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Abstract
Phase change computational simulations using a diffuse interface treatment for pressure were investigated in order to quan-
tify the spurious currents and its consequences on the interface transport in the present paper. In addition, benchmarks were 
conducted with a sharp interface treatment for pressure. Namely, a Delta function method (Delta) was employed for the 
diffuse interface treatment and a ghost fluid method (GFM) for the sharp approach. An additional force term in the non-
divergent form of the momentum equation is proposed for the first time in the literature, and its impact on interface motion 
during simulations of bubble growth by intense phase change has been quantified. In addition, the influence of recoil force 
on interface position was evaluated in simulations of water bubble condensation at near critical pressure. Finally, simula-
tions of a complex industrial application were performed using the diffuse interface treatment, namely a case of film boiling 
with the development of Rayleigh–Taylor instability. Both interface treatments presented excellent results for the interface 
evolution in time. Even with the presence of some relevant spurious currents in the Delta method, the bubble evolution in 
time was accurately predicted. The sharp interface treatment potential was especially evident using a mass density flux of 
1.0 kg/(m2 s) or higher. Therefore, a diffuse interface treatment for pressure has been presented as an appropriate strategy 
for most phase change simulations since the presence of the spurious currents did not disturb the interface position, and its 
magnitude was low for even moderate phase change intensities. The inclusion of the source term due to the additional force 
in the non-divergent form of the momentum equation and the recoil force term was irrelevant in the cases tested. Lastly, 
the film boiling simulation using the diffuse interface treatment revealed the possibility of treating complex 3D cases for 
industrial applications with this method.
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1 Introduction

1.1  Original contributions of the present paper

A diffuse interface treatment for pressure generally produces 
spurious currents due to its numerical fundamentals; how-
ever, quantitative investigations of spurious currents and its 
implications for phase change simulations are scarce in the 
literature. In the present paper, the results of simulations 

of bubble growth by phase change using a diffuse interface 
treatment for pressure were investigated in order to quantify 
the spurious currents and its consequences on the interface 
transport. In addition, benchmarks were conducted with a 
sharp interface treatment for pressure. An additional force 
term in the non-divergent form of the momentum equa-
tion was proposed for the first time in the literature, and 
its impact on interface motion during simulations of bub-
ble growth by intense phase change has been quantified. In 
addition, the influence of recoil force on interface position 
was evaluated in simulations of water bubble condensation 
at near critical pressure. Finally, simulations of a complex 
industrial application were performed using the diffuse inter-
face treatment, namely a case of film boiling with the devel-
opment of Rayleigh–Taylor instability.
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1.2  Organization of the present paper

The goal of the present paper is to report a quantitative 
analysis of some particular numerical aspects of phase 
change simulations using a diffuse interface approach for 
pressure.

Several classical phase change problems are numeri-
cally investigated in the present paper using a diffuse 
interface method in order to evaluate its characteristics 
and consequences. Spurious currents are quantified and 
compared to a sharp interface method for pressure. A vali-
dation case of bubble growth by constant phase change 
intensity is presented. Subsequently, a validation case 
of bubble growth by variable phase change intensity is 
studied. Then, an analysis of the effects from some addi-
tional forces in phase change problems is quantified and 
discussed. Next, the results of numerical simulations with 
three different intensities of phase change are given and 
the spurious currents quantified, along with a discussion 
of the results. The efficiency of the adaptive mesh refine-
ment (AMR) method is evaluated using a correlation from 
the literature, and the results are compared to previous 
work on phase change. Lastly, the results of simulations 
of film boiling are presented, the efficiency of the AMR 
is evaluated, and both are compared to previous results in 
the literature. Some conclusions are drawn at the end of 
the paper, based on the results obtained in all the cases 
simulated.

1.3  Computational simulations of phase change

Phase change is an important issue in industrial applica-
tions [1] since it plays a critical role in a large number of 
processes [2, 3]. Boiling, for example, is a highly efficient 
way to transfer thermal energy, notably in industrial ther-
mal exchangers [4]. Moreover, chemical separation tech-
niques, such as distillation, are characterized by simulta-
neous mass and energy transfer [1]. Droplet evaporation 
is another phenomenon of indubitable importance, of 
great importance for certain applications [5], particularly 
burning liquid fuels. The earliest phase change numerical 
investigations in the literature presented important aspects 
of mathematical and numerical modeling, which can be 
seen in [3] and [2]. Later, several advances in mathemati-
cal and numerical modeling were achieved and reported in 
the literature with even complex simulations for industrial 
applications [6].

Numerical simulations of phase change are relevant 
to collecting information about flow characteristics since 
experiments dealing with phase change are usually diffi-
cult to be conducted correctly [7] due to the small spatial 
scales [2] and the rapidity of the phase change process [3]. 

Phase change simulations present several numerical obsta-
cles [8]. One of the most challenging aspects is notably 
the discontinuities in the physical properties, occurring at 
the interface between the two fluids [9]. In addition, the 
jump conditions across an interface for properties such as 
pressure represent an important aspect to be considered in 
phase change simulations [6].

In order to impose jump conditions at the interface, a 
sharp or diffuse interface treatment can be used for each 
fluid variable. Sharp interface treatments usually provide an 
accurate definition of a fluid variable across the interface, 
improving the resolution of the jump condition [10]. The 
results from a diffuse interface treatment generally give a 
poor representation of the jump conditions at the interface 
since the fluid properties are smoothed across the boundary 
between the two fluids [6]. The development in the velocity 
field of spurious currents at the interface is a typical conse-
quence of the employment of a diffuse interface treatment 
for pressure.

Fictitious velocities emerge due to an erroneous esti-
mate of the surface tension force [11] and pressure gradi-
ent, depending on the numerical scheme employed [12]. In 
addition, the spurious currents tend to be intensified in phase 
change problems [6], and so they should be especially con-
trolled in these numerical simulations. The spurious currents 
generally appear close to the interface when computations 
of a static bubble or droplet are performed with a diffuse 
interface treatment for pressure due to the surface tension 
force calculation [13]. According to Tanguy et al. [6], the 
intensity of the spurious currents increases when phase 
change occurs, due to the jump condition on the velocity 
field. In addition, the presence of spurious currents may be 
partly responsible for an inaccurate evolution in time of the 
interface, since this boundary’s advection is performed using 
the local velocity field.

Tanguy et al. [6] have presented inaccurate results for 
a diffuse interface treatment in phase change simulations. 
Other works in the literature using a diffuse interface treat-
ment, such as Samkhaniani and Ansari [14] and Lee et al. 
[15], have found numerical results with a low deviation with 
the literature. More studies are necessary to understand the 
consequences of using a diffuse interface treatment instead 
of a sharp strategy for one or more fluid variables in phase 
change simulations. In addition, it is appropriate to quantify 
these fictitious velocity fields in the phase change simula-
tions in order to evaluate their consequences and to visualize 
the behavior of the motion of the interface in time to confirm 
the accuracy of the numerical model employed.

