the Maxwell fluid 
parameter, and � is the kinematic viscosity. Due to hydro-
static and magnetic pressure gradient, the force will be in 
equilibrium as given by

Hence, Eq. (2) becomes
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Fig. 1  Geometry of the problem
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The classical form of Fourier’s and Fick’s laws with the 
ray of Cattaneo–Christov equations takes the following 
form:

Assume that ∇.q = 0, ∇.J = 0, and for steady state 
�q

�t
= 0,

�J

�t
= 0, the new equations become:

Now in component form, energy and concentration 
Eqs. (7) and (8) take the following form:

where �x =
�

�x
 and �y =

�

�y
.

The specified boundary conditions of the current prob-
lem take the form

Here ( u, v ) are the velocity components along the 
( x, y ) directions, q , J are the normal heat and mass flux, 
respectively, kf  represents the thermal conductivity, DB is 
the Brownian motion, �T , �C are the relaxation parameters 
for thermal and concentration, �f =

(�c)s

(�c)f
 is the ratio of 

nanoparticle heat capacity to base fluid thermal capacity, 
�f =

kf

(�Cp)f
 represents thermal diffusion, Tw(x, y) is known 

as temperature at the wall, Cw(x, y) is known as concentra-
tion at the wall, T  and C are the temperature and concen-
tration of the fluid, respectively, Cp is the specific heat, and 
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C∞ and T∞ are the concentration and temperature free 
streams. Temperature of the sheet is Tw = T∞ + bx, for 
heated surface b > 0 so Tw > T∞ and for cooled surface 
b < 0 and Tw < T , where b is a constant and DT is known 
as thermophoresis diffusivity.

Considering the similarity transformations, we have

Substituting Eq. (12) into Eqs. (1), (4), (9), (10), the pre-
sent problem boundary conditions (11) are as follows:

Using (11), the associated boundary conditions become
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Friction factor coefficient ( Cf  ) is defined as:

Here �w denotes the wall shear stress and is given by

where Rex = uex
x

�
 is local Reynolds number.

3  Numerical procedure

Numerical solution of the nonlinear differential 
Eqs. (13)–(15) along with Neumann boundary conditions 
(16) is achieved by applying the shooting method with 
RK-4 integration technique for various values of parame-
ters. Let y1 = f , y2 = f �, y3 = f ��, y4 = �, y5 = ��, y6 = � 
and y7 = ��.

Hence, the leading equations become

and subsequent initial conditions are:

This technique is successfully used to solve the differ-
ent problems related to boundary layer flows. The bound-
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three initial guesses to f ��(0) , ��(0) and ��(0) for approxi-
mate solution. Here the step size and convergence criteria 
are chosen to be 0.001 and 10−6 (in all cases).

4  Results and discussion

The main effort of this work is to examine the influence 
of magnetic field and stagnation point Maxwell nanofluid 
flow due to a linear stretching surface with slip condi-
tions. The governing differential Eqs. (12)–(15) along 
with corresponding boundary conditions (16) are solved 
numerically by implying shooting procedure (Cash and 
Karp). Figure 2 represents the change in velocity profile 
for distinct values of Hartmann number Ha . From this fig-
ure, the enhancement in Ha results in decrease in velocity 
profile. Since the Hartmann number Ha represents the 
ratio of MHD force to viscous force, the enhancement 
in Ha leads to stronger the MHD force, which declares 
the velocity motion. Figure 3 depicts the variation of 
slip parameter k on velocity profile. The influence of 
slip parameter k significantly enhances the velocity pro-
file. Figure 4 illustrates the variation of fluid relaxation 
parameter �m on velocity profile. It can be analyzed that 
the velocity of the fluid reduces by enhancing the fluid 
relaxation parameter �m . Figure 5 represents the change 
in temperature distribution for distinct values of Nt . It is 
found that by enhancing Nt , the temperature distribution 
also increases. Figure 6 depicts the variation of Brown-
ian motion Nb on temperature distribution. It can be ana-
lyzed that by increasing Nb , the mass diffusivity trekked 
up which leads to enhancement in the temperature and 
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the boundary layer thickness. Figure 7 shows the behav-
ior of Prandtl number Pr on temperature profile. It is 
found that the temperature profile reduces with rising 
values of Prandtl Pr . Figure 8 presents the deviation of 
temperature profile for distinct values of �t . It is seen 
that by enhancing thermal relaxation parameter �t , fluid 

