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Abstract
Fault diagnosis of rotating machinery has always been being a challenge thanks to the various effects of nonlinear factors. 
To address this problem, combining the concepts of improved singular spectrum decomposition with 1.5-dimensional 
energy spectrum in this paper, a novel method is presented for diagnosing the partial faults of rotating machinery. Within 
the proposed algorithm, waveform matching extension is firstly introduced to suppress the end effect of singular spectrum 
decomposition and obtain several singular spectrum components (SSCs) whose instantaneous features have physical mean-
ing. Meanwhile, a new sensitive index is put forward to choose adaptively the sensitive SSCs containing the principal fault 
characteristic signatures. Subsequently, 1.5-dimensional energy spectrum of the selected sensitive SSC is conducted to 
acquire the defective frequency and identify the fault type of rotating machinery. The validity of the raised algorithm is 
proved through the applications in the fault detection of gear and rolling bearing. It turned out that the proposed method can 
improve signal’s decomposition results and is able to detect effectively the local faults of gear or rolling bearing. The studies 
provide a new perspective for the improvement in damage detection of rotating machinery.

Keywords  Improved singular spectrum decomposition · Sensitive index · 1.5-Dimensional energy spectrum · Rotating 
machinery · Fault diagnosis

1  Introduction

Research on fault detection of rotating machinery has drawn 
much attention in recent years. Gear and bearings are the 
major parts of rotating machinery and widely used in many 
industrial fields. These essential parts appear failure easily 
owing to the adverse working conditions of rotating machin-
ery [1]. Hence, to avoid the expensive maintenance cost and 
ensure the safety and stability running of machines, timely 
diagnose faults appeared on gear and bearings are valuable. 
Furthermore, when a partial fault developed in gear or bear-
ing, the measured vibration signal is usually characterized by 
nonlinear and nonstationary and its fault features are easily 
submerged by stochastic noise, so it is difficult to acquire 
efficiently fault signatures from vibration waveform solely 

using the time domain or frequency domain analysis [2]. 
Based on that, it is very necessary to put forward an effective 
method for detecting faults.

Currently, time–frequency analysis (TFA) has been 
proved to be a well-accepted technique since it can reveal 
time–frequency characteristics simultaneously [3]. Typi-
cal TFA algorithms have short-time Fourier transform 
(STFT) [4], Wigner–Ville distribution (WVD) [5] and 
Wavelet transform (WT) [6]. However, these techniques 
have their own limits for nonstationary signal processing. 
For instance, STFT suffers from low resolution and fre-
quency trajectory blurs. For the superposed signal, WVD 
can obtain a favorable time–frequency pattern, but the 
inherent cross-term restricts its application field. WT has 
higher frequency resolution, but it is short of self-adapted 
ability because of the artificial selection of wavelet basis 
and levels. Thus, motivated by the above algorithms, some 
adaptive signal processing techniques are developed, such 
as empirical mode decomposition (EMD) [7], local mean 
decomposition (LMD) [8], intrinsic timescale decomposi-
tion (ITD) [9], empirical wavelet transform (EWT) [10], and 
variational mode decomposition (VMD) [11]. The literature 
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survey shows that five ways (i.e., EMD, LMD, ITD, EWT, 
and VMD) have been smoothly applied in the field of fault 
detection [12–15]. Nevertheless, there are still some ter-
rible problems in these developed self-adaptive methods. 
For instance, in the practical application of EMD, some 
drawbacks such as the end effect, mode mixing, envelope 
overshoot, and undershoot will emerge. As a perfection of 
EMD, LMD also encounters the end effect and mode mixing 
issue. Also, decomposition ability of LMD greatly rests with 
the step length choice of moving average, and the improper 
moving step length will produce the imprecise decomposi-
tion results. ITD is quite appropriate for the disposing of 
nonstationary signals, but it is liable to result in a wave-
form burr and curve distortion since the utilization of linear 
transformation. EWT is a useful tool for mechanical fault 
detection, but it has the segmentation problem of Fourier 
spectrum. VMD can be effectively used for the denoising 
of nonstationary signal, but performance of VMD largely 
relies on its preset mode number. Consequently, research 
on a novel and effective TFA technique is the highlight of 
this article.

Lately, Bonizzi et al. [16] presented a new adaptive sig-
nal processing algorithm, which is called singular spectrum 
decomposition (SSD) that is able to divide a hybrid signal 
into a sequence of singular spectrum components (SSCs) 
and reduce immensely the emergence of false content. At 
present, SSD has been successfully applied to data analysis 
of ocean field and ECG signal [17], but rarely used in fault 
detection. In view of this, this paper introduces SSD to ana-
lyze the real fault data. Unpleasantly, as with EMD, SSD 
may also possess the end effect in the practical application. 
Therefore, to avert this phenomenon, the improved singular 
spectrum decomposition (ISSD) is raised, which is able to 
suppress effectively the end effect and decompose a com-
bined signal into several SSCs from high to low frequency. 
To further extract the feature signatures of SSCs, the appro-
priate spectrum analysis technique needs to be applied.

1.5-dimensional spectrum is the particular form in higher-
order spectral analysis, which can enhance the frequency 
ingredient of transient pulse and has excellent anti-noise 
performance [18]. Currently, 1.5-dimensional spectrum has 
been studied and some achievements for fault feature extrac-
tion have been received. For example, Chen et al. [19] first 
used ensemble empirical mode decomposition (EEMD) to 
obtain several intrinsic mode functions (IMFs). Then, the 
obtained IMFs are subject to 1.5-dimensional spectrum 
analysis to detect the incipient gear crack faults. Jiang et al. 
[20] first employed adaptive lifting multiwavelet packet to 
decompose the vibration signal into a series of frequency 
bands, and then, 1.5-dimensional spectrum of the opti-
mal frequency bands is computed to accomplish the fault 
detection of rolling bearing. Cai and Li [21] first applied 
EMD to achieve several IMFs, and then, each of the IMFs 

