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Abstract
Reactive magnetohydrodynamic flows arise in many areas of nuclear reactor transport. Working fluids in such systems may 
be either Newtonian or non-Newtonian. Motivated by these applications, in the current study, a mathematical model is 
developed for electrically conducting viscoelastic oblique flow impinging on stretching wall under transverse magnetic field. 
A non-Fourier Cattaneo–Christov model is employed to simulate thermal relaxation effects which cannot be simulated with 
the classical Fourier heat conduction approach. The Oldroyd-B non-Newtonian model is employed which allows relaxation 
and retardation effects to be included. A convective boundary condition is imposed at the wall invoking Biot number effects. 
The fluid is assumed to be chemically reactive and both homogeneous–heterogeneous reactions are studied. The conserva-
tion equations for mass, momentum, energy and species (concentration) are altered with applicable similarity variables 
and the emerging strongly coupled, nonlinear non-dimensional boundary value problem is solved with robust well-tested 
Runge–Kutta–Fehlberg numerical quadrature and a shooting technique with tolerance level of 10−4. Validation with the 
Adomian decomposition method is included. The influence of selected thermal (Biot number, Prandtl number), viscoelastic 
hydrodynamic (Deborah relaxation number), Schmidt number, magnetic parameter and chemical reaction parameters, on 
velocity, temperature and concentration distributions are plotted for fixed values of geometric (stretching rate, obliqueness) 
and thermal relaxation parameter. Wall heat transfer rate (local heat flux) and wall species transfer rate (local mass flux) are 
also computed and it is observed that local mass flux increases with strength of heterogeneous reactions whereas it decreases 
with strength of homogeneous reactions. The results provide interesting insights into certain nuclear reactor transport phe-
nomena and furthermore a benchmark for more general CFD simulations.
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1  Introduction

Non-Newtonian liquids are encountered in many technologi-
cal applications including polymer processing, biotechnol-
ogy, lubrication of aerospace and automotive vehicles and 
nuclear thermo-hydraulics [1]. Such fluids may be deline-
ated broadly into three classes, namely “rate type”, “differ-
ential type” and “integral type”. The Oldroyd-B fluid model 
belongs to the “rate type” of model and is a generalization of 
the upper-convected Maxwell model. Rate models provide 
features not possible in the differential [2] or integral-type 
models, and these include stress relaxation, material retarda-
tion, nonlinear creep and normal stress differences in simple 
shear flows. However, further modification is required to 
simulate shear thinning/shear thickening effects. Although 
the original Oldroyd-B model is in fact a three-dimensional 
rate-type models satisfying frame indifference, in mod-
ern fluid dynamics it has evolved into one of the simplest 

constitutive fluid models available for modelling viscoelastic 
flows under general flow conditions. In recent years, this 
model has stimulated renewed interest as it quite accurately 
captures the shear-stress–strain characteristics of many 
working fluids encountered in the nuclear, petroleum and 
materials processing industries. Tan et al. [3] investigated 
Oldroyd-B fluid transport in porous media with a modified 
Darcy law, employing a Fourier sine transformation. Further 
studies of Oldroyd-B fluids include transient hydrodynamics 
in a helical pipe [4], inclined channel slurry flows [5], bifur-
cating heat transfer in permeable media [6] and flat plate 
accelerating flows [7].

The above studies ignored electrically conducting proper-
ties of the fluid. However, many working fluids are doped 
with salts or carry electrical charges. To simulate this 
behaviour the preferred approach is magnetohydrodynam-
ics (MHD). MHD is important in modern nuclear engineer-
ing systems since via the imposition of a magnetic field it 
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is possible to successfully control the heat transfer rates in 
ducts, channels, etc. MHD features in lithium blanket sys-
tems [8], nuclear coolant pumping [9] and tokamak liquid 
metal systems [10]. Experimental studies of such flows are 
very challenging. Numerical and mathematical modelling 
has therefore emerged as a major complimentary area of 
study. In flow simulations important parameters which char-
acterize MHD flows include the Hartmann number (used for 
the Lorentzian body force effect), Chandrasekhar number 
(the square of the Hartmann number and a popular parameter 
also for magnetic convection), Batchelor number (important 
when magnetic induction arises), and the magnetic Prandtl 
number (relative influence of momentum diffusion rate and 
magnetic diffusion rate). Han et al. [11] employed a finite-
volume technique to study the heat transfer in hydromagnetic 
rectangular ducts flow. Khan et al. [12] used a Laplace trans-
form technique to derive closed-form solutions for oscilla-
tory magneto-convection in an Oldroyd-B fluid. Zheng et al. 
[13] utilized Fox H-functions and the discrete Laplace trans-
form to analyse hydromagnetic Oldroyd-B slip flow. These 
studies all confirmed a substantial modification in velocity 
field or thermal field with magnetic field imposition.