particles require more time to heat the boundary layer 
region, and as a result temperature profile reduces. Fig-
ure 9 displays the effect of relaxation parameter �c on 
concentration distribution. From this figure, it is observed 
that by increasing the relaxation parameter �t , the concen-
tration profile reduces. Figure 10 represents the variation 
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on concentration profile for different values of chemical 
reaction K  . It is found that for large values of chemical 
reaction K  reduces the concentration profile. Figure 11 
represents the influence of Lewis number Le on nano-
concentration profile. It is found that the higher values 
of Lewis number Le lead to reduction in the mass dif-
fusivity, so the concentration profile reduces. Figures 12 
and 13 validate the distribution of skin friction coeffi-
cient Cf Re

1

2
x  with respect to Hartmann number Ha and 

for several values of slip parameter k and fluid relaxation 
parameter �m . It is very important to see that the skin 
friction coefficient Cf Re

1

2
x  enhances by enhancing slip 

parameter k but decreases by increasing the fluid relaxa-
tion parameter �m . Table 1 shows that the fraction fac-
tor rises due to an increase in Hartmann number Ha and 
fluid relaxation parameter �m and opposite behavior is 
noticed for slip parameter k . The achieved results are in 
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good agreement with Afify and Elgazery [25] for dif-
ferent values Ha and �m as shown in Table 2. Table 3 is 
sketched for the comparative investigation between Hsiao 
[26] and present results. Nt Nb = 0.1, Le = Pr = 10 and 
�m = Ha = k = St = �t = �c = K = A = 0.0 .               
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Table 1  Computational results of Cf Re
1

2

x  for different values of Ha, k 
and �m when K = A = Nb = 0.1, Le = 1.0, �c = �t = 0.0, Nt = 0.5, 
and Pr = 1.1

Ha k �m −Cf Re
1

2

x

0.1 0.1 0.9097
0.2 0.9559
0.3 0.9999

0.1 0.9097
0.2 0.8042
0.3 0.7225

0.00 0.8918
0.05 0.9008
0.09 0.9097

Table 2  Comparison of (f ��(0) + �m(f
�(0)f ��(0) + f (0)f ���(0))) 

with the previous literature when 
Nb = k = St = 0.1, �t = �c = K = A = 0.0, Nt = 0.5 and 
Le = Pr = 1.0

�m Ha [25] Present results

0.5 0.0 − 1.68935 − 1.6752
0.5 0.1 − 1.69715 − 1.6821
0.5 0.2 − 1.72034 − 1.7000
0.5 0.3 − 1.75830 − 1.7321
0.0 0.1 − 1.00499 − 1.0001
0.1 0.1 − 2.49440 − 2.1898
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5  Conclusions

The main results for heat and mass exchanger in MHD stag-
nation point Maxwell nanofluid flow past a linear stretching 
surface in the presence of slip effects are summarized below:

• Rising the Hartmann number Ha and slip parameter k 
leads to decline in velocity profile.

• Larger values of fluid relaxation parameter �m , increase 
the velocity profile.

• For increasing values of chemical reaction, K, Prandtl 
number Pr , thermal relaxation parameter �t , concen-
tration relaxation parameter �c and Lewis number Le 
reduce the concentration and temperature profiles.

• Temperature profile increases for increasing values of 
thermophoresis parameter Nt and Brownian motion Nb

.
• Skin friction coefficient reduces Cf Re

1

2
x  for large values 

of slip parameter k but opposing behavior is noticed for 
fluid relaxation parameter �m.
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