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Abstract
In view of ecological concern and energy security, execution of refrigeration system should be enriched which can be done 
by improving the characteristics of working liquids. The nanoliquids have gained interest in industrial and engineering fields 
due to their outstanding thermophysical features. Researchers used nanoliquids as working liquid and detected substantial 
variations in thermal performance. In the present research work, our intention is to explore the impact of nonlinear thermal 
radiation and variable thermal conductivity on 3D flow of cross-nanofluid. Moreover, heat sink–source, chemical processes 
and activation energy are implemented. Zero mass flux relation with thermophoresis and Brownian motion mechanisms are 
scrutinized. The required system of ordinary ones is achieved by implementing appropriate transformations. The achieved 
system of ordinary ones is computed numerically by implementing bvp4c scheme. Graphs are plotted to explore the impact 
of various physical parameters on concentration, temperature and velocity fields. It is detected from obtained graphical data 
that thermophoresis and Brownian motion mechanisms significantly affect heat transport mechanism. Furthermore, graphical 
analysis reveals that concentration of cross-nanofluid enhances for augmented values of activation energy.

Keywords 3D flow · Activation energy · Cross-fluid model · Nanoparticles · Nonlinear thermal radiation · New mass flux 
boundary conditions

List of symbols
u, v,w  Velocity components  (ms−1)
x, y, z  Space coordinates  (ms−1)
n  Power law index
m  Fitted rate constant
(�c)f  Heat capacity of fluid
T   Temperature of fluid (K)
k(T)  Variable thermal conductivity 

(
W

mK

)

�1  Thermal diffusivity  (ms−1)
k∗  Boltzmann constant
DB  Brownian diffusion coefficient

DT  Thermophoresis diffusion coefficient (
m2

s

)

C  Nanoparticles concentration (K)
Q0  Dimensional heat source/sink parameter
Ea  Activation energy
a, b  Positive constants
B0  Magnetic field strength 

(
A

M

)

C∞  Ambient concentration
T∞  Ambient fluid temperature (K)
k∞  Thermal conductivity far away from 

stretched surface
hf  Heat conversion coefficient 

(
W

Km2

)

f , g  Dimensionless velocities
Cfx,Cfy  Skin fractions
Nux  Local Nusselt number
M  Magnetic parameter
Uw(x, t),Vw(y, t)  Stretching velocities  (ms−1)
E  Activation energy
We1,We2  Local Weissenberg numbers
Pr  Prandtl number
Le  Lewis number
qr  Nonlinear radiative heat flux
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Nb  Brownian motion parameter
Nt  Thermophoresis parameter
Rd  Radiation parameter
(�c)p  Effective heat capacity of a nanoparticle
Rex  Local Reynolds number
�  Ratio of stretching rates parameter
kc  Chemical reaction constant

Greek symbols
�  Biot number
�  Effective heat capacity ratio
�  Dimensionless heat source or sink 

parameter
�  Dimensionless concentration
�  Stefan–Boltzmann constant 

(
S

m

)

�  Dimensionless variable
�f  Temperature ratio parameter
�f  Fluid density 

(
kg

m3

)

�  Dimensionless temperature
�  Thermal conductivity parameter
�  Kinematics viscosity 

(
m2s−1

)

1 Introduction

Recent innovative methodologies have paved the way for the 
appearance of manufactured materials at nanometer scale. 
Nanoliquid possesses huge impact on the improvement of 
newly developed heat transfer liquids. Nanoliquid is inno-
vative engineered materials having massive applications in 
biology, cancer diagnosis, nuclear industries, drilling and 
oil recovery. Moreover, nanofluids have been widely utilized 
for heat transport applications. Khan et al. [1] inspected the 
impact of heat sink–source and nanoparticles on an Oldroyd-
B fluid. Sheikholeslami and Ellahi [2] considered the char-
acteristics of cubic cavity for 3D flow of magneto-nanofluid. 
Khan and Khan [3] reported the analysis for Burgers fluid in 
existence of nanoparticles. Sandeep et al. [4] investigated the 
impact of convective heat/mass transfer mechanisms on non-
Newtonian magneto-nanofluid. Rehman et al. [5] studied the 
characteristics of entropy generation by utilizing nanoparti-
cles. Khan and Khan [6] demonstrated impact of zero mass 
flux condition for power-law nanofluid. Haq et al. [7] utilized 
two-phase relation for water and ethylene glycol-based Cu 
nanoparticles under effect of suction–injection. Steady-state 
2D flow of Burgers fluid in existence of nanoparticles was 
demonstrated by Khan and Khan [8]. Zero mass flux relation 
has been employed by Khan et al. [9] to visualize behavior of 
Burgers fluid in the presence of nanoparticles. Rahman et al. 
[10] reported nanofluid flow for Jeffrey fluid. Raju et al. [11] 
studied the magneto-nanofluid flow in the presence of rotat-
ing cone with temperature-dependent viscosity. Recently, 

numerous investigators published their research work about 
heat transport [12–37].

