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Abstract
In the present work, the rise of a single Taylor bubble through stagnant shear thinning liquids is numerically investigated. 
The non-Newtonian liquid rheology is modeled using the well-known Carreau–Yasuda viscosity function and the gas/liquid 
interface is captured by the volume of fluid method. 2D axisymmetric and 3D numerical results obtained by the finite vol-
ume method are strongly validated against available experimental measurements for Newtonian and shear thinning cases. A 
detailed parametric study is also undertaken in order to delineate and quantify the effect of viscosity variation of the liquid 
phase on the Taylor bubble rising in vertical tubes. It was shown that the rate of viscosity decline and the overall extent of 
viscosity variation significantly alter the main features of a slug flow including bubble rise velocity, liquid velocity field, 
bubble shape, wall shear stress, and the absence/presence of a liquid recirculation zone behind the gas bubble. A detailed 
account of these effects is provided in the present study.

Keywords  Slug flow · Shear thinning behavior · Taylor bubble · Volume of fluid (VOF) · Vertical tube

1  Introduction

Slug flow is a distinct gas/liquid two-phase flow regime 
which occurs in vertical pipes for moderate values of gas 
and liquid superficial velocities. The early researches on slug 
flows started more than 60 years ago [1–3]. The continuous 
rise of isolated long gas bubbles (called Taylor bubbles) is 
the main feature of slug flows, and these Taylor bubbles 
are separated from the pipe wall by a liquid falling film. 
Moreover, the space between each two consecutive Taylor 
bubbles is occupied by a liquid slug which itself may contain 
smaller gas bubbles. In a particular case, for a shear thinning 
slug flow, apparent viscosity of the liquid phase varies along 
the flow path and this non-Newtonian rheological behav-
ior affects the overall hydrodynamics of the two-phase flow 
most prominently the structure of the wake region formed 

behind the trailing edge of Taylor bubbles [4]. The flow pat-
tern map of two-phase non-Newtonian liquid–gas flows in 
vertical pipes presented by Dziubinski et al. [5] confirms 
the occurrence of the shear thinning slug flow for liquid/gas 
superficial velocities ranging from 0.1 to 1 m/s.

Slug flows are encountered in a wide variety of indus-
trial application including artificially assisted transport of 
reservoir fluids, gas-lift chemical reactors, volatile organic 
compounds (VOC) removal for producing high-quality 
polymer products [6], and slug flow through microchannels 
[7–9]. Due to shear thinning rheological behavior of various 
industrial fluids, the shear thinning slug flows have attracted 
a significant interest from the research community. In a pio-
neering work, Otten and Fayed [10] conducted a series of 
experiments for measuring the two-phase pressure drop of 
the shear thinning slug flows. It was reported that frictional 
drag reduces as the shear thinning behavior of the liquid 
phase intensifies. Void fraction and gas hold-up for shear 
thinning slug flows were measured by Rosehart et al. [11] 
and Terasaka and Tsuge [12].

In another experimental investigation, Niranjan et al. [13] 
examined the motion of a long CO2 bubble in shear thinning 
carboxymethyl cellulose (CMC) solutions. They proposed 
a well-designed correlation for the bubble rise velocity 
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accounting for non-Newtonian behavior of the CMC solu-
tion using an effective viscosity calculated at the effective 
shear rate of 𝛾̇eff = 2UTB∕D where UTB is the bubble rising 
velocity and D is the pipe diameter. The use of a proper 
effective shear rate was further justified by Carew et al. [14] 
who measured the rising velocity of a long bubble in shear 
thinning liquids. It was shown that the severity of fluid flow 
around gas bubbles in vertical slug flows causes a Newtonian 
plateau for the liquid rheological behavior to emerge where 
the corresponding apparent viscosity could be best corre-
lated by the local shear rate at the bubble nose (i.e., effective 
shear rate). Moreover, they confirmed that the effect of shear 
thinning behavior is more significant for smaller tubes.

Sousa et al. [6] experimentally visualized the flow of mul-
tiple CMC solutions with different concentrations around 
Taylor bubbles using the well-known PIV technique. For 
the very high concentration CMC solutions which possess 
strong non-Newtonian rheological behavior, a lacrimal shape 
for the Taylor bubble trailing edge was observed due to the 
so-called negative wake generated by the intense viscoelas-
tic effect [15, 16]. As the solution became less viscous, a 
concave trailing edge was observed and eventually at high 
enough Reynolds numbers the trailing edge of Taylor bubble 
became unstable and a 3D asymmetric flow field emerges. 
The stabilizing effect of viscosity for the shape of Taylor 
bubble trailing edge was also reported for the polyanionic 
cellulose (PAC) aquatic solutions [17].

Sousa et al. [4] later conducted a similar experimental 
study concerning the rise of Taylor bubble in polyacryla-
mide (PAA) solutions (another shear thinning and viscoe-
lastic liquid). A correlation was derived for the shape of 
Taylor bubble nose, and it was concluded that the flow field 
around the bubble nose was not strongly affected by the 
shear thinning behavior of PAA. However, a notably long 
liquid recirculation zone was observed at the wake of gas 
bubbles. This work was extended by Sousa et al. [18] to 
examine the interaction of two consecutive Taylor bubbles 
rising in a non-Newtonian shear thinning liquid. It was sug-
gested that the effect of liquid rheology on the bubble inter-
action become notable when the viscosity of the solution is 
relatively high and strong viscoelastic effects are present in 
the flow domain. Zhao et al. [19] proposed empirical cor-
relations for the slug velocity and length inside an aqueous 
poly (2-hydroxyethylmethacrylate) cryogel slug flow in a 
microchannel.