Stagnation point flows constitute yet another important 
family of flows in which boundary layer theory [14] may be 
applied. Such flows are characterized by viscous (or inviscid) 
fluids impinging on solid surfaces and manifest in a vanish-
ing of the local velocity and an associated peak in stagnation 
pressure. They arise in many areas of chemical engineer-
ing (food stuff processing), coating of components in the 
polymer industry, aircraft wing aerodynamics, duct flows in 
nuclear reactors and spray cooling of metallic components. 
In nuclear and chemical engineering the solid surface may 
also be distensible, i.e. may contract or extend. Chiam [15] 
studied the stagnation flow of Newtonian viscous fluid over 
linearly stretching wall. Ishak et al. [16] computed incom-
pressible Newtonian flow solutions on an upright permeable 
stretched surface with non-isothermal conditions using Kel-
ler’s box finite difference. Mixed convection heat transfer 
in stagnation flows is also of some interest in engineering 
systems. Buoyancy forces are generated when temperature 
differences becomes significant. These forces amend the 
hydrodynamic stream and temperature fields which inter-
act differently in the presence of buoyancy. These forces 
may be in the or opposite to the flow direction and may 
therefore increase or decrease heat transfer especially at 
boundaries. Many such studies have been communicated 
for non-Newtonian fluids with and without magnetic field 
effects. Gupta et al. [17] used variational finite element 
code to analyse magnetized stagnation flow of micropolar 
fluid from an extending sheet with wall transpiration. Uddin 
et al. [18] used Maple quadrature to compute the stagnation 
flow of nanofluid containing gyrotactic micro-organisms 
with anisotropic hydrodynamic and thermal slip effects. Le 

Blanc and Malone [19] computed with finite elements the 
velocity, pressure and stress fields in steady flow in a pla-
nar stagnation die using the Maxwell viscoelastic model. 
Parks [20] presented extensive simulations of Oldroyd-B 
viscoelastic fluid stagnation flows in polystyrene melts. 
Further rheological stagnation flows have been investigated 
by Sadeghy et al. [21] for Maxwell fluids and Renardy [22] 
for Oldroyd-B fluids. In this latter study, an exact solution 
(quadratic velocity profile) was obtained for the axisymmet-
ric case whereas for the planar case, the velocity was shown 
to be quadratic close to the stagnation point, whereas it fol-
lowed an exponential growth further away. These studies 
were confined to the orthogonal impinging flow scenario 
(flow field is at right angles to the solid surface). However, 
a more general family of stagnation point flows is known 
as the non-orthogonal flows where the oncoming flow field 
impinges obliquely to the solid surface. Orthogonal flows 
are therefore a special case of non-orthogonal flows. In 
recent years, non-orthogonal stagnation point flows have 
attracted some attention as they generalize the models used 
by engineers to include all possible angles of impingement 
of industrial flows on solid surfaces. The classical normal 
stagnation flow (sometimes known as Hiemenz flow) can 
be extended to consider non-orthogonal stagnation flow by 
supplementing the inviscid stream function with a constant 
vorticity. Studies of non-orthogonal stagnation flow for two-
dimensional problems also provide a very good benchmark 
for generalization to three-dimensional computational fluid 
dynamics with commercial software e.g. ANSYS FLUENT, 
ADINA-F. Javed et al. [23] studied oblique MHD flow over 
an oscillating sheet with Keller’s box method by formulating 
the stream function in terms of both Hiemenz and tangen-
tial components. They observed that magnetic field assists 
in trans-locating the oblique stagnation point. Mahapatra 
et al. [24] identified both conventional and inverted bound-
ary layer structures in oblique stagnation point Newtonian 
flow. Labropulu et al. [25] used the Bellman-Kalaba quasi-
linearization method to compute non-orthogonal stagnation 
point flow and convective heat transfer towards a stretching 
surface in a second-order Reiner–Rivlin viscoelastic fluid. 
Newtonian oblique stagnation point flows with heat transfer 
were addressed by Wu et al. [26] and Yian et al. [27]. Li 
et al. [28] reported on Weissenberg number effects in non-
orthogonal stagnation flow and heat transfer in second-order 
Reiner–Rivlin viscoelastic fluids, also supplementing the 
orthogonal flow with shear flow. Zheng and Phan-Tien [29] 
presented a seminal study of non-orthogonal stagnation flow 
of an Oldroyd-B fluid in channel using a finite difference 
numerical method with a parameter continuation method.