An investigation of a diffuse and sharp interface treat-
ment for pressure in phase change simulations is conducted 
in the present paper, with the intent of quantifying the error 
and the effects found in the simulations using a diffuse and 
sharp approach for a pressure jump condition, evaluating the 
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performance of both interface treatments. A benchmark will 
be presented, and simulations with adaptive mesh refinement 
(AMR) will be compared to uniform grid simulations. In 
order to quantify the accuracy of each numerical strategy, 
the spurious currents and interface motion are evaluated.

The physical model used in the present study consists 
of a three-dimensional domain where the flow is consid-
ered incompressible and the fluids monocomponent. Lastly, 
simulations using the diffuse interface treatment for pressure 
were performed for a film boiling application to show the 
potential of the diffuse interface methodology to model even 
complex problems.

1.4  Jump conditions in phase change simulations

The literature presents two numerical strategies to impose 
jump conditions of fluid variables across the interface, 
namely the whole domain formulation and the jump condi-
tion formulation [6]. The whole domain formulation uses a 
Delta function method (Delta), in which the jump conditions 
are smoothed around the interface, smearing out discontinu-
ous terms. The jump condition formulation uses a ghost fluid 
method (GFM) in which the interface is treated imposing the 
jump conditions by ghost cells [6, 10].

The Delta method computes the surface tension force 
using a continuum surface force (CSF) model [16] which 
usually generates spurious currents due to a numerical 
imbalance between the pressure gradient and the related sur-
face tension force [13]. Even though the presence of spuri-
ous currents has been extensively observed by researchers 
since the inception of the CSF, to date there has been little 
quantitative analysis of their importance [11], especially 
when applied to problems involving phase change. Numer-
ous approaches have been proposed to suppress spurious 
currents. Nevertheless, several methods have difficulty 
avoiding inducing unphysical flows, due to the numerical 
error in estimating the interfacial surface tension [7]. In con-
trast, the GFM approach computes the surface tension force 
without a smooth transition due to a sharp jump condition 
for pressure at the interface [13].

1.5  Particular forces in phase change problems

Two forces have been evaluated in the present work in order 
to better understand the importance and consequences of 
modeling them in phase change problems, namely the recoil 
force and the additional force due to the use of the non-
divergent form of the momentum equation. For the first time 
in the literature of phase change, the additional force due to 
the use of the non-divergent form of the momentum equa-
tion is presented and quantified. The need for this additional 
term in phase change problems is reserved to the use of 
the non-divergent form of the momentum equation and the 

occurrence of mass transfer at the interface. Since the inter-
face cells do not present null-divergence velocity in phase 
change problems, the non-divergent form of the momen-
tum equation naturally receives an additional term from the 
continuity equation. The details of this extra force term are 
described in the mathematical model section; later, the com-
putational results section presents a quantitative analysis of 
the additional force term in phase change simulations.

During phase change, a recoil force appears at the inter-
face between the two fluids due to changes in volume [17]. 
The intensity of the recoil force depends on the mass den-
sity flux occurring at the interface. The recoil force may be 
defined by [4]

where ṁ′′ is the mass density flux (this term is described in 
the mathematical model section), � is the specific mass, and 
� is the normal vector.

The study of the recoil force in CFD investigations began 
30 years ago [17]; however, few numerical investigations 
have dealt with phase change and quantified or evaluated 
the role and the importance of this force in the momentum 
equation. The term which models the influence of the recoil 
force is included in several publications in the literature, 
such as [15] and [6], although it is not even cited in other 
works, such as [2] and [12]. Up to now, only a few works 
have studied the influence of the recoil force in phase change 
problems, e.g., Raghupathi et al. [17]. The relevance of this 
term has been ignored in much of the phase change litera-
ture, and at the same time, it has been included in numerous 
numerical works without an evaluation of its importance 
or influence. An understanding of the significance of the 
recoil force in phase change problems may be important 
for understanding the underlying mechanisms behind the 
phase change fundamentals. Therefore, in the present paper, 
numerical simulations are investigated so as to compute the 
magnitude of this force and its importance in phase change 
problems.

1.6  Adaptive mesh refinement (AMR) in phase 
change problems

It is known that an accurate numerical solution of a partial 
differential equation relies on the discretization with a com-
putational grid with sufficiently high resolution. On the other 
hand, simulations using uniform grids overly increase the 
computational costs due to the unnecessary refinement of a 
large region of the domain. A uniform and fine grid is gener-
ally associated with a high computational cost, which may 
impair its applicability to solving several complex problems 
of interest. In contrast, the AMR method is a computational 

(1)�recoil = ṁ��2

(
1

𝜌v
−

1

𝜌l

)
�
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tool allowing the definition of criteria to guide a spatially non-
uniform mesh refinement according to an indicator function, 
such as vorticity, temperature gradient or the presence of an 
interface.

AMR may provide a strategy for solving complex prob-
lems using less computational resources compared to uniform 
grids [12], and reducing the computational power requirement 
without affecting the precision of the numerical results [18]. 
The interest in using AMR in multiphase flows is particularly 
large since the interface region frequently requires fine grids 
due to the calculation of high gradients, whereas the rest of the 
domain usually does not require fine grids [19].

Recently, the AMR strategy for modeling some large-scale 
or complex problems has been employed in the phase change 
literature. In the present paper, the refinement criterion has 
been related to the interface location, as does most of the 
phase change literature, such as Akhtar and Kleis [12]. In 
order to make a quantitative evaluation of the improvement 
in terms of time and computational power attained by using 
AMR compared to uniform grids, a measure of the efficiency 
of the AMR is used to quantify the enhancement due to AMR 
strategy.

2  Mathematical model

Two topics are presented in the mathematical model section: 
the general equations related to the phase change phenom-
enon, and the mathematical details of the additional term in 
the momentum equation which is pertinent to phase change 
problems when using the non-divergent formulation.

2.1  Description of the general mathematical 
formulation

The mathematical formulation was employed in the non-
divergent form as recommended by Deen and Kuipers [20]. 
Putting �Cp inside the substantial derivative would lead to a 
non-physical change of the enthalpy if the two materials next 
to each other present the same temperature but different �Cp , 
as demonstrated by Deen and Kuipers [20]. Therefore, the non-
divergent form was used in the numerical simulations in order 
to avoid non-physical issues.

In order to compute the amount of phase change occurring 
at the interface, the present model uses the calculation of the 
mass density flux ( ṁ′′ ). The mass density flux is included in 
the mathematical formulation using source terms in the con-
tinuity and energy equations, and is defined by the following 
expression [6]:

(2)ṁ�� =
kl∇Tl ⋅ � − kv∇Tv ⋅ �

L

where k is the thermal conductivity, L is the latent energy, T 
is the temperature, and � is the normal vector.

Phase change problems present null velocity divergence 
in the bulk of each phase, and at the interface, there is a 
source term for mass balance [3]. The continuity equation 
is expressed using a Dirac Delta function in the right-hand 
side to take into account the source term only over the 
interface, according to the following equation [6]:

where � is the velocity, � is the specific mass, � denotes the 
Dirac Delta function, and �� is the position of the interface 
Γ . Considering low Mach number flows with low tempera-
ture variations, divergence-free conditions can be expected 
(except at the interface when phase changes occur).