is devoted to 1.5-dimensional spectrum analysis. Lastly, all 
1.5-dimensional spectrum results are reconstructed to detect 
gear faults. For another, Teager energy operator (TEO) is 
effective in extracting instantaneous energy signal, which 
can weigh accurately the change of signal’s total energy and 
is appropriate for retrieving the impact characteristics hidden 
in vibration signal [22, 23]. So far, some works about TEO 
have been conducted. For instance, Zeng et al. [24] proposed 
a normalized complex Teager energy operator (NCTEO) 
to obtain the time–frequency information of vibration sig-
nal, which can give a reliable diagnosis result for the rotor 
rubbing fault. Zhang et al. [25] first adopted resonance-based 
signal sparse decomposition (RSSD) to achieve the optimal 
resonance components, and then, TEO is devoted to extract-
ing the fault characteristics and realize the compound fault 
diagnosis of rotating machinery. Bozchalooi and Liang [26] 
utilized splendidly the TEO to extract the modulated infor-
mation of gear vibration signal and determine availably the 
type of gear faults. Based on that, integrating the merits of 
1.5-dimensional spectrum and TEO, Tang and Wang [27] 
proposes a new spectrum analysis called 1.5-dimensional 
energy spectrum, which can be both enhance the character-
istic frequency and inhibit the stochastic noise. Therefore, 
1.5-dimensional energy spectrum is employed to extract the 
fault information of SSCs in this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the SSD method and introduces the detail 
steps of ISSD. Moreover, decomposition capability of ISSD 
is verified by using the numerical signal and rotor oil whirl 
signal. In Sect. 3, a novel sensitive index is mentioned. Sec-
tion 4 reviews briefly the theory of 1.5-dimensional energy 
spectrum and provides the realization process of the pro-
posed detection framework. In Sect. 5, the proposed method 
is applied in the fault diagnosis of gear and rolling bearing, 
which validates that the provided method is efficient. The 
conclusions are given in Sect. 6, and some future works are 
provided.

2 � ISSD method

2.1 � SSD method

SSD is a new self-adaptive time–frequency analysis tech-
nique, which can decompose a combined signal into a sum 
of SSCs and a residual term. For a mixed signal x(n) , the 
procedure of SSD is described as follows

1.	 Modify and rearrange the standard trajectory matrix 
in singular spectrum analysis (SSA). Assume 
that N is data length of given signal x(n) and M 
is the embedded dimension. The M × N  matrix 
can be constructed  as X = [xT

1
, xT

2
… , xT

M
]T , where 
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xi = (x(i),… , x(N), x(1),… , x(i − 1)) represents the 
ith row of the established matrix X and i = 1,… ,M . 
An example of how the elements of the trajectory 
matrix are rearranged before performing diagonal 
averaging is described as: For a given time series 
x(n) = {1, 2, 3, 4, 5} with embedded dimension M = 3 , 
the corresponding trajectory matrix X will be expressed 
as

where the left margin 3 × 3 matrix amounts to the 
standard trajectory matrix X used in singular spectrum 
analysis (SSA) [28]. In order to enhance the oscillation 
content of the time series and guarantee the diminish of 
energy of the residual term, a novel trajectory matrix is 
rearranged as

where ∗ represents the previous positions of the ele-
ments which moved to the right top of the left margin 
3 × 3 matrix. Each cross-diagonal has the same number 
of elements, so as to perform the average along the ith 
cross-diagonal of X.

2.	 Select adaptively the size of embedded dimension M at 
iteration j . The idea of choosing the embedding dimen-
sion is based on the dominant frequency of the residual 
at a given iteration j, because the dominant frequency 
is usually supposed to represent the main periodic com-
ponent in a signal. To begin with, calculate the power 
spectral density (PSD) of the residual term at iteration 
j , i.e.,�j(n) = x(n) −

∑j−1

k=1
�k(n), (�0(n) = x(n)) . Next, 

estimate the frequency fmax corresponding to the most 
prominent peak of PSD. For the first iteration, if the 
normalized frequency fmax∕Fs is less than the given 
threshold 10−3 ( Fs is the sampling frequency), a sizable 
trend is considered as the residual term and M is set 
as floor (N∕3) [29]. Otherwise, for iterations j > 1 , the 
embedded dimension M is given as

(1)X =

⎡
⎢⎢⎣

1 2 3

2 3 4

3 4 5

�������

4 5

5 1

1 2

⎤
⎥⎥⎦

(2)X =

⎡
⎢⎢⎢⎢⎢⎣

1

1 2

1 2 3

2 3 4

3 4 5

�����������

4 5

5 ∗

∗ ∗

⎤⎥⎥⎥⎥⎥⎦

(3)M = 1.2 ×
Fs

fmax

where fmax∕Fs denotes the main period in number of 
samples. Please find more details in [16] about the self-
adaptive selection of the embedded dimension M.

3.	 Obtain successively the jth SSCs from the high to low 
frequencies. For the first iteration, when a sizable trend 
is estimated, the first left and right eigenvectors are 
employed to get g(1)(n) , so that X1 = �1u1�

T
1
 , and g(1)(n) 

is derived from diagonal averaging of X1. For iterations 
j > 1 , g(1)(n) also needs to be obtained. As we all know, 
the frequency content of g(1)(n) is mainly concentrated 
in the frequency band [fmax − Δf , fmax + Δf ] , where Δf  
denotes the half-band width of the prominent peak in the 
PSD of the residual term. Therefore, based on all eigen-
triples whose left eigenvectors have the prominent peak 
in the frequency band [fmax − Δf , fmax + Δf ] and one 
eigentriple containing the most energy of the prominent 
peak, a subset Ij(Ij = {i1,… , ip}) is built. Then, the cor-
responding component signal is retrieved by diagonal 
averaging of the matrix XIj = Xi1 +⋯ + Xip along the 
diagonal lines. In this step, to better estimate the width 
of the prominent peak, a spectral model is used to depict 
the PSD profile, which is constructed by three Gaussian 
functions. The spectral model is defined as follows

where Ai is the coefficient of the ith Gaussian function, 
and �i and ui are the width and position, respectively. 
� = [A�]T is the parameter vector, where A = [A1,A2,A3] 
and � = [�1, �2, �3] . In Eq. (4), the first Gaussian func-
tion denotes the most prominent spectral peak, the sec-
ond function records the second highest spectral peak, 
while the third functions records all the peaks in between 
the first and second prominent spectral peaks. That is, 