As an important step toward theoretical modeling of 
non-Newtonian slug flows, Picchi et al. [20] proposed a 
one-dimensional mechanistic model for the shear thinning 
slug flow in inclined pipelines. They modified the classi-
cal formulation of Newtonian slug flows to account for the 
variation of fluid viscosity. Moreover, a comprehensive 
experimental study was also undertaken on the slug flow 
characteristics including the slug length and frequency, and 

a reliable data set was collected on the pressure drop in non-
Newtonian liquid–gas two-phase flows.

More recently, computational fluid dynamics (CFD) has 
been utilized as a reliable tool for studying Newtonian slug 
flows. In the majority of these numerical studies, Taylor bub-
ble rising through a quiescent or moving liquid column has 
been considered as an important model problem for slug 
flows. Taha and Cui [21] performed axisymmetric and 3D 
simulations of Taylor bubbles rising in Newtonian liquids. 
The bubble rise velocity was predicted accurately using vol-
ume of fluid method, and behind the Taylor bubble, the tran-
sition from a closed axisymmetric to a closed un-axisym-
metric wake and from a closed un-axisymmetric wake to an 
open wake was recognized as the bubble rise velocity was 
increased. Kashid et al. [22] simulated the Newtonian slug 
flow in a microstructured reactor. The effect of co-current 
Newtonian liquid flow on a rising Taylor bubble was investi-
gated by Quan [23]. A comprehensive survey on the charac-
teristic of Newtonian Taylor rising bubbles, including bubble 
shape, liquid film thickness and velocity profile, bubble rise 
velocity, wall shear stress, and wake structure, is provided 
by Araújo et al. [24]. The effects of Reynolds number, cap-
illary number, and channel aspect ratio on the mixing and 
recirculation for a slug flow in a microchannel were analyzed 
numerically by Abadie et al. [25].

In the case of Taylor bubble rising in a non-Newtonian 
liquid, numerical studies are rare to be found. Ratkovich 
et al. [26] simulated the turbulent sodium CMC/air slug flow 
in a vertical tube using the power-law model. Araújo et al. 
[27] were the first who demonstrated the capability of VOF 
method coupled with the Carreau–Yasuda viscosity function 
in estimating the main flow characteristics of shear thinning 
liquid/gas slug flows. A series of axisymmetric numerical 
simulation was performed and the effect of liquid viscosity 
variation on the bubble rise velocity and the wake dimension 
was investigated.

In the present work, we are intended to numerically simu-
late the rise of a single Taylor bubble in a quiescent vertical 
column of a shear thinning liquid whose rheological behav-
ior is modeled by Carreau–Yasuda constitutive equation. 
Use will be made of the volume of fluid method and mainly, 
we are aimed at,

	 i.	 Extending the comparison between VOF numerical 
result for shear thinning Taylor bubble rising with the 
available experimental data for different concentra-
tions in order to delineate the capabilities and limi-
tations of such a standard CFD scheme in studying 
non-Newtonian slug flows.

	 ii.	 Examining the effect of various material constants of 
Carreau–Yasuda rheological model on the Taylor bub-
ble shape and the shear stress exerted by the pipe wall 
on the liquid falling film. This will further clarify the 
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extent in which non-Newtonian rheological behavior 
affects the two-phase slug flows.

	 iii.	 Advancing the numerical simulation of shear thinning 
slug flows toward larger bubble velocities (where an 
asymmetric flow pattern exists) using proper 3D simu-
lations.

2 � Mathematical formulation

2.1 � Problem description

In the present work, the rise of a single Taylor bubble in a 
vertical tube filled with a shear thinning liquid is numerically 
simulated. As the physical domain of the problem, a verti-
cal pipe with the diameter of (D = 0.032 m) and the length of 
(L = 11D) is considered. The length of pipe is chosen large 
enough so that the motion of a single Taylor bubble was not 
affected by the liquid inflow and outflow boundary conditions. 
Moreover, to control the computational cost, the problem is 
solved within a moving frame of reference attached to the 
bubble nose. In the moving frame of reference, the boundary 
conditions and the initial bubble shape is depicted in Fig. 1. As 
the initial shape of the gas bubble, a hemisphere attached to a 
vertical cylinder with the same diameter is used and the initial 
length of Taylor bubble is set at (3D). 2D axisymmetric and 
3D simulations are performed to track the motion and defor-
mation of a Taylor bubble rising through a non-Newtonian 
liquid and ultimately resolve the liquid flow field around the 
bubble nose and trailing edge.

2.2 � Governing equations

To model the rise of a long gas bubble in a shear thinning liq-
uid, a one-fluid formulation is adapted here in which a single 
set of governing equations is solved for both liquid and gase-
ous phases as follows [28, 29],

where (ρ, u, t and P) are density, velocity vector, time, and 
fluid pressure, respectively. Moreover, (fI) is the source term 
accounting for the surface tension at the gas/liquid interface 
and μ is the apparent viscosity of the mixture and (g) is the 
gravitational vector. In the context of volume of fluid method 
(VOF), the effective properties of the two-phase gas/liquid 
mixture are calculated using the gas volume fraction (α) as 
[28],

(1a)
��

�t
+ ∇ ⋅ (��) = 0

(1b)

𝜕(𝜌�)

𝜕t
+ ∇ ⋅ (𝜌�⊗ �) = −∇P + ∇ ⋅

[
𝜇
(
∇� + ∇�t

)]
+ 𝜌� + � I

(2a)� = ��g + (1 − �)�l

and subscripts ‘g’ and ‘l’ denote the gas and liquid phases, 
respectively. Moreover, the temporal evolution of gas vol-
ume fraction is governed by a first order advection equation 
as it is given in Eq. 3 [29]:

To model the surface tension force, the continuous surface 
force method (CSF) is employed and the corresponding 
source term in the momentum conservation law of Eq. 1b is 
approximated as [30] ( � is the local curvature and � is the 
surface tension coefficient),

(2b)� = ��g + (1 − �)�l

(3)
��

�t
+ � ⋅ ∇� = 0.