The momentum balance equation is given by [3]

where p is the pressure, � is the dynamic viscosity, � is the 
acceleration due to gravity, �st is a source term to take into 
account the effects of surface tension, and �recoil is a source 
term which computes the effects of the recoil force at the 
interface.

The effects of surface tension are included in the formu-
lation using the model of Brackbill et al. [16]. This model 
specifies the surface tension force per unit volume as

where � is the surface tension coefficient, � is the local cur-
vature, and � is the volume fraction of the dispersed phase.

Since this study deals with isobaric phenomena, which 
only involved weak pressure gradients due to dynami-
cal effects, the energy equation was formulated using the 
internal energy as a primitive variable, as recommended 
by Tanguy et al. [6]. The energy equation also has a source 
term using a Dirac Delta function to model the energy 
transferred at the interface due to phase change [6]:

where Cp is the fluid thermal capacity. The additional term 
in the energy equation corresponds to the amount of energy 
employed in a phase change whenever a corresponding mass 
source term was also added. The source term in the energy 
equation is important in order to assure the correct calcula-
tions of the thermal fluxes at the interface [2] which is used 
to compute the mass density flux.

(3)∇ ⋅ � = ∫Γ

(
1

𝜌v
−

1

𝜌l

)
ṁ��𝛿(��)dΓ

(4)
�
(
��

�t
+ ∇ ⋅ (��)

)
= −∇p + ∇ ⋅

[
�
(
∇� + (∇�)T

)]
+ �� + �st + �recoil

(5)�st =
���∇�

1

2
(�l − �v)

(6)𝜌Cp
DT

Dt
= k∇2T − ∫Γ

ṁ��L𝛿(��)dΓ
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2.2  Additional term in the non‑divergent form 
of the momentum equation

The mass balance at the bulk of each phase is given by [15]

where � represents the volume fraction from the continuous 
phase. Since the flow is incompressible, the mass conserva-
tion at each phase is given by [15]

On the other hand, considering a fluid particle placed at the 
interface, an additional source term emerges due to the phase 
change, in order to take into account the variations of the 
specific mass in these cells during an expansion or contrac-
tion of the volume. Assuming an incompressible flow, the 
mass balance includes a source term at the interface cells, 
given by the following expression:

An interesting remark about the momentum equation in 
phase change problems which has not yet been noted in the 
literature is the appearance of an additional force term in 
the non-divergent form compared to the divergent form. An 
additional force term appears due to the nonzero velocity 
divergence in the continuity equation at the interface cells. 
Until the present moment, the literature has not pointed 
out the difference between the divergent and non-divergent 
forms of the momentum equation. This difference will 
be described and quantified later in the numerical results 
section.

Transforming the momentum equation to the non-diver-
gent form from the divergent form, the expression of the 
continuity equation appears naturally due to the product rule 
for derivatives, as shown in the following expression:

Since the continuity equation is nonzero over the interface 
cells, an additional term appears at the interface cells due to 
the phase change. This additional force is modeled by to the 
mass balance source term which is defined in the following 
expression only at the interface:

(7)
�(��)

�t
+ ∇ ⋅ (���) = 0,

(8)∇ ⋅ � = 0.

(9)∇ ⋅ � = ∫Γ

(
1

𝜌v
−

1

𝜌l

)
ṁ��𝛿(��)dΓ.

(10)

𝜕(𝜌�)

𝜕t
+ � ⋅ (𝜌�) = 𝜌

[
𝜕�

𝜕t
+ (�.∇)�

]
+ �

[
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌�)

]

���������������������
extra - term

= 𝜌� + ∇.�̄� + �𝜎 .

(11)

𝜌
[
𝜕�

𝜕t
+ (� ⋅ ∇)�

]
+ �

[
∫Γ

𝜌

(
1

𝜌v
−

1

𝜌l

)
ṁ��𝛿(��)dΓ

]

���������������������������������������������
extra - term

= 𝜌� + ∇.�̄� + �𝜎 .

Therefore, the non-divergent form naturally imposes an 
additional force due to the phase change which is not explic-
itly present in the divergent form of the momentum equation. 
The simulations treated in the present paper were performed 
in the non-divergent form, and tests were conducted to com-
pare the effects of this additional force in the non-divergent 
form of the momentum equation.

3  The numerical method

This section presents the numerical details of the presented 
research, which was developed using the homemade code 
MFSim.

3.1  Phase change model

The phase change model employs an approach similar to 
Tanguy et al. [6] in order to account for an adequate mass, 
momentum, and energy transport across the interface. The 
phase change amount is predicted using the thermal transfer 
information at the interface and considering the energy source 
term as the latent energy relevant to the phase change in the 
interface cells when solving the energy equation [21].

In order to compute the temperature gradients at the 
interface to estimate the mass density flux, the interface is 
assumed to be at saturation temperature and the volume of 
fluid (VOF) method is used to construct the proper thermal 
flux, as previously described by Welch and Wilson [2]. The 
interface temperature was assumed to be constant in time, 
which is a common simplification appropriate for most cases 
with low effects of thermal resistance and pressure jump, as 
previously investigated by Juric and Tryggvason [3]. Much 
of the phase change literature has employed this simplifi-
cation, which is adequate for modeling classical and even 
complex problems, cf. Tanguy et al. [6] and Pan et al. [7]. 
Therefore, the interface temperature variations in time have 
been ignored.

A VOF method [22] was applied to determine the position 
of the interface and the transport. VOF employs a color func-
tion �(�, t) to indicate the fractional amount of fluid present 
at a certain position � and time t. The color function � was 
calculated using the following equation [23]:

If no phase change occurs, the interface velocity is equal to 
the fluid velocity at the interface. Otherwise, the interface 
velocity should be computed with the fluid motion and using 
a phase change component [6, 15], as shown in the follow-
ing expression:

(12)
��

�t
+ [�normal ⋅ ∇�] = 0.

(13)�normal = �fluid - motion + �phase - change.
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The velocity component due to a phase change is defined 
according to the mass density flux previously calculated 
[15].

The imposition of a constant mass density flux allows an 
exact solution for the interface velocity when the fluid motion 
does not affect the interface position. Therefore, expression 
13 is useful for the purpose of validating static problems, as 
previously described by Tanguy et al. [6] and Lee et al. [15].

3.2  Interface treatment for pressure

The whole domain formulation treats the interface as diffuse, 
using the Delta function method (Delta). The earliest work 
on phase change used the Delta method, described in Welch 
[2] and Juric and Tryggvason [3]. In this approach, the jump 
conditions at the interface are expressed by introducing sin-
gular source terms in the equations.

In the Delta method, an additional source term is placed 
for the temporal discretization of the momentum equation 
according to the following algorithm [6]:

where D is the deformation tensor.
On the other hand, the jump condition formulation treats 

the interface as sharp by using the GFM, described in Liu 
et al. [24], who developed a GFM to capture sharp interface 
boundary conditions in multiphase flows. They proposed 
a boundary condition capturing approach for the variable 
coefficient Poisson equation on domains with an embedded 
interface. In this approach, the equations are written in each 
phase separately and additional jump conditions have to be 
imposed at the interface to respect mass conservation. The 
GFM treats the Poisson equation with both variable coeffi-
cients, and a discontinuous solution can be obtained, accord-
ing to Liu et al. [24]; alternatively, the Delta method uses 
a projection method to solve the momentum and Poisson 
equations with a source term.