Disparity of concentration in chemically reacting species 
effecting on mass transfer mechanism. In these situations, 
chemical species moves from high to low concentrated area. 
Applications of chemical reactions include manufacturing 
of food, formation and dispersion of fog, manufacturing of 
ceramics, production of polymer, crops damage via freezing, 
hydrometallurgical industry, geothermal reservoirs, cooling 
of nuclear reactor and recovery of thermal oil. Some reac-
tions have capacity to move slowly or not at all except in the 
existence of a catalyst. Activation energy plays an important 
role in enhancing the production speed of chemical reac-
tions. Moreover, activation energy is smallest amount of 
energy that reactants must acquire to start a chemical reac-
tion. The term activation energy was initially presented by 
Arrhenius in 1889. The applications of activation energy 
are very wide in geothermal, mechanics of water, chemical 
engineering and oil emulsions. Khan et al. [38] considered 
the chemical processes for 3D flow of Burgers fluid by uti-
lizing the revised heat–mass flux relations. Khan et al. [39] 
analyzed the effects of chemical processes on 3D flow of 
Burgers fluid. Khan et al. [40] investigated the characteris-
tics of convective flow in the presence of variable thicked 
surface. Khan et al. [41] examined the features of revised 
heat flux relation and chemical processes for Maxwell fluid. 
Khan et al. [42] inspected the impact of chemical reactions 
on generalized Burgers fluid by utilizing the nanoparticles. 
Mustafa et al. [43] examined the characteristics of activation 
energy and chemical mechanisms on magneto-nanofluid.

Our main focus here is to explore the impact of activation 
energy on 3D flow of cross-nanofluid with combined effects 
of heat sink–source and nonlinear thermal radiation. Heat 
transport phenomenon is scrutinized through variable ther-
mal conductivity. Moreover, impacts of chemical processes 
and Lorentz’s forces are accounted. By employing trans-
formations procedure, the governing PDE’s are converted 
into ODE’s which are then tackled numerically by bvp4c. 
Outcomes of physical parameters involved in this research 
work are analyzed through graphical and tabular data.

2  Physical model and problem statement

Geometry and boundary condition of physical model for 
steady 3D forced convective flow of cross-nanofluid is pre-
sented through Fig. 1. In this research work, we have uti-
lized the thermally heated surface which can be utilized for 
various industrial products. Coordinate system is selected 
in such a way that sheet coincides with the plane z = 0 and 
motion of the cross-nanofluid is confined in the half space 
z > 0 . Aspects of heat sink–source and thermal radiation 
are carried out in existing flow situation. Mass transport 
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mechanism is scrutinized through activation energy. We 
have applied magnetic field of strength B0 in z-direction. 
Furthermore, the impact of induced magnetic field on the 
cross-nanofluid is neglected by utilizing the assumption of 
low Reynolds number. The sheet is kept at constant con-
centration Cw , whereas the nanofluid outside the boundary 
is maintained at uniform temperature and concentration (
T∞, C∞

)
 , respectively. In areas such as geothermal, the 

governing equations are [see Ref. 9, 44]:
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with

where

Substituting Eqs. (8) and (9) into Eq. (4), we have the fol-
lowing energy equation
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Fig. 1  Physical geometry for the 
problem
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Considering the following suitable conversions,

Equation (1) is automatically satisfied, and Eqs. (2)–(7) and 
(9) yield

Mathematically, dimensionless parameters are defined as

The mathematical relations of local skin frictions, local 
Nusselt number and local Sherwood number in dimensional 
form are expressed as

(11)
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Dimensionless form of overhead physical quantities is

where

3  Numerical procedure

In this research work, bvp4c method is implemented for 
the considered problem. In this regard, system of ODEs 
along with boundary conditions is converted into system of 
first-order differential equations and solved numerically for 
involved physical parameters.

where

here
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here

with

3.1  Validation with previous results

Table 1 certifies the appropriateness of obtained numeri-
cal outcomes by making a comparison for Newtonian fluid 
with the outcomes tabulated by Ariel [44]. The numerical 
data for −f ��(0) and −g��(0) are computed, and legitimacy of 
work is ensured.
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4  Physical analysis

In the current research work, impact of activation energy and 
Lorentz forces on 3D forced convective flow of cross-nano-
fluid is demonstrated. Zero mass flux relation is employed 
for estimating cross-nanofluid properties. Features of heat 
transport for nanofluid are scrutinized through nonlinear 
radiation and heat source–sink. Numerical data of the pre-
sent investigation are declared in terms of profiles of veloc-
ity, temperature and concentration. The surface drag forces, 
heat transfer rate and mass transfer rate for fluctuating vari-
ous parameters are illustrated through tables.