The model parameters can be acquired by weighted least 
squares fitting of the model. The initial parameter values 
of the model fitting are given as follows

In the optimization process, Levenberg–Marquardt algo-
rithm is used to obtain the optimal values. If the value 
of �1 is given, the value of Δf  is then stated as Δf  = 2.5 

(4)�(f , �) =

3∑
i=1

Aie
−

(f−ui )
2

2�2
i

(5)u1 = fmax, u2 = f2, u3 =
fmax + f2

2

(6)

⎧⎪⎨⎪⎩

A
(0)

1
=

1

2
PSD(fmax), �

(0)

1
= f ∶ PSD(f ) =

2

3
PSD(fmax)

A
(0)

2
=

1

2
PSD(f2), �

(0)

2
= f ∶ PSD(f ) =

2

3
PSD(f2)

A
(0)

3
=

1

4
PSD(f3), �

(0)

3
= 4��fmax − f2

��
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�1 . Moreover, to retrieve the jth components, the second 
iteration is performed. Among this process, a scaling 
factor â is applied to adjust the difference value between 
g(j)(n) and the residual item �(j)(n) , and its expression is 
as follows

where â = (gT𝜐)∕(gTg) and g̃(j)(n) = âg(j)(n).
4.	 Set the stopping criterion of the decomposition pro-

cess. Separate g̃(j)(n) from the estimated signal �(j)(n) to 
acquire the resulting signal 𝜐(j+1)(n) = 𝜐(j)(n) − g̃(j)(n) , 
which denotes the input to the next iteration j + 1 . Next, 
the normalized mean square error (NMSE) between the 
resulting signal �(j+1)(n) and the given signal x(n) is com-
puted that is

SSD is terminated when NMSE is lesser than the 
given threshold th = 1% . Finally, the given signal x(n) 
is decomposed into the sum of SSCs and the residual 
�(m+1)(n)

where m is the amount of SSCs and g̃(k)(n) is the kth 
SSC. The detailed steps about the original SSD algo-
rithm can be found in Ref. [16].

2.2 � ISSD method

SSD is a new nonparametric time–frequency analysis 
method, which was successfully applied to the processing of 
low field potential data. SSD method can adaptively divide 
a multi-component signal into several SSCs independent 

(7)â = min
‖‖‖𝜐

(j)(n) − ag̃(j)(n)
‖‖‖
2

2

(8)NMSE(j) =

∑N

i=1

�
�(j+1)(i)2

�
∑N

i=1
(x(i))2

(9)x(n) =

m∑
k=1

g̃(k)(n) + 𝜐(m+1)(n)

of each other, whose instantaneous features have physical 
meaning. Sad to say, the end effect may appear in SSD, 
which is concerned to the stand or fall of decomposition 
results. Therefore, for the purpose of avoiding this phenom-
enon, the appropriate extension technique should be taken 
to handle the signal’s boundary. Currently, some extension 
patterns include extreme continuation, data prediction, and 
waveform matching [30]. However, extreme continuation 
algorithms utilize merely the extreme value point of both 
ends of the initial signal to accomplish the extension pro-
cedure, so it cannot reflect exactly the natural trend of raw 
data. Data prediction approach, such as neural network (BP) 
[31], support vector machine (SVM) [32], and auto-regres-
sive (AR) model [33], can suppress efficiently the end effect. 
Nevertheless, these methods are time-consuming and greatly 
affected by prediction accuracy and data length. Waveform 
matching method is utilized by Hu et al. [30] and Li et al. 
[34] in end effect suppression. Among this method, all simi-
lar waveforms are firstly searched and then determine the 
similar waveform which is the best match with signal bound-
ary; namely, the optimal matching waveform is found. For 
the last step, data before (after) the optimal matching wave-
form are connected to the left and right side of the original 
signal, so that the extension waveform conform to the chang-
ing trend of raw data as much as possible. As illustrated in 
Fig. 1, Mi(i = 1, 2, 3,…) is the maximum values of the given 
signal x(t), corresponding to time tmi , and Ni is the minimum 
values of the given signal x(t), corresponding to time tni . S1 
denotes the left boundary point of a given signal x(t). The 
triangular waveform S1 −M1 − N1 is deemed as the charac-
teristic waveform to look for the best matching waveform in 
given signal x(t), and data before (after) the best matching 
waveform are regarded as the left (right) extension of signal 
x(t). Therefore, based on the merit of waveform matching 
extension method, a revised SSD version, called ISSD, is 
proposed to decompose the multi-component signal and alle-
viate the border effect. For a mixed signal x(t), the specific 
steps of ISSD method are elaborated as follows: 
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waveform

Si
M1

S1

Mi

M2

N1
Ni

Mi+1

tm1 tn1 tm2 tmi+1tnitmi
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Fig. 1   Schematic diagram of waveform matching extension
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1.	 Take the left extension as an example, hunt for all 
extreme points and endpoint of mixed signal x(t) via 
extremum seeking algorithm, and determine the char-
acteristic waveform S1 −M1 − N1 shown in Fig. 1a.

2.	 Search all matching waveforms similar to the charac-
teristic waveform S1 −M1 − N1 according to the corre-
sponding time tsi of the starting value Si of matching 
waveforms, and the corresponding time tsi is obtained 
using the linear interpolation [29], which is shown in 
Eq. (10).

3.	 After that, calculate the matching error of all similar 
waveforms, as shown in Eq. (11).

where ||Mi+1 −M2
|| is the trend term of similar wave-

forms, which is used to reflect the position of the relative 
extremum point of all similar waveforms in the mixed 
signal x(t).

4.	 Find out the minimum matching error in all matching 
errors, and take the similar waveforms with minimum 
matching error as the optimal matching waveform.

5.	 Data before the optimal matching waveform Si −Mi − Ni 
are used to extend the left boundary point of the mixed 
signal.