Finally, in the GFM method, the pressure must respect the 
following jump condition [6]:

(14)�phase-change = ṁ��

(
1

𝜌v
−

1

𝜌l

)
�

(15)

�∗ = �n − Δt

[
�n ⋅ ∇�n −

∇ ⋅ (2�Dn)

�n+1
+

���

�n+1
− � − �recoil

]
,

(16)∇ ⋅

(
∇pn+1

𝜌n+1

)
=

∇ ⋅ �∗

Δt
−

∫
Γ

(
1

𝜌v
−

1

𝜌l

)
ṁ��𝛿(�k) dΓ

Δt
,

(17)�n+1 = �∗ − Δt
∇pn+1

�n+1
,

where the second term represents the recoil pressure occur-
ring with a phase change [6]. This term represents the pres-
sure jump condition due to a recoil force presence at the 
interface. A vapor recoil force appears due to the fluid’s 
expansion while transforming liquid to vapor [4].

3.3  Computational details

A two-step projection method [25] was used with an explicit 
treatment of advection terms and with an implicit treatment 
for pressure and for diffusion terms. The Barton scheme [26] 
was used for the spatial discretization of the advective terms. 
The Navier–Stokes and energy equations were solved using 
a multigrid-multilevel solver. The transient equations were 
solved using a finite volume methodology.

The present paper employed MFSim code to run all the 
numerical simulations. MFSim code has been developed in 
the last ten years in cooperation with a large research group 
and Petrobras scientifical support. The MFSim code uses 
a block-structured composite grid, defined as a hierarchi-
cal sequence of nested, progressively finer grid levels. Each 
level is formed by a set of non-overlapping parallelepipedal 
grid blocks aligned with the Cartesian coordinate axes; 
the refinement ratio between two successive levels is two. 
Convergence criteria for continuity, momentum and energy 
equations were set to achieve residuals up to 10−6 . All simu-
lations were performed in parallel in the Fluid Mechanics 
Laboratory cluster at the Federal University of Uberlândia, 
Brazil.

4  Validation of the numerical model

4.1  Numerical validation: boiling simulations 
with a constant mass density flux

Simulations of bubble growth by phase change were per-
formed imposing a constant and uniform mass flux across 
the interface. The initial bubble radius was equal to 0.01 m 
and a spatially uniform and temporally constant mass den-
sity flux of 0.10 kg/(m2 s) was imposed. The bubble grew 
until its radius was twice the initial radius. Then, the differ-
ence between the exact radius and the numerical radius was 
computed. The results obtained in the present paper were 
compared to Tanguy et al. [6], and with the exact solution 
from Eq. 13.

The boiling simulations at constant rate were performed 
using the following physical properties: �liq = 1000 kg/m3 , 

(18)[p]Γ = 𝜎𝜅 −

(
1

𝜌v
−

1

𝜌l

)
ṁ��2,
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�vap = 1 kg/m3 , � = 0.07 N/m, �liq = 0.001 kg/(ms), and 
�vap = 1.78 × 10−5 kg/(ms). Since the mass density flux was 
assumed constant, the flow was considered isothermal. An 
outflow boundary condition was imposed on all the domain 
faces, and the flow was not subjected to gravity. The mesh 
consisted of a structured uniform three-dimensional Carte-
sian grid with configurations of 32 × 32 × 32 , 64 × 64 × 64 , 
and 128 × 128 × 128 cells.

It can be shown from Eq.  13 that the bubble radius 
will evolve linearly with time according to the following 
expression:

where Rexa(t) represents the exact bubble radius, R0 is the 
bubble’s initial radius, and t is the time.

Figure 1 shows the evolution in time of the bubble radius 
using the Delta and GFM methods.

The error was obtained as the difference between the 
numerical bubble radius ( Rnum ) and its exact value ( Rexa ), 
which is given by the following expression:

The bubble radius error at the simulation’s final time is 
presented in Table 1 using three different mesh configura-
tions for the Delta and GFM methods. The computed bubble 
radius in the present paper exhibited low deviation compared 
to the exact solution, which can be easily seen in Table 1. 
Using the GFM method, Tanguy et al. [6] and the present 
paper exhibited no significant error compared to the exact 
solution. On the other hand, only the present paper presents 
results from the Delta simulations with low deviation com-
pared to the literature, since the error found by Tanguy et al. 
[6] was higher than 20% for all the meshes tested.

(19)Rexa(t) = R0 +
ṁ��

𝜌
t,

(20)�(%) =
|Rnum − Rexa|

Rexa

× 100.

The differences between the exact and computed radii using 
the GFM, and Delta methods were lower than 2.0% for all the 
simulations in the present paper. In addition, the error from the 
Delta simulations was very similar to the error obtained from 
the GFM simulations for all mesh configurations. Therefore, 
according to the behavior of the interface evolution in time, 
both approaches of jump conditions demonstrated accurate 
results compared to the expected solution.

4.2  Numerical validation: boiling simulations 
with a variable mass density flux

Numerical simulations of a vapor bubble growth in a super-
heated liquid domain were conducted using the Delta and 
GFM methods to take into account the interface jump con-
dition of pressure. The phase change simulations were per-
formed using a Jakob number of 2.0. The Jakob number (Ja) 
is defined according to the following equation [6]:

The following physical properties were adopted in the 
phase change simulations with a variable mass density flux: 
�l = 100 kg/m3 , �v = 1 kg/m3 , � = 0.01 N/m, �l = 0.00062 
kg/(ms), �v = 0.000012 kg/(ms), kl = 0.10 W/(mK), 
kv = 0.01 W/(mK), Cpliq = 20 J/(kg K), Cpvap = 10 J/(kg 
K), and a latent energy of 1000 J/kg . An outflow boundary 

(21)Ja =
�liqCpliq(T∞ − Tsat)

�vapL
.

Fig. 1  Bubble radius evolution for ṁ�� = 0.10 kg/(m2 s)using the Delta (a) and GFM (b) methods

Table 1  Bubble radius error � (%) for ṁ�� = 0.10 kg/(m2s)

323 643 1283

Tanguy et al. [6]—GFM 0.51 0.22 0.11
Present paper—GFM 1.50 0.50 0.05
Tanguy et al. [6]—Delta 22.5 23.7 24.3
Present paper—Delta 1.51 0.52 0.05
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condition was imposed on all domain faces, and the flow was 
not subjected to gravity. AMR simulations were performed 
with three or four mesh levels and the base level presented 
the configuration of 16 × 16 × 16 cells.

The numerical model validation was conducted accord-
ing to the error of the bubble radius in comparison with an 
analytical solution available in Scriven [27]. The analytical 
solution describes the evolution of the bubble radius in 
time according to the following expression [27]:

The parameter � is found by solving a transcendental equa-
tion in [27], which is derived from the energy and continuity 
equations in spherical coordinates [6]. Simplified equations 
were proposed and presented in Scriven [27] and the follow-
ing expression was adopted to calculate � [27]:

The initial radius of the bubble was 0.0287 m, and the tem-
perature difference between the saturation condition and the 
superheated liquid was 1.0 K.