4.1  Velocity profile

Figure 2a, b is plotted to demonstrate the behavior of veloc-
ity profile corresponding to change in local Weissenberg 
number We. It is observed from graphical that velocity of 
cross-nanofluid declines for augmented values of We1 and 
We2 . Physical reason behind this behavior of cross-nano-
fluid is that as we raise value of We1 and We2 relaxation time 
enhances due to which velocity of cross-nanofluid deterio-
rates. Figure 3a, b presents the impact of n on velocity of 
cross-nanofluid. The examination of these figures reveals 
that progressive trend of velocity profile rises for shear-
thinning regime. Physically, an uplift in the value of n less 
resistance is faced by shear-thinning fluid due to low viscos-
ity which causes an enlargement in fluid velocity.  

4.2  Temperature field

Figures 4, 5, 6, 7 and 8 are portrayed here to investigate 
the impact of �, Nt, �, �f and � for n < 1 and n > 1 on tem-
perature of cross-nanofluid. To exhibit the effects of � on 

Table 1  A comparison of f ��(0) and g��(0) for Newtonian fluid with We1 = We2 = M = 0

� Exact result [44]
−f ��(0)

Exact result [44]
−g��(0)

HPM result [44]
f ��(0)

HPM result [44]
g��(0)

Present result
f ��(0)

Present result
−g��(0)

0.0 1.0 0.0 1.0 0.0 1.0 0.0
0.1 1.020259 0.066847 1.02025 0.06684 1.02026 0.06685
0.2 1.039495 0.148736 1.03949 0.14873 1.03949 0.14874
0.3 1.05794 0.243359 1.05795 0.24335 1.05795 0.24336
0.4 1.075788 0.349208 1.07578 0.34920 1.07578 0.34921
0.5 1.093095 0.465204 1.09309 0.46520 1.09309 0.46521
0.6 1.109946 0.590528 1.10994 0.59052 1.10994 0.59053
0.7 1.126397 0.724531 1.12639 0.72453 1.12639 0.72453
08 1.142488 0.866682 1.14248 0.86668 1.14249 0.86668
0.9 1.158253 1.01653 1.15825 1.01653 1.15826 1.016538
1.0 1.173720 1.173720 1.17372 1.17372 1.17372 1.17372
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the temperature profile of cross-nanofluid, we have plot-
ted Fig. 4a, b. These sketches show that the temperature 
of cross-nanofluid decreases as the values of � are aug-
mented. Furthermore, careful analysis of these sketches 
releases that decaying behavior of cross-nanofluid is more 
prominent for n < 1 . Figure 5a, b interprets the depend-
ence of thermophoresis parameter Nt on the temperature of 
cross-nanofluid. The rise in the temperature of cross-nano-
fluid is detected for growing values of Nt . Physically, Nt 
demonstrates the temperature difference of cross-nanofluid 
between the hot fluid behind the sheet and temperature of 
liquid at infinity. The ratio of hot fluid behind the sheet 
to temperature of liquid at infinity �f and heat absorp-
tion parameter � play a vital role in forced convective 3D 
flow of cross-nanofluid. Figures 6a, b and 7a, b present 

the impact of � and �f on temperature profile of cross-
nanofluid. These figures depict that the augmented values 
of �f and � affect the heat transfer strongly. Physically, as 
�f strengthens, the temperature of the wall become higher 
as compared to temperature of the nanoliquid at infinity. 
Thus, as a result, the temperature of nanofluid enhances. 
Figure 8a, b is sketched to perceive the dependence of 
3D flow of cross-nanofluid on � for n < 1 and n > 1 . The 
exploration of these plots impart that Biot number leads 
to enhancement of nanofluid temperature. Physical reason 
behind this trend of � is that less resistance is faced by the 
thermal wall which causes an enhancement in convective 
heat transfer to the fluid.     
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Fig. 4  Profiles of temperature �(�) for various values of � for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 5  Profiles of temperature �(�) for various values of Nt for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 7  Profiles of concentration �(�) for various values of �f for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 8  Profiles of concentration �(�) for various values of � for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 9  Profiles of concentration �(�) for various values of E for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 10  Profiles of concentration �(�) for various values of � for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 11  Profiles of concentration �(�) for various values of m for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 12  Profiles of concentration �(�) for various values of Nb for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 13  Profiles of concentration �(�) for various values of Nt for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 14  Profiles of concentration �(�) for various values of M for shear-thinning (a) and shear-thickening liquids (b)
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Fig. 15  Profiles of concentration �(�) for various values of � for shear-thinning (a) and shear-thickening liquids (b)
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4.3  Concentration field