(4)�I = −��(∇�)

Fig. 1   The computational domain with relevant boundary conditions. 
(Z and Z* are measured from the bubble nose and the bubble tail 
respectively)
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Finally, to account for the non-Newtonian behavior of the 
liquid phase, use is made of the Carreau–Yasuda viscosity 
function [31] as follows:

where 
(
�0,�∞

)
 are the zero-shear rate and infinity shear 

rate viscosities which are the maximum and minimum val-
ues of the viscosity function. ( 𝛾̇ ) is the shear rate and n is 
the power-law index which controls the slop of viscosity 
decline from its maximum value of ( �0 ) to its minimum 
value of ( �∞ ). Additionally, (a) and (λ) are two coefficients 
which bring more flexibility to the viscosity function. The 
Carreau–Yasuda viscosity function depicts two Newtonian 
plateaus at very low and very high shear rates with the cor-
responding viscosities of 

(
�0,�∞

)
 and a power-law shear 

thinning region with the slop of (n − 1) between these two 
plateaus. The curvature of viscosity function transition from 
Newtonian plateaus to the power-law region is determined 
by the coefficient (a) and the coefficient (λ) sets the value 
of threshold shear rate at which transition to shear thinning 
behavior occurs. The values of these material properties are 
given in Table 1.

2.3 � Non‑dimensional numbers

In shear thinning slug flows, the rising velocity of gas bub-
bles ( UTB ) and the final shape of Taylor bubbles are deter-
mined by the interaction of the gravity, buoyancy, viscous 
drag and inertia forces. Therefore, the relevant non-dimen-
sional numbers for this two-phase flow are Eotvos number 
(Eo), Morton number (M), viscosity ratio number (S), and 
power-law index (n) which are defined as:

where the viscosity ratio number represents the extent of vis-
cosity variation in liquid phase and (n) regulates the inten-
sity of viscosity reduction for the non-Newtonian Carreau 
fluid. Eotvos number is the ratio of buoyancy to the surface 
tension force and the normalized velocity is represented by 
the Froude number. In the following sections, the numerical 

(5)
𝜇l − 𝜇∞

𝜇0 − 𝜇∞

=
[
1 + (𝜆𝛾̇)a

] n−1

a

(6)
Eo =

g(�l−�g)D2

�
M =

g�∞(�l−�g)
�2
l
�3

Fr =
UTB√
gD

S =
�∞

�0

results will be presented using aforementioned non-dimen-
sional numbers.

3 � Numerical method

Axisymmetric and 3D simulations were performed on rec-
tangular and quadrilateral uniform structured grids depicted 
in Fig. 2 for the 3D case. A detailed mesh size study was 
undertaken, and it was concluded that using a mesh size 
of 52 × 1144 in radial and axial directions for axisymmet-
ric simulations and a uniform mesh with 816,533 volume 

Table 1   The physical 
parameters of the problem

CMC wt% �
l
 (kg/m3) �

0
 (Pa s) �∞ (Pa s) λ (s) a n

0.4 0.6751 0.8087 0.1099 0.001 0.1102 995.7
0.6 0.5745 0.8317 0.1828 0.001 0.3602 1000.3
0.8 0.4343 0.6610 0.2214 0.001 1.0497 945.1
1 0.3997 0.6683 0.3653 0.001 2.9899 1027.676

Fig. 2   Numerical mesh for the 3D simulations
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elements for the 3D simulations provide accurate and mesh 
independent numerical results. In order to initialize the 
numerical simulation, the translational velocity of the mov-
ing reference frame (V) is approximated by the available cor-
relation for the Taylor bubble velocity ( UTB ) in Newtonian 
slug flow as [32],

The velocity of the moving frame is updated at each time 
step according to Eq. 8 in which ( �n ) is the position vector 
of the bubble nose at the nth time step.

Moreover, to accelerate the convergence of the problem, 
the liquid film thickness ( � ) is also initialized according to 
the available correlations for the Newtonian slug flows as 
follows [33],

The governing equations are discretized using the finite 
volume method. The convective fluxes are approximated 
using the second-order upwind scheme and the central 
differencing is utilized for the diffusive fluxes. The pres-
sure–velocity coupling is handled using the well-known 
SIMPLE pressure correction method. A constant surface 
tension is also applied at the gas/liquid interface. To cap-
ture the bubble shape, use is made of the linear geometrical 
reconstruction algorithm of Young’s [34]. All the simulation 
is performed with the Courant number of 0.25 and the con-
vergence criterion for all the flow variables are set at 10−6.