Figure 2 shows the evolution of the bubble radius in 
time in comparison with the analytical solution from 
Scriven [27]. The grid configuration with three mesh lev-
els was sufficiently fine to provide accurate results, simi-
larly to the mesh with four levels. Good agreement was 
obtained between the computed bubble radius and the bub-
ble radius from the analytical solution.

According to Fig. 2, the simulations using the Delta and 
the GFM methods for pressure only deviated slightly from 
the analytical solution. The evolution of the bubble radius 
was close to the expected solution provided by Scriven [27] 
from the beginning until the end of the simulation time.

(22)r(t) = 2�
√
�t.

(23)� =

�
3

�

⎧
⎪⎨⎪⎩

ΔT�
�g

�l

��
L

Cpl
+
�

Cpl−Cpg

Cpl

�
ΔT

�
⎫⎪⎬⎪⎭
.

Figure 3 presents the mesh configuration for the Delta 
method at the 0 s and at 3.6 s.

The spurious currents from the simulations in Fig. 3 pre-
sented approximately the same order of magnitude as the 
interface velocity, as previously found by Tanguy et al. [6]. 
Considering that the mass density flux in the simulation was 
close to 0.01 (kg/m2 s), it was expected that the spurious 
currents from the Delta and the GFM methods would be 
similar, since Section 4.4 shows that the Delta method pro-
duced spurious currents with magnitude similar to GFM for 
ṁ′′ < 1.0 (kg/m2 s).

5  Results and discussion

5.1  Analysis of the recoil force in momentum 
equation

According to Nikolayev et al. [4], the importance of the 
recoil force increases in the vicinity of the critical point of 
a substance since the magnitude of the surface tension force 
becomes closer to the magnitude of the recoil force. There-
fore, numerical simulations of bubble growth by phase change 
were performed near the critical point. Numerical simulations 
of water vapor condensation near critical pressure were per-
formed using the fluid properties presented in Table 2.

This simulation was previously conducted by Lee et al. 
[15] using the recoil force term in the mathematical model. 
The diffuse interface treatment was applied to the pressure 
in the phase change simulations. In addition, the latent 
energy was 276.4 kJ/kg, the surface tension coefficient was 
7.0 × 10−5 N/m, and the temperature difference between the 
vapor and the liquid was 1 K. Numerical simulations using 
AMR were conducted with three mesh levels, and the base 
level presented the configuration of 24 × 24 × 24 cells. The 
interface presence was considered the refinement criterion.

Fig. 2  Bubble radius evolution using a the Delta method and b the GFM method
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As previously seen in the last subsection, the bubble radius 
evolves linearly with time according to expression 18. Fig-
ure 4 presents the bubble radius evolution in time from the 
simulations, both including and excluding the term that mod-
els the effects of the recoil force in the momentum equation.

Figure 4 shows good agreement between the exact solu-
tion and the results presented here for the simulation with a 
constant mass density flux of 0.01 kg/m2 s. As expected, the 
evolution of the bubble radius was linear in time since the 
mass density flux was taken to be constant.

Figure 5 shows the magnitude of the surface tension force 
effects compared to the magnitude of the recoil force term.

According to the data collected during the simulation, 
the magnitude of the recoil force was approximately five 
orders of magnitude lower than the surface tension force. 
Since the inertial and surface forces were bigger than the 
recoil force in the momentum equation in the case investi-
gated, the addition or not of the recoil force had only insig-
nificant effects on the bubble rate movement. Raghupathi 
et al. [17] also found only an insignificant influence of the 
recoil force term in similar simulations of phase change.

Until the present moment, the only numerical investigation 
found in the literature that revealed a significant influence of 
the recoil force has been Raghupathi et al. [17] for simulations 
where two different regions of the interface were subjected to 

strong temperature differences, there occurring a visible inter-
face motion due to the recoil force. Therefore, more studies 
are necessary to understand the influence of the recoil force 
in phase change problems, especially for engineering applica-
tions. In addition, the way the recoil force is being modeled 
in the literature should be better investigated since alternative 
approaches could provide a more realistic influence of the 
recoil force than the expression proposed by Nikolayev [4].

5.2  Analysis of the additional force in momentum 
equation

In order to quantify the influence of modeling the addi-
tional force due to phase change, which appears in the 

Fig. 3  Slice of the central xz-plane showing the interface and mesh configuration using the Delta method considering a variable mass density 
flux with Ja = 2.0

Table 2  Fluid properties of saturated water at near critical pressure

Phase � ( kg/m3) �(�Pa s) Cp (J/kg K) k (W/mK)

Vapor 242.7 32.38 3520 0.538
Liquid 402.4 46.7 2128 0.545

Fig. 4  Bubble radius evolution in phase change simulations with and 
without the recoil force effects using the Delta method
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non-divergent form of the momentum equation, simula-
tions were performed with and without the extra source 
term in momentum equation. A constant mass density flux 
was imposed at the interface, and the effects of this force 
due to phase change on the time evolution of the interface 
were evaluated. Simulations of boiling were performed for 
a intense value of mass density flux and the influence of the 
extra force term was evaluated.

Simulations of bubble growth by phase change were per-
formed by imposing a constant and uniform mass transfer 
rate across the interface. This case was previously investi-
gated by Tanguy et al. [6], where the bubble initial radius 
was equal to 0.01 m and a spatially uniform and temporally 
constant mass density flux of 0.1 kg/m2 s was imposed. The 
bubble grew until its radius was twice the initial radius; then, 
the difference between the exact radius and the computa-
tional radius was computed. The interface evolution was 
compared to the exact solution provided from Eq. 13.

The simulations were performed using the following 
physical properties: �liq = 1000 kg/m3 , �vap = 1 kg/m3 , 
� = 0.07 N/m, �liq = 0.001 kg/(ms) and �vap = 1.78 × 10−5 
kg/(ms). Since the mass density flux was constant, the flow 
was considered isothermal. The outflow boundary condi-
tion was imposed on all the domain faces, and the flow was 
not subjected to gravity. Numerical simulations using AMR 
were conducted with three mesh levels, and the base level 
presented the configuration of 16 × 16 × 16 cells. The inter-
face presence was considered the refinement criterion.

As previously seen in Sect. 4.1, the bubble radius evolves 
linearly with time according to expression 18. Figure 6 
shows the evolution in time of the bubble radius for the non-
divergent form of the momentum equation, both with and 
without the additional source term from Eq. 10.

The interface evolution was not damaged even with a high 
mass density flux imposed at the interface. Then, according 

to the numerical results seen in Fig. 1, the influence of the 
force due to the phase change at the interface is of little 
importance for the interface’s behavior over time.

The extra force in the momentum equation was about 
three orders of magnitude lower than the surface tension 
force effects. The quantification of the additional force dem-
onstrated that its insignificance in the numerical results is a 
consequence of its magnitudes being smaller than the iner-
tial and interfacial forces. Figure 7 shows the magnitude of 
the surface tension force effects compared to the magnitude 
of the additional force term.