6.	 Use the same principle to process the right boundary 
point of the mixed signal, and obtain the final exten-
sion waveform. Namely, both ends of the mixed signal 
x(t) are extended completely through this process. It 
is worth pointing out that the characteristic waveform 
S1 −M1 − N1 shown in Fig. 1b is on the right, when we 
intend to estimate the right boundaries. Specifically, 
the optimal matching waveform Si −Mi − Ni similar to 
characteristic waveform is firstly determined, and then, 
data after the optimal matching waveform Si −Mi − Ni 
are used to extend the right boundary point of the mixed 
signal.

(10)tsi =
tm1 × tni − tn1 × tmi

tm1 − tn1

(11)
Ei =

||Si − S1
|| + ||Ni − N1

|| + ||Mi −M1
|| + ||Mi+1 −M2

||

7.	 Perform SSD for the extended waveform to obtain sev-
eral SSCs which its data length contains the extended 
part.

8.	 Apply Hilbert transform for all SSCs to obtain the cor-
responding instantaneous frequency, amplitude, and 
phase. Finally, remove the extended part of the mixed 
signal x(t) and plot the instantaneous frequency of all 
SSCs together to get the ultimate time–frequency graphs 
(TFGs). A clearer visual example for signal with sharp 
transition is given to elaborate the performance of wave-
form matching extension. The extended points of the left 
and right boundary are set as 100 points in this paper 
[30]. Figure 2a, b displays, respectively, the extended 
results obtained by waveform matching method for a 
periodic impact impulse series and a multi-component 
modulated signal. One can clearly see that the left and 
right extended part accords with the natural tendency 
of the original signal, which means waveform match-
ing method is appropriate for the processing of multi-
component modulated signal.

2.3 � The evaluation indicator of decomposition 
performance

In order to quantitatively assess the capability of signal decom-
position, some evaluation indicator should be imported. As we 
know, the total energy of the raw signal before decomposition 
is expected to be equal to the total energy of the obtained con-
tents after decomposition. In other words, the total energy of 
the signals before and after decomposition is expected to be 
consistent. Hence, performance of signal decomposition can 
be measured by the energy change of the given signal before 
and after decomposition. Given this, an end effect evaluation 
index named energy error � in Ref. [13] is introduced to assess 
the signal decomposition performance, which can be described 
as

(12)
� =

������

�
n+1∑
i=1

RMS2
i
− RMSx

������
RMSx

, RMSx =

������
N∑
i=1

x2(i)

N
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Fig. 2   A visual example of waveform matching extension
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where RMSx is the root mean square of the given signal 
x(t), RMSi is the root mean square of the ith decomposition 
components, and n + 1 is the total amount of decomposition 
components, including the residual term. According to Ref. 
[13], the bigger the computing results of θ is, the greater the 
energy error of the signals before and after decomposition is. 
That is, the larger θ value indicates the lower decomposition 
precision and the greater end effect.

Furthermore, in theory, each component obtained by sig-
nal decomposition is expected to be mutually orthogonal. 
Therefore, orthogonal index (OI) in Ref. [35] is regarded as 
a measure indicator to evaluate the orthogonality of signal 
decomposition results. For a given signal x(t), its orthogonal 
index can be modeled as

where NC denotes the total amount of decomposition com-
ponents, N describes the data length of decomposition com-
ponents, Cik(t) and Cjk(t) depict the ith and jth decomposi-
tion components at sifting step k, respectively. xk is the raw 
signal and rk is residual term. Because of orthogonal index 
is expected to be close to zero, the smaller orthogonal index 
value shows the better decomposition results.

2.4 � Performance validation of the ISSD method

2.4.1 � Numerical signal analysis without noise

To validate the effectiveness of the ISSD method, here a 
numerical signal x(t) is considered as follows

(13)OI =

∑NC

i=1

∑j<i

j=1

���
∑N

k=1
Cik × Cjk

���∑N

k=1
(xk − rk)

2

(14)
X = 0.2 sin(80�t) + 0.3 sin(40�t) + 2 sin(20�t) + 0.5 sin(10�t) + t2

The numerical signal is made up of four sine waves and a 
trend term. The sampling frequency and sampling number 
are set as 1000 Hz and 1000, respectively. Numerical signal 
analysis is conducted on an Intel Pentium G3420 3.20 GHz 
CPU with 4.00 GB RAM, and MATLAB (2010a) platform 
is used to implement the simulation. Figure 3 shows the 
numerical signal x(t) and its five composed ingredients. Six 
methods, namely, original SSD, mirror-symmetric exten-
sion-based SSD (MS-SSD), support vector machine exten-
sion-based SSD (SVM-SSD), waveform matching extension-
based SSD (ISSD), EMD, and LMD, are used to decompose 
the numerical signal, respectively. TFGs obtained using the 
above methods (i.e., SSD, MS-SSD, SVM-SSD, ISSD, 
EMD, and LMD) are shown in Fig. 4a–d, respectively. From 
Fig. 4a, b, it can be seen that the numerical signal x(t) is 
divided into four SSCs and the first two SSCs suffer from the 
end effect phenomenon to some extent. Besides, in Fig. 4a, 
b, the fourth SSC acquired by SSD and MS-SSD appears 
scale-mixing problem. That is, decomposition components 
derived from SSD and MS-SSD cannot coincide well with 
the real components of numerical signal x(t) . From Fig. 4c, 
it is clearly illustrated that the results obtained by SVM-SSD 
have small end effect, but the fourth SSC also emerges scale 
mixing. In Fig. 4d, ISSD method can give better decomposi-
tion results, which are closer to the actual value. However, 
as shown in Fig. 4e, f, EMD and LMD cannot extract accu-
rately the true component of the original signal. This com-
parison result indicates that ISSD method is suitable for the 
analysis of multi-component signal.

To further illustrate the validity of the ISSD method, 
the evaluation indicator of six algorithms is calculated, 
respectively. The comparative results are given in Table 1. 
From Table 1, it is clear that energy error θ and orthogo-
nal index OI of ISSD method are smaller than that those of 

Fig. 3   Numerical signal x(t) and 
its composed components
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other methods. This means that ISSD method has smaller 
end effect and preferable decomposition results than other 
extension pattern-based SSD (i.e., MS-SSD and SVM-SSD). 
Namely, the results of ISSD are closer to the real values. 
However, running time of ISSD is greater than that in other 

methods, except for SVM-SSD. The additional consum-
ing time is caused by the optimization process of matching 
waveform.