3.1 � CFD code verification

In order to ensure our readers about the accuracy and reli-
ability of the CFD code used in the present work, a compari-
son is drawn between the numerical result and the available 
experimental data for the rise of a single Taylor bubble in a 
stagnant vertical column of a Newtonian liquid. In Fig. 3, the 
computed liquid velocity profiles in three regions (which are 
relevant to the slug flow hydrodynamics), including above 

(7)
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1∕3

the bubble nose, within the falling film and in the bubble 
wake, are depicted and compared to the corresponding 
experimental data presented in Refs. [35, 36] for the case of 
(Eo = 187.03 and M = 0.00431).

As it can be seen, a favorable agreement exists between 
the numerical result and the experimentally measured data 
for the liquid velocity. Moreover, the bubble rise velocity is 
estimated at 0.2311 m/s by the numerical code which devi-
ates less than 3% from the corresponding experimental value 
of 0.2259 m/s and this further corroborates the accuracy of 
our numerical code. Being done with the validation of our 
numerical code, we now proceed with the presentation of 
numerical results for Taylor bubble rising in shear thinning 
liquids.

4 � Result and discussion

In this section, we are going to present the numerical results 
of a single Taylor bubble rising in a shear thinning liquid. At 
first, the rise of a Taylor bubble through a stagnant vertical 
column of CMC aquatic solutions with different concentra-
tions is investigated and the numerical results are compared 
to the available experimental data of flow visualization by 
PIV technique [6] in order to determine the strengths and 
weaknesses of the present coupled VOF/non-Newtonian for-
mulation in predicting various feature of such a non-Newto-
nian two-phase flow. Subsequently, we will focus on inves-
tigating the effect of viscosity ratio number and power-law 
index on the Taylor bubble shape and wall shear stress dur-
ing the rise of a Taylor bubble and we are intended to quan-
tify the extent in which non-Newtonian rheological behavior 
of liquid phase affects the shear thinning slug flows.

For a viscoelastic fluid like CMC solutions, Deborah 
number is defined as De = �relax

tp
 ; where (�relax) is the relaxa-

tion time which is defined as an intrinsic timescale of the 
material necessary for the adaptation of the fluid microstruc-
ture to an externally imposed shear stress/deformation and 
(tp) is the time scale of observation (or the flow time scale 
(tp= D/UTB). From the definition of Deborah number, it can 
be deduced that the higher the Deborah number is, the more 
intense viscoelastic effects are present within the flow field 
and in contrast if the Deborah number is small enough for a 
particular flow, the viscoelastic effects can be neglected all 
together.

Experimental measurements of Sousa et al. [6] revealed 
that for the Taylor bubble rising in CMC solutions, De num-
ber will be less than 10−3 if the CMC concentration remains 
below 0.6 wt%. Therefore, in this case (for the low to mod-
erate CMC concentrations) the viscoelastic response of the 
CMC solution to the bubble rising is extremely small, and 
as a result, the inelastic Carreau viscosity function can be 
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used to accurately represent the rheological behavior of such 
CMC solutions. On the contrary, for the CMC concentra-
tions ranging from 0.8 to 1 wt%, the Deborah number is 
of order of 10−1 and therefore non-negligible viscoelastic 
effects are present around the rising Taylor bubble. For 
these high concentration CMC solutions, the use of a com-
plex nonlinear viscoelastic model (e.g., Giesekus model or 
White–Metzner model) is mandatory to fully capture the 
corresponding rheological behavior and the use of the inelas-
tic Carreau model for highly concentrated CMC solutions 
is prone to a certain level of error. Adapting a nonlinear 
viscoelastic model is well beyond the scope of the present 
study. However, in the subsequent section, by comparing 
the experimental data with the numerical solutions obtained 
by the Carreau–Yasuda viscosity curve fitted to CMC rheo-
grams for the range of 0.8–1 wt%, the level of approximation 
in the use of this inelastic model for simulating the Taylor 
bubble rising will be investigated comprehensively.

4.1 � Taylor bubble rising in CMC solutions

An aquatic CMC solution is a shear thinning fluid which 
also exhibits strong viscoelastic behavior provided that the 
concentration of CMC would be high enough. Moreover, 
increasing the concentration of CMC increases the solution 

viscosity and intensifies its non-Newtonian shear thinning 
and viscoelastic rheological behavior. As it was mentioned 
earlier, Sousa et al. [6] conducted a comprehensive experi-
mental study and flow visualization on the rise of Taylor 
bubbles in stagnant CMC solutions with CMC concentra-
tions ranging from 0.1 to 1 wt%. The shear viscosity of CMC 
solutions could be perfectly correlated by the Carreau–Yas-
uda viscosity function [6]. Therefore, we simulated the Tay-
lor bubble rising through CMC solutions with different con-
centrations using the specifications of Sousa’s experimental 
study in order to demonstrate the strength of our numerical 
approach for investigating non-Newtonian slug flows.

In Fig. 4a, the shape of bubble nose predicted by the 
numerical code is illustrated against the experimental data. 
As it can be seen, for various values of CMC concentrations, 
the bubble nose keeps its semi-spheroidal shape; however, 
the mean curvature of the bubble nose and the maximum 
bubble radius decreases as the CMC concentration increases. 
The agreement between the experimental and numerical data 
is satisfactory especially when the CMC concentration is 
lower than 0.8 wt% above which a strong viscoelastic effect 
is present in the flow field that could not be modeled by the 
inelastic Carreau–Yasuda constitutive equation.