The negligible influence of this force term in the non-
divergent form of the momentum equation in the simulations 
performed corroborates previous results in the literature, 
presenting accurate validation cases while not employing 
this force term, namely [2, 15] and [6]. Therefore, the influ-
ence of this term may be considered of little importance in 
phase change problems when using the non-divergent form 
of the momentum equation, although being mathematically 
inconsistent.

In order to confirm the low influence of this additional 
term in the mathematical model, simulations using a mass 
density flux of 10.0 kg/(m2 s) were performed. The value 
of this mass density flux is so high that it may be consid-
ered even physically impossible. However, the intention is 
to determine whether this additional term may interfere with 
the numerical results for extremely high intensities of phase 
change. The bubble initial radius was 0.1 m and the simula-
tion final time was 0.01 s, when the bubble radius was twice 
the initial radius.

According to the numerical results obtained, the bubble 
radius prediction was accurate even for a high mass den-
sity flux. The difference between the exact solution and the 

Fig. 5  Magnitude of the effects from the surface tension force com-
pared to the recoil force using the Delta method Fig. 6  Bubble radius evolution in the phase change simulations using 

Delta for the non-divergent form with and without the extra force 
term from Eq. 10
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computed bubble radius at the simulation’s final time was 
lower than 1.0%. Figure 8 shows the magnitude of the effects 
of the surface tension force compared to the magnitude of 
the additional force term from the simulation considering 
ṁ�� = 10.0.

The magnitude of the effects from the additional term is 
about two orders of magnitude lower than the surface ten-
sion force effects. Therefore, as seen in Fig. 8, the additional 
force term here discussed may be considered irrelevant to 
phase change problems.

5.3  Analysis of the spurious currents 
in the simulations of bubble growth

In order to evaluate the spurious currents, phase change sim-
ulations were performed with a growing bubble with three 
different constant and uniform mass density fluxes. The bub-
ble’s initial radius was 0.01 m, and the spatially uniform and 

temporally constant mass density fluxes of 0.1 kg/(m2 s), 1.0 
kg/(m2 s) and 10 kg/(m2 s) were imposed. The mass density 
flux of 0.1 kg/(m2 s( represents a moderate intensity of phase 
change, which is found in several numerical investigations in 
the literature, such as Tanguy et al. [6]. This phase change 
rate is also similar to that found in experimental cases, such 
as water bubble condensation at atmospheric pressure from 
Kamei and Hirata [28]. Next, the mass density flux of 1.0 
kg/(m2 s) represents a strong phase change rate, which may 
refer to an extremely severe thermodynamic condition for 
phase change. Finally, the mass density flux of 10 kg/(m2 s) 
represents an extreme rate of phase change intensity which 
may be considered even impossible to model on small scales 
due to the fast speed of the volume change in time. The 
purpose of evaluating the spurious currents using this high 
phase change intensity is to draw conclusions about the two 
methods in the most severe conditions possible.

The time step was set as 1.0 × 10−5 s, and the evaluation 
of the spurious currents was carried out at 0.001 s. Numeri-
cal simulations using AMR were conducted with two mesh 
levels, and the base level presented the configuration of 
32 × 32 × 32 cells. The interface presence was considered 
the refinement criterion.

Figure 9 shows the velocity fields using the Delta and 
GFM methods for a mass density flux of 0.1 kg/(m2 s) at 
0.001 s.

The maximum velocity observed in the simulations using 
the Delta and GFM methods in Fig. 6 was close to 0.0002 
m/s. Inside the dispersed phase, both approaches produced 
some spurious currents, which exhibited similar magnitudes. 
The mass density flux of 0.1 kg/(m2 s), in the simulation 
using Delta, produced a visible velocity field at the interface 
region, which extended to the domain limits. The simulation 
using GFM presented a velocity field with low influence 
of spurious currents outside the bubble. The present paper 
found spurious currents one order of magnitude lower than 
Tanguy et al. [6], who obtained spurious currents close to 
0.05 m/s using the Delta method and 0.01 m/s using the 
GFM approach.

Figure 10 shows the velocity fields using the Delta and 
GFM methods for a mass density flux of 1.0 kg/(m2 s) at 
0.001 s.

The velocity field obtained from the simulation using the 
GFM method presented smaller spurious currents compared 
to the Delta method. The simulation using the GFM method 
has only small velocities inside the dispersed phase; outside 
the bubble, there are no spurious currents. The magnitude 
of the spurious currents in the simulation using the Delta 
method was twice that of the velocities obtained in the GFM 
method. Figure 11 shows the velocity fields using the Delta 
and GFM methods for a mass density flux of 10.0 kg/(m2 
s) at 0.001 s.

Fig. 7  Magnitude of the effects of the surface tension force compared 
to the additional force using the Delta method, for ṁ�� = 0.1

Fig. 8  Magnitude of the effects from the surface tension force com-
pared to the additional force using the Delta method considering 
ṁ

�� = 10.0
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The simulation considering a mass density flux of 10.0 
kg/(m2 s) produced a spurious velocity field with significant 
magnitudes with the Delta method compared to the GFM 
method. The maximum velocities were observed in the prox-
imities of the interface and the spurious currents extended 
to the limits of the domain. The simulation using the GFM 
method presented smaller spurious currents than the Delta 
method, and they were two orders of magnitude lower than 
for Delta.

The numerical results of the magnitudes of the spurious 
currents in the simulations were expected, since the GFM 
method treats the interface as sharp by defining ghost cells, 
preserving a behavior that is more physically consistent with 
an interface. As described by Tanguy et al. [6], preserv-
ing the sharpness of the velocity field allows transporting 
the interface with an adequate velocity, which is zero in the 
present case, since the bubble is stationary. Therefore, the 

GFM method minimized the numerical diffusion across the 
interface, which is particularly important in phase change 
problems.

According to the velocity fields obtained from the simula-
tions using the Delta method, a mass density flux of 0.1 kg/(m2 
s) did not produce noticeable spurious currents compared to 
the velocity fields from the GFM approach. On the other hand, 
a mass density flux of 1.0 kg/(m2 s) or higher did increase 
excessively the spurious currents in the simulations using the 
Delta method, in comparison with the GFM approach. There-
fore, the magnitude of the mass density flux directly affected 
the intensity of the spurious currents obtained in the simula-
tions with the Delta method.

Table 3 summarizes the magnitudes of the spurious cur-
rents found at the end of the simulation, using the Delta and 
GFM approaches, with mass density fluxes of 0.1 kg/(m2 s), 
1.0 kg/(m2s) , and 10.0 kg/(m2 s).

Fig. 9  Spurious currents for ṁ�� = 0.1 kg/(m2 s) at 0.001 s, a with Delta and b with GFM

Fig. 10  Spurious currents for ṁ�� = 1.0 kg/(m2 s) at 0.001 s, a with Delta and b with GFM
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5.4  Analysis of the grid configuration in simulations 
of the growth of a bubble

Uniform grid and AMR simulations were evaluated in order 
to quantify the AMR efficiency compared to the uniform grid 
simulations, considering a mass density flux of 0.1 kg/(m2 s). 
The simulations were performed using the properties and the 
physical model previously described in Sect. 4.1 with the Delta 
method of pressure interface treatment. The AMR simulations 
were performed with two, three, and then four levels of mesh 
refinement, with the most refined level being 128 × 128 × 128 
cells.