The classical approach to modelling heat transfer in vis-
cous flows has been the Fourier thermal conduction equation 
[30]. This approach, however, diminishes heat conservation 
formulation to parabolic energy equation which displays that 
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medium under scrutiny goes through an initial disturbance. 
To tackle this difficulty, Cattaneo [31] presented relaxation 
time term in Fourier’s law of heat conduction which results 
in the physically realistic finite-speed heat conduction. Fol-
lowing further modifications, a modern form of the non-
Fourier model which has emerged and been embraced in 
computational studies is the Cattaneo–Christov heat flux 
model. Several recent studies have utilized this non-Fourier 
heat flux model in thermal convection flows via the inclusion 
of a thermal relaxation term. Akbar et al. [32] used fourth-
order Runge–Kutta shooting quadrature to compute the 
hydromagnetic flow of nanofluids from a stretching surface 
with the Cattaneo–Christov heat flux model noting that heat 
transfer rates are substantially altered with non-Fourier ther-
mal relaxation effects. Further studies include Bhatti et al. 
[33] who simulated the multi-mode heat transfer in electri-
cally conducting viscoelastic boundary layer flow from an 
extending sheet with thermal relaxation effects.

In numerous industrial systems, chemical reactions are 
known to take place. These include corrosive effects in 
nuclear heat transfer, polymer radical manipulation, cata-
lytic conversion and distillation processes. They require 
mass, i.e. species diffusion. There are two major classifi-
cations of chemical reactions, namely homogeneous and 
heterogeneous. Chemical changes occurring with liquids or 
gases depend on the type of interactions of these chemi-
cal substances. Homogeneous reactions occur in one phase 
only whereas heterogeneous reactions occur in two or more 
phases. The majority of analytical studies in the literature 
dwell on complex purely heterogeneous chemical reactions, 
for example in catalysis. The major applications of homoge-
neous–heterogeneous reactions are ammonia, transition of 
metal and metal oxides (including nuclear corrosive environ-
ments), Friedel processes, hydrogen, silica, alumina and cat-
alytic ceramics. Chaudhary and Merkin [34] used asymptotic 
expansions to study homogeneous–heterogeneous chemical 
reaction effects in stagnation boundary layer flows by con-
sidering isothermal autocatalytic processes for homogene-
ous reactions and first-order kinetics for the heterogeneous 
reactions. Khan et al. [35] presented numerical results for the 
influence of homogeneous–heterogeneous reactions in vis-
coelastic flow. Kameswaran et al. [36] analysed homogene-
ous–heterogeneous chemical reaction effects in silver-water 
and copper–water nanofluid flows, considering both cases of 
diffusion coefficients of reactants and autocatalytic behav-
iour. Shaw et al. [37] also explored equal diffusive reactant 
and autocatalyst for a steady micropolar fluid model on a 
porous shrinking/stretching sheet. Rana et al. [38] studied 
oblique viscoplastic slip flow with homogeneous–heteroge-
neous reactions. Magnetohydrodynamic flows of reactive 
fluids have also received significant attention. Soundalgekar 
and Gupta [39] presented analytical solutions for hydrody-
namic dispersion in a magnetohydrodynamic channel flow 

with homogeneous and heterogeneous reactions. These stud-
ies all verified the marked influence of chemical reaction 
in multi-physical Newtonian and non-Newtonian heat and 
mass transfer. In the present article we develop a mathemati-
cal model for magnetohydrodynamic chemically reacting 
oblique stagnation point flow, heat and mass transfer from 
a stretching sheet to an Oldroyd-B viscoelastic fluid. The 
non-Fourier Cattaneo–Christov heat flux model is utilized 
and both homogeneous–heterogeneous reactions are exam-
ined in the species (concentration) conservation equation. 
Numerical quadrature solutions are obtained for the nor-
malized ordinary differential boundary value problem. An 
extensive parametric study is conducted to evaluate heat, 
momentum and concentration characteristics. Validation 
with the Adomian decomposition method is included. To 
the best knowledge of the authors the present study has never 
been reported before and is relevant to certain nuclear and 
materials processing operations.