Additionally, around the bubble nose, the liquid phase is 
first propelled upward and then pushed away from the pipe 

Fig. 3   Comparison between 
present computations and 
experimental data of Nogueira 
et al. [35, 36] for Newtonian 
liquid phase velocity profile 
at: a Bubble nose, b developed 
falling film, c bubble wake 
(Eo = 187.03, M = 0.00431)
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centerline by the bubble ascending motion. As a result, large 
positive axial velocities (in upward direction) are observed 
around the pipe axis; on the other hand, in the vicinity of 
pipe wall the sign of axial velocity changes due to the for-
mation of a liquid falling film which surrounds the Taylor 
bubble. The volume of fluid method is well capable of pre-
dicting the aforementioned velocity field around the bubble 
nose as it is depicted in Fig. 4b. Moreover, due to fierce 
velocity gradient around the Taylor bubble nose, intense 
viscosity variation occurs in this region which affects the 
liquid velocity field around the bubble nose and the excellent 
agreement between numerical and experimental values of 
liquid velocity for the 1.0 wt% CMC solution (possessing the 
strongest non-Newtonian viscosity variation in the present 
study) confirms that the Carreau–Yasuda viscosity model 
could perfectly capture the non-Newtonian shear thinning 
rheological behavior of CMC solutions around the Taylor 
bubble nose in the slug flows.

According to Fig. 4c, the liquid velocity decreases with 
increasing the CMC concentration. It could be explained 
mentioning that the viscosity of CMC solution elevates as 
the CMC concentration increases and this reduces the liq-
uid velocity throughout the flow domain. Subsequently, the 
liquid film jet is dissipated strongly immediately after the 
trailing edge of the Taylor bubble, and as it is shown in 
Fig. 5, no distinct wake is observed behind the Taylor bubble 

in 1 wt% CMC solution and the relative streamlines moves 
away from the bubble so that no liquid transport occurs for 
this high concentration CMC solution. The transition from 
a closed wake to a no-wake flow pattern is realized by the 
numerical solution accurately as it was reported by experi-
mental visualizations (see Fig. 5).

Another important feature of slug flows is the shape of 
Taylor bubble trailing edge and the structure of liquid flow 
field immediately behind this trailing edge. For the rise of a 
single Taylor bubble in CMC solutions, three different pat-
terns are reported for the shape of bubble trailing edge [6], 
including an unstable and asymmetric shape for low CMC 
concentrations (below 0.3 wt%), a symmetric concave shape 
for moderate CMC concentrations (0.4 –0.6 wt%) and a sym-
metric convex teardrop shape for high CMC concentrations 
(above 0.8 wt%). As a result, 2D axisymmteric simulations 
are only valid for the moderate to high CMC concentrations 
where the trialing edge instability does not prevail.

In Fig. 6, the numerically predicted shape of Taylor bub-
ble tail in CMC solutions is compared to the correspond-
ing real image of the bubble for axisymmetric cases. As 
it can be seen, the numerical simulation could success-
fully capture the concave shape of bubble trailing edge for 
the 0.4 and 0.6 wt% CMC solutions. The major deviation 
between numerical and experimental data is observed for 
the 0.8 wt% CMC solution where a flat bottom is predicted 

Fig. 4   The comparison between 
present computations and 
experimental data of Sousa 
et al. [6]: a Bubble nose profile, 
b vertical component of the liq-
uid velocity along Z = 0 for the 
1.0 wt% CMC solution, c axial 
liquid velocity along the line of 
Z* = 0.2D 
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by the numerical solution for the Taylor bubble instead of 
the teardrop shape captured in the experimental visualiza-
tion by Sousa et al. [6]. This discrepancy between numerical 
and experimental data could be easily justified noting that 
the convex bottom shape of the bubble is formed due to 
extra-normal forces experienced by liquid elements in highly 
viscoelastic 0.8 wt% CMC solution which forces the bubble 
to contract in its trailing edge. These viscoelastic effects are 
absent from our theoretical formulation of the problem (by 
using inelastic Carreau–Yasuda model), and as a result, our 
numerical code could not predict the convex bottom shape of 
the Taylor bubble in high concentrations of CMC solutions. 
To remedy this problem, a nonlinear viscoelastic model 
needs to be utilized for accurate representation of aquatic 
CMC solution rheological behavior.

As it was mentioned earlier, for the rise of long gas bub-
bles in low concentration CMC solutions where the liquid 

viscosity is relatively low, an asymmetric liquid flow pat-
tern was observed by Sousa et al. [4] immediately behind 
the bubble. Therefore, to simulate theses high-velocity 
bubble rising problems, the use of a 2D-axisymmetric 
geometry is not acceptable and 3D simulations are manda-
tory. In the present work, 3D simulations are performed for 
the Taylor bubble rising in 0.1 and 0.3 wt% CMC solutions 
for which experimental measurements are available. To 
evaluate the performance of such numerical simulation, in 
Fig. 7, the obtained velocity profile around the bubble nose 
is compared to the corresponding experimental data for 
0.1 wt% CMC solution and as it can be seen, the deviation 
of numerical results from experimental measurements is 
extremely small. Moreover, our 3D simulations are able to 
predict the bubble rise velocity for 0.1 and 0.3 wt% CMC 
solutions with the maximum deviation of around 2%.