In order to present a quantitative analysis of the AMR effi-
ciency, the efficiency was calculated using an expression from 
Akhtar and Kleis [12] which uses the time and number of 
cells employed in the simulations. The expression for AMR 
efficiency ( � ) is given by the following equation [12]:

where tuni is the simulation time using a uniform grid, nuni is 
the number of cells in the simulation using a uniform grid, 
tada is the simulation time using AMR, and nada is the number 
of cells in the simulation using AMR.

(24)�(%) =
tuninada

tadanuni

Table 4 presents the computational time spent on the 
simulation, the number of cells employed, the error of the 
bubble radius prediction ( � ), and the AMR efficiency ( � ). It 
can be seen that the coarse grid regions represent more than 
half of the domain’s total volume, especially at the beginning 
of a simulation. In addition, using a coarse grid away from 
the interface implies a significant reduction of the number 
of computational cells. Therefore, AMR is a numerical tool 
which can reduce the computational costs for two-phase 
flow problems with phase change and allow more efficient 
simulations.

Two main advantages of using AMR instead of uniform 
grids were the reduction in the number of cells employed 
and the computational time needed. According to the results 
shown in Table 4, the uniform grid employed almost 900,000 
cells, while AMR used close to 160,000 cells with two levels 
and almost 75,000 cells with three levels. Therefore, the use 
of AMR reduced the number of cells by more than 10 times 
compared to uniform grid simulations. Moreover, the com-
putational time needed to finish the simulation was almost 
five times lower using an adaptive mesh with three levels 
compared to a uniform grid. Lastly, it can be seen that the 
errors of the uniform grid and AMR simulations are simi-
lar, since the error of the bubble radius was always below 
1%. Therefore, according to Table 4, AMR yielded accurate 

Fig. 11  Spurious currents for ṁ�� = 10.0 kg/(m2 s) at 0.001 s, a with Delta and b with GFM

Table 3  Spurious currents using different ṁ′′ for Delta and GFM 
methods at 0.001 s

Mass density flux kg/(m2s) Delta (m/s) GFM (m/s)

0.1 0.0002 0.0001
1.0 0.0018 0.0005
10.0 0.0330 0.0002

Table 4  Assessment of mesh configuration in the simulations with 
ṁ

�� = 0.1 kg/(m2s)

Time (s) Number of cells � (%) � (%)

Uniform grid 1440 884,736 0.05 –
AMR—two levels 480 157,248 0.06 53.3
AMR—three levels 300 74,304 0.07 40.3
AMR—four levels 240 66,304 0.09 45.0
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results with lower computational costs compared to uniform 
grids and revealed a great potential to be adopted in phase 
change simulations.

Concerning the AMR efficiency, the present efficiencies 
analyzed in this paper were approximately 50%. On the other 
hand, Akhtar and Kleis [12] found an efficiency close to 
70% for similar simulations of boiling. Probably the AMR 
efficiency in the research presented here is lower than Akhtar 
and Kleis [12] since the latter used octree grids, which uses 
a simplified algorithm, reducing the time required to solve 
all the equations in each computational cell.

6  Case study: simulation of film boiling 
with Rayleigh–Taylor instability

Pool boiling systems are widely encountered on the ground 
and in outer space applications [29]. Film boiling is an 
important phase change phenomenon since it is present in 
several applications in the engineering field [30]. In addition, 
film boiling is one of more ideal pool boiling regimes to vali-
date a method, due to its lesser complexity [15]. A particular 
case of film boiling is the development of Rayleigh–Taylor 
instability, which is widely reported in the phase change 
literature.

Rayleigh–Taylor instability is the result of a baroclinic 
torque created by the misalignment of the pressure and spe-
cific mass gradients at an interface [31]. Rayleigh–Taylor 
instability occurs when a heavy fluid initially lies above a 
lighter one in a gravitational field [30], promoting a baro-
clinic torque. The baroclinic torque is mathematically repre-
sented in the transport equation of vorticity ( � ), which can 
be obtained by taking the curl of the momentum equation, 
and is given by the following equation:

The baroclinic contribution is represented by the term (��×�p)
�2

 
and is always perpendicular to the specific mass gradient. If 
the specific mass and pressure gradients are aligned, this 
term is zero.

This instability has a particularly important application in 
inertial confinement fusion [32]. Although Rayleigh–Taylor 
instability is rarely observed in its authentic form, it plays an 
important role in various natural and technological processes. 
The formation of bubbles from a vapor film beneath a liquid 
in film boiling is a classic example of a relatively authentic 
Rayleigh–Taylor instability [33]. Sharp [30] enumerated 
some examples of Rayleigh–Taylor instabilities in nature and 
in technological fields, such as the overturn of the outer por-
tion of the collapsed core of a massive star, the formation of 
high-luminosity twin-exhaust jets in rotating gas clouds in 

(25)

D�

Dt
= −(� ⋅ ∇)� +

(∇� × ∇p)

�2
+ (� ⋅ ∇)� +

1

Re
(∇2�)

an external gravitational potential, laser implosion of deute-
rium–tritium fusion targets, electromagnetic implosion of a 
metal liner and several others.

The present paper will also investigate numerical simula-
tions of film boiling using the diffuse interface treatment for 
pressure. The simulations were performed using AMR and 
uniform grids. The thermal transfer rate will be compared to an 
experimental correlation from Berenson [34], which predicts 
the thermal transfer rate at a heated wall where pool boiling 
occurs. Berenson’s [34] experimental correlation defines the 
mean Nusselt number at the heated wall according to the fol-
lowing expression:

where the Prandtl number is 1.0, the Jakob number is 1.0, 
and the Grashof number is 304.3.

The thermo-physical properties of the fluid used in the 
simulations has the same ratio between the liquid and vapor 
phase as that in Akhtar and Kleis [12], as given in Table 5.

In the simulation of film boiling, a vapor film completely 
covers the heated surface. During the entire simulation, the 
denser liquid above the vapor film falls, due to the action of 
gravity, and at the same time the interface between the liquid 
and vapor rises away from the heated wall. As the liquid moves 
closer to the heated wall, evaporation at the liquid–vapor inter-
face prevents the liquid from getting into contact with the wall. 
Since the intensity of the baroclinic torque increases with time, 
an interface peak at the center of the domain emerges.

The physical model in the simulations consists of a three-
dimensional domain subjected to gravity. The lateral bound-
aries are symmetric, and an outflow boundary condition is 
used at the top surface. Moreover, a constant temperature is 
imposed at the bottom wall:

The bottom wall was kept at a fixed temperature, higher 
than the temperature of the top and lateral walls, similarly to 
the procedure adopted by Akhtar and Kleis [12]. The computa-
tional domain was subjected to a grid independence study, and 
a validation was performed using the mean Nusselt number at 
the bottom wall. Figure 12 illustrates a slice from the central 
xz-plane with the interface position for three grid configura-
tions: 32 × 32 × 64 , 64 × 64 × 128 and 128 × 128 × 256 cells.