2.4.2 � Numerical signal analysis with low noise

To show the anti-noise ability of the ISSD method, the 
numerical signal shown in Eq. (14) is added a stochastic 
noise with SNR of 6 dB. Six methods (i.e., SSD, MS-SSD, 
SVM-SSD, ISSD, EMD, and LMD) are, respectively, used 
to analyze the noisy simulation signal. TFGs obtained using 
the above six methods are shown in Fig. 5, respectively. 
From Fig. 5, we can see that four frequency components 
of numerical signal can be extracted by four methods (i.e., 
SSD, MS-SSD, SVM-SSD, and ISSD). Moreover, there 
are several distinct frequency features in TFGs based on 
ISSD. In other words, ISSD has the ability of anti-noise to 
some extent. But actually, compared with numerical signal 
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Fig. 4   Time–frequency graphs obtained by a SSD; b MS-SSD; c SVM-SSD; d ISSD; e EMD; and f LMD

Table 1   Evaluation index comparison among different methods

Different methods Energy error θ Orthogonal 
index OI

Comput-
ing time 
(s)

SSD 0.0255 0.0160 2.509
MS-SSD 0.3117 0.0072 3.029
SVM-SSD 0.1258 0.0083 56.52
ISSD 0.0076 0.0055 4.706
EMD 0.0379 0.0443 1.248
LMD 0.0303 0.0299 1.987
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analysis without noise (see Fig. 4d), the analysis results of 
Fig. 5d are poor relatively, which indicates that the noise has 
some influence on the analysis result of the ISSD method. 
Overall, when the numerical signal is mixed with stochastic 
noise, the ISSD method still can extract the intrinsic char-
acteristic frequency components of numerical signal. In 
Fig. 5e, f, frequency components are mainly distributed in 
the low frequency area, which means that EMD and LMD 
cannot effectually extract frequency components of the 
numerical signal.

Table 2 lists the evaluation indicator of six algorithms. 
As can be seen, energy error and orthogonal index of ISSD 
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Fig. 5   Time–frequency graphs obtained by a SSD; b MS-SSD; c SVM-SSD; d ISSD; e EMD; and f LMD

Table 2   Evaluation index comparison among different methods

Different methods Energy error θ Orthogonal 
index OI

Comput-
ing time 
(s)

SSD 0.0373 0.0179 2.813
MS-SSD 0.5381 0.0262 3.573
SVM-SSD 0.3977 0.0297 65.058
ISSD 0.0238 0.0158 3.698
EMD 0.0661 0.0382 2.229
LMD 0.0538 0.0557 2.621



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:50	

1 3

Page 9 of 20  50

method are the smallest, which indicates that the ISSD 
method has a good decomposition performance. However, 
ISSD method has more computing time than other methods, 
except for SVM-SSD. Additional time of the ISSD method 
is probably caused by waveform matching process.

2.4.3 � Numerical signal analysis with high noise

To further demonstrate the anti-noise ability of the ISSD 
method, the numerical signal shown in Eq. (14) is added 
a stochastic noise with SNR of 2 dB. The numerical sig-
nal with noise is processed by six methods (i.e., SSD, 
MS-SSD, SVM-SSD, ISSD, EMD, and LMD), respec-
tively. TFGs obtained by different methods are plotted in 
Fig. 6a–f, respectively. It is obvious in Fig. 6 that four 
methods (i.e., SSD, MS-SSD, SVM-SSD, and ISSD) can 

extract the main frequency component of the original 
signal, but severe fluctuations occur at the frequency of 
40 Hz. Overall, TFGs obtained by ISSD have a good fre-
quency resolution, which means that ISSD also can extract 
the corresponding characteristic frequency when the signal 
is polluted by noise. As shown in Fig. 6e, f, there is serious 
scale-mixing problem in TFRs based on EMD and LMD, 
which indicate that frequency components of numerical 
signal cannot be identified by EMD and LMD. Therefore, 
the effectiveness of the ISSD method is further verified by 
the comparative results.

Table 3 gives the evaluation indicator of six algorithms. 
From Table 3, we can find that energy error and orthogo-
nal index of ISSD are less than those of other methods, 
which imply that ISSD is superior to other methods in 
signal decomposition. However, due to the application of 
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Fig. 6   Time–frequency graphs obtained by a SSD; b MS-SSD; c SVM-SSD; d ISSD; e EMD; and f LMD
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waveform matching, computing time of ISSD method is 
higher than that of other methods, except for SVM-SSD.

2.4.4 � The experimental signal analysis

To further verify the effectiveness of the ISSD method, we 
apply the ISSD method to analyze the rotor oil whirl signal 
collected from rotor test rig located in North China Electric 
Power University (NCEPU). The adopted device during the 
experiment is Bently RK-4 test bench, and the type of data 
collection equipment is ZonicBook/618 E, as exhibited in 
Fig. 7. The sampling frequency and data length are set as 
1280 Hz and 1024, respectively.

Figure 8a, b shows the waveform and FFT spectrum of 
rotor oil whirl signal, respectively. Figure 8a shows that the 
rotor oil whirl signal is represented by a sum of sine waves, 
and in the FFT spectrum, there is prominent amplitude at the 
rotating frequency of 43.75 Hz, which is the feature of rotor 
oil whirl fault. Besides, the amplitude of half-frequency 
(i.e., 21.25 Hz) is greater than that of rotating frequency, 
which means rotor appears an oil whirl fault. Figure 8c–h 
shows the TFGs resulting from six methods (i.e., SSD, MS-
SSD, SVM-SSD, ISSD, EMD, and LMD), respectively. 
In Fig. 8c–e, the instantaneous frequency (i.e., 21.25 Hz, 
43.75 Hz, and 65 Hz) can be found, but their end effect is 
serious. In addition, the time–frequency trajectory of Fig. 8c, 
e is obscure and some false contents appear in Fig. 8c, e. 
As shown in Fig. 8f, the fault features of rotor oil whirl can 
be captured clearly and the end effect is relatively smaller. 
Moreover, time–frequency trajectory of TFG obtained by 
ISSD method is gem-pure. Figure 8g, h shows that EMD 

and LMD suffer from mode mixing phenomenon and cannot 
extract accurately the defect feature of rotor oil whirl signal.