Fig. 5   Numerical streamlines in 
the wake of a Taylor bubble ris-
ing in 0.4 wt% and 1 wt% CMC 
solutions in a reference frame 
moving with the bubble

Fig. 6   Present numerical data 
and experimental photographs 
(Sousa et al. [6]) of bubble 
trailing edge shape for different 
concentrations of CMC solution 
(Dashed lines represent the 
numerical bubble profiles super-
imposed on the experimental 
images) (The permission for the 
reuse of the pictures is granted 
by Elsevier under license num-
ber 4473650674680)
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Temporal evolution of the Taylor bubble shape is illus-
trated in Figs. 8 and 9 for 0.1 and 0.3 wt% CMC solutions. 
As it can be seen, bubble trailing edge oscillates strongly 
due to the very high-velocity jet detaching from the bubble 
tail as the liquid leaves the annulus between Taylor bubble 
and the pipe wall. Moreover, small gas bubbles shed form 
the Taylor bubble as a result of strong instabilities of Taylor 
bubble tail. The small bubbles travel upward accompany-
ing the main gas bubble and the bubble shedding intensifies 
with the reduction of CMC concentration as it is illustrated 
in Figs. 8 and 9. This trend can be easily justified knowing 
that the liquid velocity surrounding the Taylor bubble grows 
notably as CMC concentration and subsequently liquid vis-
cosity reduces.

As it is outlined in this section, the non-Newtonian rheo-
logical behavior of liquid phase strongly affects the hydro-
dynamic features of slug flows, including the shape of Taylor 
bubbles, the liquid velocity profile and the liquid flow pat-
tern near the bubble tail, and the numerical methodology 

Fig. 7   Comparison between 3D numerical results and the experimen-
tal data of Sousa et al. [6] for vertical component of the liquid veloc-
ity along Z = 0 for the 0.1 wt% CMC solution

Fig. 8   Temporal evolution of 
Taylor bubble shape in 0.1 wt% 
CMC solution

t = 0.4 s t = 0.75 s t = 0.95 s t = 1.150 s t = 1.250



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:48

1 3

48  Page 10 of 18

employed in the present study could favorably realize these 
features and their alteration due to non-Newtonian liquid 
rheology. This effect stems from two sources: first the extent 
of viscosity variation represented by the viscosity ratio num-
ber (S) and secondly the rate of viscosity variation with the 
shear rate uniquely controlled by the power-law index (n) in 
Carreau–Yasuda viscosity function. To clarify the influence 
of these two key parameters on shear thinning slug flows, 
a detailed numerical inquiry is conducted in two following 
sections where the main focus will be placed on the effect 
of non-Newtonian liquid rheology on the shape of Taylor 
bubbles and the wall shear stress applied to the liquid film.

4.2 � The effect of power‑law index (n)

As it is shown in Fig.  10a, when power-law index (n) 
decreases in Carreau–Yasuda viscosity function, the slop of 
viscosity decline grows, and as a result, more intense viscos-
ity variation is experienced by the modeled shear thinning 

fluid. Therefore, for a fixed value of shear rate, the appar-
ent viscosity decreases by any reduction in the value of (n) 
and additionally limiting infinity shear rate ( �∞ ) is reached 
at lower shear rates. Thus, it is expected that the effect of 
power-law index on a shear thinning slug flow is significant 
and we devote the present section to investigate this effect. 
To that end, we fix the other relevant non-dimensional num-
ber at ( Eo = 62.43, M = 2.41 × 10−12, S = 0.0045 which 
are adapted from the CMC solution with 0.4% wt) and we 
will study the effect of (n).

In Fig. 10b, the shape of Taylor bubble nose is depicted 
for four different power-law indexes. As it can be seen, as 
the power-law index decreases, the frontal radius (the mean 
curvature radius of the bubble nose) of the bubble increases. 
Moreover, the maximum radius of the bubble ( Rmax ) is a 
linear function of (n) as it is shown in Fig. 10c. However, the 
overall shape of the bubble front remains the same for vari-
ous values of the power-law index. The radial expansion of 
a Taylor bubble rising in a non-Newtonian liquid when the 

Fig. 9   Temporal evolution of 
Taylor bubble shape in 0.3 wt% 
CMC solution

t = 0.4 s t = 0.8 s t = 1 s t = 1.180 s t = 1.450
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Fig. 10   The effect of power-law 
index (n) on: a the Carreau–
Yasuda viscosity function, b 
bubble nose profile, c bubble 
maximum radius

Fig. 11   The liquid velocity 
vectors and bubble shape for: a 
n = 0.4 and b n = 0.9, The effect 
of power-law index (n) on c the 
velocity profile of liquid phase 
at the bubble nose, d the fully 
developed liquid velocity profile 
across the falling film
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shear thinning behavior of the liquid phase intensifies is also 
evident in Figs. 11a, b, where the bubble shape is presented 
for two different values of (n).

Moreover, the liquid velocity at the bubble front is not 
affected notably by the strength of non-Newtonian rheo-
logical behavior of the liquid phase as it is illustrated in 
Fig. 11c in which the liquid velocity profiles at the bubble 
nose are given for different values of (n). As the power-
law index is lowered, the liquid viscosity decreases accord-
ingly and subsequently the liquid axial velocity increases. 
The elevation of liquid velocity throughout the falling film 
(which can be seen in Fig. 11d where the fully developed 
liquid film velocity profiles are given for various power-law 
indexes) increases the fluid discharge rate out of the annular 
gap formed between the gas bubble and the pipe wall, and 
this trend reduces the thickness of the falling film which 
surrounds the gas bubble. As a result, the gas bubble grows 
in the radial direction and contracts in the axial direction to 
preserve the continuity of the gas bubble mass. (Please, see 
Fig. 11a, b.)