Figures 9, 10, 11, 12, 13, 14 and 15 are sketched to visualize 
the aspects of various physical parameters on concentration 
of cross-nanofluid. Concentration profiles of cross-nano-
fluid for different values of activation energy E are sketched 
through Fig. 9a, b. The growing values of E result in an 
augmentation in the concentration of cross-nanofluid. From 
the mathematical relation of Eq. (1), we detected that high 
activation energy and low temperature reduce the reaction 
rate due to which chemical reaction mechanisms slow down. 
Therefore, the concentration of cross-nanofluid enhances. 
The influence of chemical reaction parameter � on the con-
centration profile is displayed in Fig. 10a, b. It is analyzed 
from these figures that the concentration profile declines 
with an increment in � . Figure 11a, b is plotted to detect the 
characteristics of fitted rate constant m on concentration of 
cross-nanofluid. Chemically, as we boost up the values of m , 
destructive chemical mechanisms enhance due to concentra-
tion of cross-nanofluid declines. Figures 12a, b and 13a, b 
portray the concentration profile of cross-nanofluid for vari-
ous vales of Nb and Nt . It is detected from these sketches that 
concentration of cross-nanofluid declines with elevation in 
Nt while the reverse trend is observed for Nb . Additionally, 
it is detected that physically, an uplift in the magnitude of 
Nb corresponds to rise in the rate at which nanoparticles in 
the base liquid move in random directions with different 
velocities. This movement of nanoparticles augments trans-
fer of heat and therefore, declines the concentration profile. 
The influence of magnetic parameter M on the concentration 
profile of cross-fluid is displayed in Fig. 14a, b. It is analyzed 
from these figures that the concentration profile enhances 
with an increment in M . The concentration of cross-nano-
fluid increases due to heat produced by M . To investigate 

the aspects of the ratio of stretching rate parameter � on the 
concentration profile, we have plotted Fig. 15a, b. These 
figures reveal that the concentration profile declines as the 
value of � is augmented.       

4.4  Quantities of physical interest

Tables 2 and 3 are presented to demonstrate the achieved 
outcomes for surface drag forces 

(
Cfx

, Cfy

)
 and heat transfer 

rates ( Nux ). It is noticed from Table 2 magnitude of surface 
drag forces is greater for larger estimation of n, �, M while 
opposite trend is observed for We1 and We2 . Table 3 reveals 
that magnitude of heat transport rate deteriorates for aug-
mented values of �, �, m and Nt , while it rises for Pr,E and 
n.

5  Main outcomes

Influence of Lorentz forces and chemical process on 3D flow 
of cross-nanofluid is investigated here. Impact of variable 
thermal conductivity on nanofluid is taken into considera-
tion. Heat source–sink and thermal radiation mechanisms 
are deliberated here to characterize the heat transport mech-
anism. Influence of activation energy is considered. Main 
outcomes of this research work are pointed as

• Temperature of cross-nanofluid is an increasing function 
of Nt.

• Higher estimation of � provides larger temperature of 
cross-nanofluid.

• An increment in � demonstrates decays in �(�).

Table 2  Numerical values of 
local skin frictions (
−Cfx

(
Rex

)1∕2
,−Cfy

(
Rex

)1∕2) 

for distinct values of escalating 
parameters

We1 We2 n � M −Cfx

(
Rex

)1∕2
−Cfy

(
Rex

)1∕2

0.0 0.5 0.1 0.3 0.8 2.616613 0.6672313
0.2 – – – – 1.394971 0.6644748
0.4 – – – – 1.346258 0.6624166
0.5 0.6 – – – 1.330288 0.6611346
– 0.7 – – – 1.330100 0.6608477
– 0.8 – – – 1.329757 0.6607392
– – 0.2 – – 1.35598 0.7159371
– – 0.3 – – 1.394756 0.7773754
– – 0.9 – – 1.454798 0.8086462
– – – 0.4 – 1.347573 0.7259671
– – – 0.6 – 1.377045 0.9226853
– – – 0.8 – 1.404251 1.161177
– – – – 1.0 1.458371 0.8344255
– – – – 1.2 1.603129 1.00615
– – – – 1.4 1.759637 1.187128
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• Concentration field enriches for intensifying estimation 
of M.

• Concentration of cross-magnetonanofluid augments for 
improving values of E.

• �(�) decays via m.
• The profiles of concentration descent for escalating m and 

�.
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