2 � Physico‑chemical magnetohydrodynamic 
viscoelastic transport model

Consider the steady, two-dimensional oblique stagnation 
flow and mixed convection heat and mass transfer in a reac-
tive electrically conducting Oldroyd-B elastic-viscous fluid 
from a stretching sheet. The viscoelastic fluid is doped with 
a species which undergoes both homogeneous and hetero-
geneous chemical reactions. The Cattaneo–Christov heat 
flux model is used in the heat (energy) conservation equa-
tion to simulate thermal relaxation effects. Two Equal but 
oppositely forces are applied in both directions along x1-axis. 
(See Fig. 1.) A magnetic field of constant strength is applied 
transverse to plane of the sheet. The governing conservation 

Reac�ve

species

Transverse magne�c 
field, B

Fig. 1   Physical model
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equations for mass, momentum, energy and species may be 
formulated as follows [40]

The constitutive equation for Oldroyd-B fluid is:

Here the upper-convected time derivative, D
Dt
, in a Carte-

sian coordinate system can be defined as:

For this problem velocity vector and stress tensor is 
defined as:

Navier–stokes equations become then:

(1)∇̄.V̄ = 0,
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[
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𝜕ū
1

𝜕x̄
2

+
1

𝜌

𝜕p̄

𝜕x̄
1

+ 𝜆
1

(
ū
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ū
2

𝜕2ū
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𝜕ū

1

𝜕x̄
2

𝜕2ū
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Here V̄ having ū1 and ū2 as the x̄1− and x̄2− velocity com-
ponents, respectively, � is effective kinematic viscosity, p̄ is 
pressure, � is s density, the term J × B is ponder motive force 
of the fluid because of electric current, J is current density 
of fluid and B is the magnetic flux. �e is constant known as 
magnetic permeability, E is electric field and � is electric 
conductivity, pI is spherical part of stress tensor and S is 
extra stress tensor, T̄  is temperature of the fluid, �1 is relaxa-
tion time, �2 is retardation time, � is thermal diffusivity, T∞ 
is ambient fluid temperature, c̄1 and c̄2 are absorption coef-
ficients of the organic classes A and B , kc and ks are the rate 
factors, assuming the same reaction progressions, DA and DB 
are dispersion quantities, a, b.c are constants, q̄, the heat flux 
satisfying the non-Fourier theory [41]:

In Eq. (7) �2 is thermal retardation time and k , denotes the 
viscoelastic fluid thermal conductivity. Eliminating q̄ from 
Eqs. (15) and (18) yields:

The prescribed boundary conditions at the wall (sheet) 
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𝜕2ū1

𝜕x̄2
2

−
𝜕ū2
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2

𝜕ū
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Introducing similarity transformations following Nadeem 
et al. [42]:

Invoking Eq. (22), into Eqs. (13–21) yields the following 
dimensionless equations:
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�3u
2

�x
1
�x2

2

+u
2

�3u
2

�x
2
�x2

1

+ u
2

�3u
2

�x3
2

−
�u

2

�x
1

�2u
1

�x2
1

−
�u

2

�x
1

�2u
1

�x2
2

−
�u

2

�x
2

�2u
2

�x2
1

−
�u

2

�x
2

�2u
2

�x2
2

}
,

(26)

u
1

�T

�x
1

+ u
2

�T

�x
2

=
1

P
r

�2T

�x2
2

− �
2

{
u
2

1

�2T

�x2
1

+ u
2

2

�2T

�x2
2

+2u
1
u
2

�2T

�x
1
�x

2

+

(
u
1

�u
1

�x
1

+ u
2

�u
1

�x
2

)
�T

�x
1

+

(
u
1

�u
2

�x
1

+ u
2

�u
2

�x
2

)
�T

�x
2

}
,

(27)u2
�j

�x2

(
x2
)
=

1

Sc

�2j

�x2
2

(
x2
)
− k1j

(
x2
)
s2
(
x2
)
,

The normalized boundary conditions take the form:

Here �1 = �1c and �2 = �2c are the relaxation and retarda-
tion Deborah numbers, �B

2

0

�c
= M is magnetic field parameter, 

Pr =
�

�
 is Prandtl number, � =

g1�(Tf−T∞)
c
√
�c

 is mixed convection 

p a r a m e t e r ,  Bi = −
h

k

√
�

c
 i s  B i o t  n u m -

ber,Sc = �

DB

is Schmidt number,
a

c
 is stretching ratio and 

�1 =
b

c
 is obliqueness parameter.