Another important feature of slug flows is the wall shear 
stress exerted on the falling film which plays a major rule in 
the pressure loss associated with this particular gas/liquid 
flow pattern. Therefore, in Fig. 12a, the variation of wall 
shear stress in axial direction is depicted. As it can be seen, 
the variation of wall shear stress is a strong function of the 
film thickness. Around the bubble nose where the falling 
film starts to form, a sharp increase in the value of wall 
shear stress is detectable. The wall shear stress continues to 
grow in the axial direction as the liquid film moves further 
away from the bubble nose and the film becomes thinner. 
Ultimately, the film thickness reaches its maximum value 
and after that a fully developed region emerges for which the 
wall shear stress remains essentially constant. However, the 
distance from the bubble nose upon which the shear stress 
reaches its peak increases with the reduction of (n). Around 
the gas bubble trailing edge by the propulsion of the liquid 
film out of the space between the pipe wall and the Taylor 
bubble, a sharp decrease in the wall shear rate is observed.

According to Fig. 12a, for the value of (n) as low as 0.4, 
it seems that no constant plateau is reached in the wall shear 
stress profile due to fierce viscosity variation and the fall-
ing flow continues to develop along the entire length of the 
Taylor bubble. For this case, the film thickness continuously 
declines and this increases the shear rate at the pipe wall, 
and as a result, the wall shear stress grows until the bub-
ble bottom is reached. This descending behavior substitutes 
the constant plateau observed in the shear stress profile for 
higher power-law indexes. Moreover, the effect of the liquid 
phase rheology on the value of wall shear stress is crucial. 
The wall shear stress is an increasing function of (n) and 
for lower power-law indexes the skin friction on the falling 
film is smaller. Therefore, in comparison with the Newtonian 

slug flow, shear thinning slug flows are subjected to lower 
pressure losses, a deduction which is perfectly corroborated 
by the experimental measurements by Otten, Fayed [10].

The liquid flow pattern behind the bubble tail is also 
expected to be affected by the power-law index. This stems 
from the fact that the velocity of liquid jet near the bubble 
trailing edge is a strong function of the intensity of non-
Newtonian shear thinning behavior or equivalently power-
law index (n). As it is shown in Fig. 12b, as the power-
law index increases, the fluid velocity reduces near the 
gas bubble tail. This reduction in liquid velocity weakens 
the possibility of wake formation behind the bubble tail. 
This assumption is confirmed in Fig. 13 in which the liquid 
streamlines are illustrated around the Taylor bubble. Accord-
ing to this figure, for the case of (n = 0.4) a strong recircu-
lation zone is formed behind the bubble and a long wake 
appears in the flow domain which is a prominent feature in 
studying the interaction of consecutive Taylor bubbles in a 
real slug flow.

However, as the power-law index increases and the liquid 
apparent viscosity elevates, the liquid expands immediately 

Fig. 12   a the axial profile of wall shear stress for different power-law 
indexes, b the liquid velocity profile along the line (Z* = 0.2D) for 
different power-law indexes
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after leaving the falling film. This phenomenon weakens 
the liquid recirculation adjacent to the bubble tail, and as 
a result, the length of wake ( Lwake ) decreases significantly. 
To quantify this observation, in Table 2, the length of bub-
ble wake is presented for different values of (n). Accord-
ing to the table, more than 80% reduction in wake length 
occurs when the power-law index is raised from 0.4 to 0.8. 
As it can be seen in Fig. 13 and Table 2, the wake region 
completely vanishes for (n = 0.9). It is also of interest to 
examine the shape of Taylor bubble trailing edge and its 
evolution with the severity of shear thinning behavior. The 
task is undertaken in Fig. 13 as well, where the bubble pro-
file is illustrated for different values of (n) ranging from 0.4 
to 0.9. As it can be seen, a pronounced concave shape is 
reported for lower power-law indexes and as (n) grows the 
bubble bottom flattens significantly. Finally, in Fig. 14, the 

(non-dimensional) bubble rise velocity is illustrated vs. the 
power-law index (n). As it can be seen, the bubble rise veloc-
ity increases as the liquid becomes more shear thinning.

4.3 � The effect of viscosity ratio number (S)

According to its definition, viscosity ratio number (S) deter-
mines the extent of apparent viscosity variation for a shear 
thinning liquid. As (S) is increased, the fluid viscosity for a 
particular shear rate tends toward the infinity shear rate vis-
cosity (i.e., the minimum fluid viscosity), and as a result, the 
shear thinning liquid becomes less viscous. Therefore, it is 
expected that the relevant features of a non-Newtonian slug 
flow strongly depend on the value of viscosity ratio number 
and thus we devote the present section of our manuscript to 
fully examine the effect of (S) on the Taylor bubble rising 

Fig. 13   Liquid streamlines in 
a moving frame of reference 
attached to the bubble for: a 
n = 0.4, b n = 0.6, c n = 0.8, d 
n = 0.9
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problem. To that end, we fixed (Eo and M) numbers at 62.43 
and 2.41 × 10−12, respectively, and simulated the rise of a 
single Taylor bubble in four different shear thinning liquids 
with four different values of (S) and the identical power-law 
index of 0.68.

The effect of (S) on the liquid velocity field around the 
Taylor bubble is investigated in Fig. 15. With the increase in 
viscosity ratio number, the liquid viscosity decreases and this 
promotes the liquid transport through the flow domain. The 
effect of (S) on the velocity profile is most notable in the fall-
ing film and within the bubble wake, and, in contrast, around 
the bubble nose, the effect of (S) is less significant. The 
increase in liquid film velocity with (S) supports the formation 
of a wake region behind the Taylor bubble. As it is depicted 
in Fig. 16, for smaller values of (S), no wake is observed in 
the liquid flow field. However, a strong wake region attached 
to the bubble tail emerges as (S) is elevated and the length of 
bubble wake is an increasing function of (S). (See Table 3.)