Figure 12 shows that the two highest mesh resolutions 
closely match each other (dashed and dotted lines). On the 
other hand, the coarsest grid presented a very different pro-
file from the other grid configurations, due to the insufficient 

(26)Nu = 0.425
(
GrPr

Ja

)1∕4

,

(27)Twall = Tsat + ΔT .

Table 5  Assessment of mesh 
configuration in the simulations 
of film boiling

�l∕�v �l∕�v kl∕kv Cpl∕Cpv

4.78 2.59 3.56 0.66
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mesh quality. Therefore, the mesh with the configuration of 
64 × 64 × 128 cells was considered adequate to model film 
boiling.

In order to validate the Nusselt number at the bottom 
wall using an experimental correlation from the literature, 
a simulation using a uniform grid was performed using the 
configuration of 64 × 64 × 128 cells and an AMR simula-
tion was performed with three mesh levels. The most refined 
level in the AMR simulation presented the same mesh width 
as the uniform grid simulation.

Figure 13 shows two moments in the simulation of film 
boiling, namely the beginning and the end of the simulation 
time.

The two coherent structures composing the Rayleigh–Tay-
lor instability are evident in Fig. 13 at the final time of the 
simulation. There are four noticeable spikes (fluid structure 
of heavy fluid growing into light fluid) and one mushroom-
shaped bubble (fluid structure of light fluid growing into 
heavy fluid). As Fig. 13 shows, the stem does not pinch off.

Figure 14 shows the interface contour and the grid con-
figuration employed at the initial time of the simulation and 
at the final time.

Adaptive mesh refinement promoted a great reduction 
of the computational costs. As Fig. 14 shows, the regions 
away from the interface used a coarse grid, which helped the 
simulation to run faster than with a uniform grid. Since the 
interface was the region where the phenomenon was devel-
oped, the other regions of the domain were solved with a 
relatively coarse grid.

Table 6 shows the time necessary to run the simulation 
using AMR and uniform grids, as well as the mean number 
of cells used in each simulation.

Fig. 12  Interface at time 12.0 s where the dotted line represents the 
mesh of 32 × 32 × 64 cells, the dashed line is the mesh configuration 
of 64 × 64 × 128 cells, and the continuous line shows the grid with 
128 × 128 × 256 cells

Fig. 13  Interface a at the initial 
time of the simulation and b at 
the final time
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According to Table 6, AMR promoted a reduction of 
approximately 30% of CPU time compared to the simula-
tion using uniform grids. As expected, the number of cells 
employed in the AMR simulation was significantly lower 
than the uniform grid simulation. The reduction of nearly 
67% from the total number of cells sharply reduced the com-
putational power required. Thus, AMR simulations have 
again achieved accurate results while saving computational 
power and the time necessary to run the simulations.

According to expression 21, the AMR efficiency was 
approximately 47%, representing a great improvement of 
efficiency. Akhtar and Kleis [12] evaluated the AMR effi-
ciency using that expression and found approximately 52% 
at a simulation time of 1.0 s, which corroborates the effi-
ciency obtained in the present paper.

The experimental correlation of Berenson [34] will now 
be used for the minimum thermal flux, which is the con-
dition where there is a stable vapor film over the heating 
surface. The mean Nusselt number can be computed at the 
bottom wall and is presented in Fig. 15 in comparison with 
the solution from Berenson [34].

As previously seen in Akhtar and Kleis [12], the mean 
Nusselt number remains approximately constant after some 

time, according to Fig. 15. A good agreement was found 
between the computational results obtained in the present 
work and the experimental correlation from Berenson [34]. 
Therefore, the computational results in this subsection con-
firmed the accuracy of the model for complex phase change 
problems using a diffuse interface treatment with accuracy 
and physical consistency.

According to the results from the simulations of film 
boiling with the development of Rayleigh–Taylor instabil-
ity, the diffuse interface treatment for pressure demonstrated 
good accuracy, which was confirmed by the validation of 
the local thermal transfer rate and the physical behavior 
expected from the theory of stability analysis according 
to the visualization of the baroclinic torque action in the 
simulations.

Fig. 14  Interface and mesh 
configuration a at the initial 
time of the simulation and b at 
the final time

Table 6  Assessment of mesh configuration in the simulations of film 
boiling

Time (s) Number of cells Mean Nusselt 
number difference 
(%)

AMR 57,600 172,000 2.5
Uniform grid 82,800 524,288 2.3

Fig. 15  Evolution in time of the mean Nusselt number in the film 
boiling simulation
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7  Conclusions

The present paper has pointed to a difference between mod-
eling phase change problems using the divergent form of 
the momentum equation and its non-divergent form. This 
difference was subjected to a quantitative analysis to evalu-
ate the importance of the additional force term in the non-
divergent form of the momentum equation. The numerical 
results showed no significant effects.

The influence of the recoil force was not noticeable in the 
evolution of the interface of a condensation bubble, even 
near the critical point. The quantification of the recoil force 
demonstrated that the surface tension forces dominate in 
importance the recoil term in the momentum equation. More 
studies in different applications are needed to determine 
whether modeling this force is relevant for phase change 
problems.

Phase change simulations with a constant mass density 
flux provided information about the occurrence of spuri-
ous currents and interface evolution in time using sharp 
and diffuse interface treatments for pressure. Phase change 
simulations using the Delta approach presented adequate 
numerical results, in accordance with the literature; however, 
the presence of spurious currents was observed in cases of 
high mass density fluxes. On the other hand, the simulations 
using the GFM method presented smaller spurious currents 
than the Delta method, even with a high mass density flux. 
The bubble radius prediction demonstrated no relevant dif-
ferences between either approach and the exact solution, for 
any of the simulations performed. The authors of the present 
paper conclude that the Delta method has potential as an 
interface treatment suitable for pressure for most parts of 
phase change rates, since the presence of spurious currents 
did not negatively influence the interface evolution.

Concerning the phase change simulations with a vari-
able mass density flux, the bubble radius prediction pre-
sented good agreement with an analytical solution for the 
bubble radius in the literature. The spurious currents had 
magnitudes close to the calculated interface velocity from 
the mass density flux, as previously seen in the literature 
for the Delta and GFM methods. Moreover, the numerical 
model presented results with grid independence and showed 
convergence to the reference validation results.

The AMR simulations promoted time saving by limiting 
the need for a fine uniform grid over the whole domain. 
Large computational costs were spared using AMR, because 
of the considerable reduction in the number of computa-
tional cells required. Moreover, accurate numerical results 
were obtained using AMR. Thus, AMR is suggested as an 
important numerical strategy to perform phase change simu-
lations. The AMR efficiency was computed in several cases, 
and similar results were obtained to those in the literature. 

In addition, the refinement criterion of interface presence 
was considered adequate to perform all the phase change 
simulations, providing results with good resolution and 
smaller computational costs compared to the simulations 
using uniform grids.

Lastly, simulations of film boiling exhibited the robust-
ness of the diffuse interface treatment for pressure in com-
plex problems with multiple interface discontinuities and 
challenging numerical conditions during the phase change.
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