Defining the stream function as:

Redefining the stream function [42]:

Using Eq. (31), (see Appendix) and then Eq. (32), we 
have set of equations

Assuming the dispersion constant of organic class reac-
tants A and B are of similar extent, using the following con-
straint DA = DB ⇒ � = 1, leads to:

The transformed “similarity” boundary conditions (see 
“Appendix”) assume the form:

(28)
u2

�s

�x2

(
x2
)
=

�

Sc

�2s

�x2
2

(
x2
)
+ k1j

(
x2
)
s2(x2),

(29)

u1 = x1, u2 = 0,
�T

�x2
= −Bi(1 − T),

DA
�j

�x2

�
x2
�
= ks

�
�

c
j
�
x2
�
,DB

�s

�x2

�
x2
�
= −ks

�
�

c
j
�
x2
�
,

⎫
⎪⎬⎪⎭
at x2 = 0,

(30)
u1 =

a

c
x1 + �1x2, T = 0, j

(
x2
)
→ 1, s

(
x2
)
→ 0, atx2 → ∞.

(31)u1 =
��

�x2
, u2 = −

��

�x1
.

(32)� = x1f
(
x2
)
+ g

(
x2
)
, T

(
x1, x2

)
= �

(
x2
)
.

(33)
f ��� + ff �� −

(
f �
)2

+ �
1

(
2ff �f �� − f 2f ���

)

+ �
2

(
f ��2 − ff ����

)
+M

(
�
1
ff �� − f �

)
+ B

1
= 0

(34)

g��� − f �g� + fg�� + �
1

(
2fg�f �� − f 2g���

)
+ �

2

(
−f �g��� + f ��g�� − fg���� + f ���g�

)
+M

(
�
1
fg�� − g�

)
+ �

{
� − �

1

(
f �� − f ��

)}
+ B

2
= 0,

(35)��� + Pr
[
f �� − �2

{
f 2��� + ff ���

}]
= 0.

(36)j
(
x2
)
+ s

(
x2
)
= 1

(37)j��
(
x2
)
+ Sc

[
f
(
x2
)
j�
(
x2
)
− k1j

(
x2
){

1 − j2
(
x2
)}]

= 0,

(38)
f = 0, f � = 1, g� = 0, �� = −Bi(1 − �(0)), j� = k2j(0), at x2 = 0,
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Using asymptotic condition (39) in Eqs. (33) and (34), 
we get:

Here A is a boundary layer constant.
Introducing:

Using Eqs. (40) and (41) in Eqs. (33) and (34), we have:

The associated boundary conditions emerge as:

Here ()� denotes ordinary derivative with respect to x2.
Important engineering design quantities are the local heat 

and mass flux, which in dimensional and non-dimensional 
form are defined, respectively, as:

and

(39)f � =
a

c
, g�

(
x2
)
→ �1x2, � = 0, j → 1, at x2 → ∞.

(40)

B1 =
(
a

c

)2

+M
a

c
,B2 = −�1

[
A +M

{
x2 − K1

(
a

c
x2 + A

)}]
,

(41)g�
(
x2
)
= �1h

(
x2
)
.

(42)

f ��� + ff �� −
(
f �
)2

+ �
1

(
2ff �f �� − f 2f ���

)

+ �
2

(
f ��2 − ff ����

)
+M

(
�
1
ff �� − f �

)

+ (a∕c)2 +M
a

c
= 0

(43)

h
�� − f

�
h + fh

� + �
1

(
2fhf

�� − f
2
h
��
)

+ �
2

(
f
���
h + f

��
h
� − f

�
h
�� − fh

���
)

+M
(
�
1
fh

� − h
)
+

�

�
1

{
� − �

1

(
f �� − f

��
)}

−
{
A
(
1 +M�

1

)
+ x

2
M

(
�
1

a

c
− 1

)}
,

(44)��� + Pr
{
f �� − �2

(
f 2��� + ff ���

)}
= 0.