Likewise, for quantitative comparison, the evaluation 
parameters are calculated in terms of Eqs. (12) and (13), and 
the results are described in Table 4. Table 4 shows that ISSD 
has the smallest energy error and orthogonal index. Namely, 
ISSD has a better inhibition ability of end effect and decom-
position results than other extension pattern-based SSD (i.e., 
MS-SSD and SVM-SSD). Meanwhile, as shown in Table 4, 
EMD has the least calculation time, and SVM-SSD is time-
consuming, whereas the computing time of ISSD is close to 
that of SSD and MS-SSD. Therefore, it can be concluded that 
ISSD is suitable for decomposing the multi-component signal 
and is effective in suppressing the end effect.

3 � Adaptive selection of sensitive 
components

The selection of sensitive components after signal decompo-
sition is a critical step in the fault diagnosis, so an efficient 
method should be employed to determine the sensitive compo-
nents with greatest contribution for fault feature extraction. As 
known, kurtosis is considered as a promising tool, which can 
fully disclose the periodic characteristics of cyclic impulses 
[36]. The bigger kurtosis denotes the greater impact features 
and the higher signal energy. Sparseness is a statistical param-
eter, which can effectively reflect the sparse characteristics 
of vibration signal [37]. The larger sparseness indicates the 
stronger data sparsity and the more periodic impulses. There-
fore, considering the superiority of kurtosis and sparseness, 
a sensitive index (SI) based on the product of kurtosis and 
sparseness is presented to choose adaptively the sensitive com-
ponents. For a given signal x(t) , the SI is defined as

where ej
SSC

 denotes the Hilbert envelope signal of the jth 
component, and the expression of kurtosis K and sparseness 
S can be, respectively, given as

(15)SIj = Kurtosis(e
j

SSC
) × Sparseness(e

j

SSC
)

(16)K =
E(x − u)4

�4
, S =

�
1

N

∑N

n=1
x(n)2

1

N

∑N

n=1
�x(n)�

Table 3   Evaluation index comparison among different methods

Different methods Energy error θ Orthogonal 
index OI

Comput-
ing time 
(s)

SSD 0.0419 0.0165 3.472
MS-SSD 0.5347 0.0273 3.778
SVM-SSD 0.3361 0.0283 70.391
ISSD 0.0312 0.0115 4.789
EMD 0.0553 0.0464 2.557
LMD 0.0956 0.0399 2.895

Fig. 7   Schematic diagram of 
rotor test bench

Rotor

 Spindle
 Bearing block Coupling

Adjustable-
speed motor

Workbench

 Bearing block
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where u and � are the mean value and standard deviation 
of signal x(t) , respectively. x(n) is the vibration signal, 
and N is the data length of signal x(n) . The bigger SI indi-
cates the better signal sparseness and the greater impact 

characteristics. Hence, the largest SI can be used to select 
the sensitive components containing the most abundant fault 
characteristic signatures.
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Fig. 8   Analyzed results of rotor oil whirl signal: a waveform; b FFT spectrum, time–frequency graphs obtained by c SSD; d MS-SSD; e SVM-
SSD; f ISSD; g EMD; and h LMD
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4 � The proposed detection scheme

4.1 � 1.5‑dimensional energy spectrum

1.5-dimensional energy spectrum ES(�) is implemented 
through the following formula, which is equivalent to the 
FFT spectrum of third-order cumulant diagonal slice of 
instantaneous energy in essence [27].

where e(t) indicates the instantaneous energy of the given 
signal x(t) and satisfies the equation e(t) = [ẋ(t)]2 − x(t)ẍ(t) , 
and ẋ(t) and ẍ(t) are, respectively, the first- and second-order 
derivative function of the given signal x(t) [26]. In Eq. (18), 
R3�(�, �) denotes the third-order cumulant diagonal slice of 
instantaneous energy e(t) , and E{⋅} denotes the expected 
value.

(17)ES(�) =

+∞

∫
−∞

R3�(�, �) × e−j��d�

(18)R3�(�, �) = E{e(t)e(t + �)e(t + �)}

4.2 � The proposed detection scheme

To improve the diagnostic precision, a new fault detection 
approach in which ISSD and 1.5-dimensional energy spec-
trum are combined is proposed. Figure 9 shows the flow-
chart of the proposed detection scheme. Detailed procedure 
of the proposed method is summarized as three steps:

1.	 Signal decomposition Employ the ISSD to deal with 
the collected vibration signal, and obtain several SSCs 
whose instantaneous frequency has physical signifi-
cance.

2.	 Sensitive SSCs selection Calculate the sensitive index 
of each SSC, and select adaptively the sensitive SSCs 
based on maximum criterion of sensitive index.

3.	 1.5-dimension energy spectrum analysis Perform 
the 1.5-dimensional energy spectrum analysis on the 
selected sensitive SSCs, extract the fault frequency of 
vibration signal, and identify the fault category of rotat-
ing machinery.

5 � Application to rotating machinery fault 
diagnosis

Gear and rolling bearing are the essential parts of rotat-
ing machinery and play important roles in engineering 
application. When gear or rolling bearing appears local-
ized fault, the generated vibration signal is usually a 
multi-component modulated signal since ISSD method 
can decompose a multi-component signal into a sequence 
of SSCs. Therefore, ISSD method is especially suitable 
for the processing of gear and rolling bearing vibration 

Table 4   Evaluation index comparison among different methods

Different methods Energy error θ Orthogonal 
index OI

Comput-
ing time 
(s)

SSD 0.5528 0.0045 2.705
MS-SSD 0.2946 0.0019 2.727
SVM-SSD 0.1258 0.0083 48.13
ISSD 0.0055 0.0011 2.972
EMD 0.0066 0.0602 1.899
LMD 0.0098 0.0653 2.477

Fig. 9   Flowchart of the pro-
posed detection scheme
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signals. In this part, application examples for the fault 
diagnosis of gear and bearing are taken to illustrate the 
effectiveness of the proposed method. Moreover, some 
available algorithms (e.g., EMD-based Hilbert transform 
[38], LMD-based Hilbert transform [39], spectral kurtosis 
[40], and SSD-based Hilbert transform) are also utilized 
to compare their detection ability.