The shape of bubble nose and tail is illustrated in Fig. 17 
for different values of (S). For all the cases considered, the 
bubble tail profile is concave, and, additionally, the radius of 
curvature at the bubble trailing edge is an increasing func-
tion of (S). The same trend is observed for the frontal bubble 
radius (see Fig. 17a). The effect of (S) on the wall shear stress 

Table 2   Bubble velocity and 
length of the bubble wake for 
different values of n 

n UTB (m/s) Lwake/D

0.4 0.1749 1.0846
0.6 0.1713 0.5585
0.8 0.1663 0.2710
0.9 0.1567 0

Fig. 14   The Froude number (non-dimensional bubble rise velocity) 
as a function of the power-law index

Fig. 15   Liquid velocity profiles 
for 3 different values of “S” at: 
a bubble nose, b falling film, c 
bubble tail
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is presented in Fig. 18. Naturally, the shear stress exerted 
on the liquid film from the pipe wall reduces with (S) as the 
fluid becomes less viscous and its resistance against flowing 
diminishes. Once again, the constant plateau of wall shear 
stress profile completely vanishes as viscosity ratio number 
increases. Finally, the liquid frictional drag reduction with 
(S) promotes the rise of gas bubbles and subsequently the 
bubble rise velocity increases as (S) increases. (See Fig. 19.)

5 � Conclusion

Numerical simulations were performed in the present study 
to track the rise of long gas bubbles through non-Newtonian 
shear thinning Carreau–Yasuda fluids. The volume of fluid 

(VOF) method was adapted here and a finite volume based 
two-phase flow solver was developed. To verify the accuracy 
and reliability of the numerical code, the code was employed 
to simulate the rise of a single Taylor bubble in shear thin-
ning CMC solutions for which an extensive experimental 
database had been previously published. It was shown that,

1.	 The ellipsoidal shape of Taylor bubble nose is accurately 
predicted by the VOF method.

2.	 The numerical simulation is able to favorably capture 
axial velocity profiles of the non-Newtonian liquid 
throughout the flow domain including: around the bub-
ble nose, at the falling film and within the bubble wake.

3.	 As for the shape of bubble bottom, in the range of 0.4–
0.8 wt% CMC concentration a good agreement exists 

Fig. 16   Streamlines for a 
S = 0.0125, b S = 0.01, c 
S = 0.003, d S = 0.002
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between the experimental visualization and the concave 
shape predicted by the numerical code. However, for 
high concentration CMC solutions (> 0.8 wt%), a flat 
bottom is resulted from the numerical simulation which 
does not match the teardrop shape of the Taylor bubble 
observed in the experiment. The discrepancy stems from 
the inability of Carreau–Yasuda model to model the 
strong viscoelastic effects of high concentration CMC 
solutions.

4.	 The occurrence of a closed axisymmetric wake behind 
the bubble tail is realized in numerical solution in a per-
fect accordance with the experimental data for CMC 
concentrations ranging from 0.4 to 0.8 wt%.

5.	 The transition from a closed wake to no-wake flow pat-
tern is predicted by the numerical simulation as the con-
centration of CMC increases to 1 wt%.

6.	 For 0.1 and 0.3 wt% CMC solutions, the occurrence of 
an asymmetric flow pattern is successfully realized by 
3D numerical simulations. For these two cases, severe 
oscillations are observed at the bubble tail profile and 
bubble shedding is reported. Moreover, no closed wake 
is detectable behind the Taylor bubble.

As the next step, the effect of two prominent Car-
reau–Yasuda model constants (i.e., the power-law index and 
the viscosity ratio number) on the rise of a long gas bubble 
was investigated comprehensively in the present study. The 
power-law index (n) governs the rate of viscosity reduction 
of the liquid phase and it was revealed that with any reduc-
tion in the value of (n):

1.	 The frontal radius of the Taylor bubble and its maximum 
radius grows (the bubble expands in radial direction and 
the liquid film thickness reduces).

2.	 The full development of the liquid film (which surrounds 
the long gas bubble) is postponed and for a low enough n 

Table 3   The bubble velocity 
and length of the bubble wake 
for different values of S 

S UTB (m/s) Lwake/D

0.0125 0.1857 1.0873
0.01 0.1821 0.9200
0.003 0.1584 0
0.002 0.1435 0

Fig. 17   The effect of (S) on bubble shape for: a bubble nose profile, b 
bubble tail profile

Fig. 18   The axial profile of wall shear stress for different values of 
“S”

Fig. 19   The Bubble rise velocity as a function of the viscosity ratio 
number
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(n < 0.4), the development of the liquid falling film never 
ceases along the gas bubble.

3.	 The frictional drag between liquid falling film and the 
pipe wall reduces and subsequently the bubble rising 
velocity increases.

4.	 The length of bubble wake increases and a more pro-
nounced concave profile is observed for the bubble trail-
ing edge.

As the final part of this study, the effect of viscosity ratio 
number (S) was thoroughly addressed. This non-dimensional 
number determines the range of shear viscosity exhibited by 
the non-Newtonian liquid, and as a result, it influences the 
increase in Taylor bubbles. It was deduced that the length 
of bubble wake and the bubble rising velocity are increasing 
functions of (S). The wall shear stress decreases with (S) and 
the deformation of bubble tail becomes more notable.
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