(45)j�� + Sc
{
fj� − k1j

(
1 − j2

)}
= 0.

(46)

f = h = 0, f � = 1, �� = −Bi(1 − �(0)), j� = k2j(0), at x2 = 0,

f � = �1, h
� = 1, � = 0, j → 1, as x2 → ∞.

}

(47)qw = −k

(
�T

�y

)

y=0

,

(48)zw =

(
�j

�y

)

y=0

,

(49)qw = −��(0),

(50)zw = −j�(0).

3 � Computational solutions of boundary 
value problem

Analytical solutions of non-dimensional nonlinear cou-
pled ordinary differential equation system defined by 
Eqs. (42–45) with boundary conditions (46) are challeng-
ing. A computational methodology is therefore elected 
in which numerical quadrature is implemented (i.e. a 
shooting algorithm) together with the popular and robust 
Runge–Kutta–Fehlberg method. This approach can easily 
handle multi-order ordinary differential boundary value 
problems and has been implemented via different symbolic 
codes in many studies including reactive mixed double-
diffusive convection, magnetohydrodynamic slip flow [43], 
contracting/expanding nanopolymer sheet flows, free con-
vection autocatalytic reactive magnetic flows [44] and gyro-
tactic bioconvection nanofluid pumping. By making use of 
the following substitutions in Eqs. (42–46), we have:

(51)

⎛⎜⎜⎜⎜⎜⎝

f

f �

f ��

f ���

f ����

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝

y1
y�
1
= y2

y�
2
= y3

y�
3
= y4

y�
4
= y5

⎞⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎝

h

h�

h��

h���

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

y6
y�
6
= y7

y�
7
= y8

y
�

8
= y9

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎝

�

��

���

⎞
⎟⎟⎠
=

⎛⎜⎜⎝

y10
y�
10

= y11
y�
11

= y12

⎞
⎟⎟⎠
,

⎛⎜⎜⎝

j

j�

j��

⎞
⎟⎟⎠
=

⎛⎜⎜⎝

y13
y�
13

= y14
y�
14

= y15

⎞
⎟⎟⎠
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(52)

y1y
�
4
=

1

�2

[
y4 + y1y3 − y2

2
+ �1

{
2y1y2y3 − y4y

2

1

}

−M
(
−y2 + �1y1y3

)
−
(

a

c

)2

−M
a

c

]
+ y2

3
,

(53)

y
1
y
�
8
=

1

�
2

[
y
8
+ y

1
y
7
− y

2
y
6
+ �

1

{
2y

1
y
3
y
6
− y

8
y
2

1

}

−M
(
�
1
y
1
y
7
− y

6

)
−

�

�
1

{
� − �

1

(
y
1
�� − y

2
�
)}

+A
(
1 +M�

1

)
+ x

2
M
(
�
1
�
1
− 1

)]
+ y

4
y
6
+ y

3
y
7
− y

2
y
8
,

(54)y�
11

= −Pr
[
y1y11 − �2

{
y2
1
y12 + y1y2y11

}]
,

(55)y�
15

= −Sc
{
y1y14 − k1y13

(
1 − y2

13

)}
,

(56)y1(0) = 0, y3(0) = 0, y4(0) = �1,

(57)y6(0) = 0, y8(0) = �2,

(58)y8(0) = �3,
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Here �i, 1 ≤ i ≤ 5 are shooting parameters. A tolerance 
level of 10−5 is considered in all calculations. Note that for 
all computations the variable y is used instead of x2.