5.1 � Case 1: application to gear fault diagnosis

In this subsection, the proposed technique is adopted to pro-
cess gear fault data collected from mechanical fault simula-
tor located in NCEPU. Figure 10a shows the sketch of the 
QPZZ test rig. Figure 10b shows the photograph of faulty 

gear. In this experiment, four accelerometers in the status 
of upright were installed on the gearbox housing for data 
acquisition. The motor speed during testing was 834 rpm 
(about 13.9 Hz). The analyzed gearbox belongs to single 
reduction. Small gear on the import axis is regular operation 
and its tooth number is 55, whereas large gear on the export 
axis has a pitting defect and its tooth number is 75. Gear 
mesh frequency fm = 764.5 Hz and gear defect frequency 
fg = 10.2 Hz. Gear fault data during testing are gathered via 
a sampling frequency of 5120 Hz and a sampling time of 1 s.

Figure 11a–c shows the waveform of normal gear vibra-
tion signal and its corresponding FFT spectrum and enve-
lope spectrum, respectively. As can be seen, fault charac-
teristic information of gear cannot be found in spectrogram 

Gearbox

Motor
Load

Gear #1

Gear #2

Timing belt

(a) (b)

 Gear pitting 

Fig. 10   Schematic sketch of gearbox
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Fig. 11   a Temporal waveform; b fast Fourier transform spectrum; 
and c envelope spectrum for normal gear vibration signal
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when the gear vibration signal is collected under the healthy 
state. Moreover, FFT spectrum of normal gear vibration sig-
nal has no obvious resonance band. Figure 12a shows wave-
form of gear fault signal, of which transient impulses are 
submerged in noise. Figure 12b, c shows FFT spectrum and 
envelope spectrum of Fig. 12a, respectively. In Fig. 12b, the 
frequency components are situated in a range of broadband 
and the fault information about defects cannot be found. 
Also, we can know from Fig. 12c that the defect frequency 
fg is absent.

The proposed method is exploited to detect gear fault. 
Firstly, gear fault data are processed by ISSD and the 
obtained first four SSCs are given in Fig. 12a. Next, SI of the 
received SSCs is plotted in Fig. 13b. According to Fig. 13b, 
SSC3 with the biggest SI is selected as the sensitive compo-
nents. Eventually, 1.5-dimensional energy spectrum of SSC3 
is performed to obtain the results of Fig. 13c. Figure 13c 
indicates that there are apparent spectral lines at defect fre-
quency fg and its harmonics, which mean that a pitting fault 
occurs in gear. In other words, the proposed method is effec-
tive in recognizing the fault type of gear.

As a contrast, EMD and LMD are used to analyze the 
same gear fault data, respectively. Following Eq. (15), SI 
of the former six components (i.e., intrinsic mode function 
(IMF) and product function (PF)) acquired by EMD and 
LMD is drawn in Fig. 14a. The SIs of IMF2 and PF2 are 
greater than those of other IMF and PF in Fig. 14a, so IMF2 
and PF2 are selected as the sensitive components for further 
processing. Figure 14b shows the waveform and envelope 
spectrum of IMF2, whereas the waveform and envelope 
spectrum of PF2 are plotted in Fig. 14c. In the envelope 
spectrum of Fig. 14b, c, the gear fault frequency fg and its 

harmonics can be detected, but the amplitudes at fault fre-
quency fg are weak. Likewise, the original SSD method and 
spectrum kurtosis (SK) are also employed to analyze the 
waveform of Fig. 12a. Figure 15a, b shows the waveform 
of the sensitive components obtained by the SSD method 
and its corresponding envelope spectrum, respectively. Fig-
ure 15b shows that gear fault frequency fg and its harmonics 
can be identified, but its spectrogram is not as clear as those 
in Fig. 13c. It is worth mentioning that 1.5-dimensional 
energy spectrum of Fig. 15a can also obtain the clear fea-
ture extraction results. Kurtogram is exhibited in Fig. 16a. 
Figure 16b, c shows the filtered signal and its correspond-
ing envelope spectrum, respectively. As shown in Fig. 16c, 
although the fault feature information can be observed, the 
amplitudes at characteristic frequency fg are not obvious.

5.2 � Case 2: application to bearing fault diagnosis

Further, the proposed method is applied to detect the genera-
tor front bearing fault occurring in a wind turbine, whose 
nominal output power is 750 KW. Structure sketch of wind 
turbine is shown in Fig. 17, which is mainly composed of 
impeller, gearbox, and generator. Two accelerometers dur-
ing vibration testing were glued on the front–back bearing 
housings of generator to gather the fault data, as shown in 
Fig. 17a. Bearings type of generator is SKF6324C3, and its 
geometric parameters are listed in Table 5. In the process 
of data collection, the average spindle speed and genera-
tor shaft speed were n1 = 21.63 r/min and n2 = 1519 r/min, 
respectively. The sampling frequency was 16,384 Hz, and 
the total data length of the measured signal was 163,840. 
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Nevertheless, only the vibration signal derived from genera-
tor front bearing is analyzed in this paper. Generator bearing 
outer race defect frequency was calculated as fo = 79.21 Hz.

Figure 18a shows waveform of the collected vibration 
data with a length of 8192. From Fig. 18a, it is known that 
there is a lot of noise in the vibration signal. Figure 18b, 

c describes the FFT spectrum and envelope spectrum of 
Fig. 18a, respectively. As noted in Fig. 18b, the defect fre-
quency fo is difficult to be discovered. In Fig. 18c, there are 
high amplitudes at bearing defect frequency (fo = 79.21 Hz), 
but several interference ingredients can also be found, which 
impedes the judgment of bearing injury types.

The proposed method is used to diagnose the generator 
bearing fault. Figure 19a shows the results derived from 
ISSD. SI of each SSC is given in Fig. 19b. As shown in 
Fig. 19b, the largest SI is corresponding to SSC1. Hence, 
SSC1 is deemed as the sensitive components. Figure 19c 
shows the 1.5-dimensional energy spectrum of SSC1. As 
depicted in Fig. 19c, bearing defect frequency fo and its 
double frequency 2fo are extracted clearly, which indicates 
that a localized defect appeared on the outer race of gen-
erator front bearing. Namely, the proposed method can 
perform reasonably well for bearing fault detection.

For comparison, EMD and LMD are conducted to tackle 
the same data. Figure 20a shows that IMF1 and PF1 have 
the largest SI. Therefore, IMF1 and PF1 are analyzed, and 
the results are plotted in Fig. 20b, c, respectively. We can 
see that the defect frequency fo and its second harmonic 2fo 
can be found in the envelope spectrum of IMF1 and PF1. 
However, the amplitudes at defect frequency fo and its har-
monics are lesser than those of Fig. 19c. Meanwhile, the 
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Fig. 14   Analyzed result of gear fault signal using EMD and LMD: a Sensitive index; b waveform and envelope spectrum of IMF2; c waveform; 
and envelope spectrum of PF2
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original SSD method and spectrum kurtosis (SK) are also 
used to process the signal of Fig. 18a. The analyzed results 
obtained by the original SSD method are shown in Fig. 21. 
As can be seen from the envelope spectrum of Fig. 21b, 
defect frequency fo and its second harmonic 2fo can be 
extracted, but its spectral lines are not as good as those in 
the ISSD method. Kurtogram is plotted in Fig. 22a. Fig-
ure 22b, c shows, respectively, the filtered waveform and 
its corresponding envelope spectrum. In Fig. 22c, there are 

distinct peak values at characteristic frequency fo, but its 
harmonics is not clear.

5.3 � Further discussions

From the above analysis, it can be inferred that the per-
formance of the proposed method is verified by diagnosis 
examples. Meanwhile, for the fault detection of gear and 
bearing, the proposed method can perform better than 
other comparative methods (i.e., SSD, EMD, LMD, and 
SK). Nevertheless, all the above-mentioned results tend to 
the qualitative comparison. Therefore, evaluation indica-
tors should be also calculated to compare the above meth-
ods quantitatively.

Firstly, the decomposition capability of four methods (i.e., 
ISSD, SSD, EMD, and LMD) is discussed for case 1 and 
case 2. Two indicators (i.e., energy error and orthogonal 
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Table 5   Geometric parameters of front–back bearing of generator

Bearings type Roller diam-
eter (mm)

Pitch diam-
eter of bear-
ing (mm)

The number 
of roller

Contact 
angle 
(°)

SKF6324C3 41.275 190 8 0
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index) given in Sect. 2.3 and CPU time are used to test the 
capability of the four methods. Table 6 exhibits the con-
trast analysis results among the four methods. As stated 
in Table 6, energy error and orthogonal index of ISSD are 

lesser than those of other three methods, which means that 
ISSD has better decomposition results. It is noteworthy that 
ISSD needs more running time compared with other three 
methods. That is, the decomposition capability of ISSD is 
enhanced at the expense of time-consuming. Therefore, for 
future work, we intend to improve the running speed of ISSD 
and apply ISSD to process other types of vibration signal.

Moreover, we move our focus to the spectrum analysis 
comparison of sensitive component after signal decompo-
sition. A fault feature ratio (FFR) reported in Ref. [41] is 
used to evaluate quantitatively the detection capability of 
five methods (i.e., the proposed method, SSD-based Hil-
bert transform, EMD-based Hilbert transform, LMD-based 
Hilbert transform, and spectrum kurtosis), which is defined 
as follows:

where f  represents the defective frequency, S represents 
the overall amplitudes of Hilbert envelope spectrum of the 
signal, S(f ) , S(2f ) , and S(3f ) denote the envelope spectrum 
amplitudes corresponding to f  , 2f  and 3f  , respectively. The 
greater FFR value indicates a better fault detection perfor-
mance. FFR value obtained by the above five methods is 
listed in Table 7. As shown in Table 7, the proposed method 
has the FFR value of 0.1626 and 0.2893, which is much 
higher than the FFR value derived from other methods. As a 
whole, the proposed method can improve the detection capa-
bility for gear or bearing fault compared with other methods.

(19)Rf =
S(f ) + S(2f ) + S(3f )

S
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6 � Conclusions

In this paper, a method of adaptive signal analysis named 
ISSD is proposed, which can improve signal’s decompo-
sition results and restrain the phenomenon of end effect 
effectively. Simulation and experiment results verified the 
feasibility of ISSD algorithm. Subsequently, a new syner-
gistic idea of ISSD and 1.5-dimensional energy spectrum is 
further presented for diagnosing the local faults emerged in 
rotating machinery. Through application to fault diagnosis 
of a gearbox and rolling bearing, the proposed method is 
proved effective to extract the fault characteristics of rotating 
machinery. Besides, the analysis results adequately pointed 
that the detection capability of the provided method is better 
than that of other available methods (i.e., EMD, LMD, and 
SK). What is important is that the accuracy of fault diag-
nosis can be improved by joint application of the ISSD and 
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Fig. 20   Analyzed result of bearing fault signal using EMD and LMD: a sensitive index; b waveform and envelope spectrum of IMF1; c wave-
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1.5-dimensional energy spectrum. The contributions of this 
paper are summarized as follows:

1.	 A modified algorithm called ISSD is presented, which 
can improve signal decomposition ability.

2.	 A novel integration scheme (ISSD and 1.5-dimensional 
energy spectrum) is developed for fault detection.

3.	 The validity of the presented algorithm is proved using 
simulated and experimental signals.

The preliminary results show that the proposed algorithm 
is effective in detecting the local fault under constant speed. 
It is unknown to apply the proposed algorithm to solve the 
problem of fault diagnosis under variable speed. For our 
future work, we intend to extend the proposed algorithm to 
diagnose mechanical faults under variable speed.
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