4 � Validation with Adomian decomposition 
method (ADM)

Since the present model is novel there are no existing solu-
tions in the literature with which validation of the general 
model can be conducted. We therefore use an alterna-
tive approach and validate the solutions with an alterna-
tive numerical method known as Adomian decomposition 
method (ADM). Equations (42–45) with boundary condi-
tions (46) are therefore resolved with ADM and selected 
comparison is visualized in Fig. 2. Introduced by Ado-
mian [45], this approach employs very precise polynomial 
expansions to achieve faster convergence compared with 
other methods. ADM has been exploited recently in numer-
ous sophisticated fluid dynamics problems. The reader is 
referred to Kezzar and Sar [46] and Ebaid et al. [47] who 
studied nanofluids, Bég et al. [48] who applied ADM to 
bio-magneto-rheological lubrication flows and Aaboubi 
et al. [49] for electrochemical species diffusion flows. An 
advantage of ADM is that it gives analytical approxima-
tions to an extensive class of nonlinear equations without 
linearization, perturbed solution or discretization. ADM sets 
up an infinite series solution for unidentified functions and 
exploits recursive relations. Applying standard procedure 
of Adomian Decomposition Method (ADM), inverse opera-
tors are formulated. The unknown dependent flow variable 

(59)y11(0) = �4, y13(0) = �5,

functions arising in the momentum, energy, species conser-
vation equations i.e. normal velocity f (y) , tangential veloc-
ity h(y) , temperature �(y) and concentration, j(y) , can be 
conveyed as infinite series’ of the form:

These expansions are introduced into Eqs. (42–46) and 
the resulting linear and nonlinear terms are decomposed 
by an infinite series of polynomials. Boundary conditions 
(46) are also adapted. The resulting solutions are lengthy 
algebraic relations and omitted for brevity. The numerical 
evaluation is executed in MATLAB symbolic software. Fig-
ure 2 shows the comparison of the ADM and quadrature 
solutions for the case β1 = 0.05. Evidently very close agree-
ment is achieved for the normal velocity component velocity 
f �(y). Figure 2 further shows that with increasing relaxation 
Deborah number, �1 , there is a sustained decrease in normal 
velocity component throughout the boundary layer. The flow 
is therefore decelerated and momentum boundary layer also 
decreases.

The Oldroyd-B model is in fact a quasilinear rheological 
rate model. It is equivalent to the convected Jeffery model. 
Although often in simulations a single Deborah number is 
deployed which represents the ratio of relaxation to retarda-
tion times, in the present work we employ two distinct Debo-
rah numbers, β1 and β2 which, respectively, are known as the 
relaxation Deborah number (a function of �1 i.e. relaxation 
time) and the retardation Deborah number (a function of 
�2 i.e. retardation time). Rheological fluids exhibits distinc-
tive time scaled memory a feature known as relaxation time. 
At zero deformation rates such materials ease through their 
relaxation time which is their constitutive property. Simi-
larly, under nonlinear deformation of rheological fluids, 

(60)

f (y) =

∞∑
m=0

fm, h(y) =

∞∑
m=0

hm, �(y) =

∞∑
m=0

�m, j(y) =

∞∑
m=0

jm

Fig. 2   Variation of normal velocity f �(y) with relaxation Deborah 
number �

1

Fig. 3   Variation of tangential velocity h�(y) with relaxation Deborah 
number �

1
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considerable tension cultivates in the streamlines due to 
large relaxation time which leads to nonzero normal stresses. 
The larger the relaxation time the greater the tension and the 
associated tensile stresses cause a deceleration in the fluid 
i.e. reduction in momentum (hydrodynamic) boundary layer 
thickness, as shown in Fig. 2. In the current work, we have 
constrained the value of �2 , i.e. retardation time as 0.2 which 
implies that the timescale of fluid movement is low which 
is appropriate for working fluids in nuclear reactors, indus-
trial heat transfer processes, etc. Retardation time is also in 
rheology. When retardation times are high the behaviour 
corresponds more to high-density polymers where elastic 
forces dominate the viscous forces and therefore this is not 
relevant to the present discussion. Many investigations have 
confirmed that relaxation time has a much more prominent 
role in viscoelastic fluids whereas retardation time is gen-
erally more dominant in viscoelastic solids [50]. Further 
validation with ADM is also included for Figs. 3, 4, 5 i.e. 
for tangential velocity, temperature and concentration fields 

Fig. 4   Variation of tangential velocity h�(y) with mixed convection 
parameter �

Fig. 5   Variation of tangential velocity h�(y) with Biot number, Bi 

Fig. 6   Variation of temperature �(y) with relaxation Deborah number 
�
1

Fig. 7   Variation of temperature �(y) with Prandtl number Pr

Fig. 8   Variation of concentration j(y) with relaxation Deborah num-
ber �

1
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and again very close correlation is achieved. It is also note-
worthy that in each of these and the figures plotted there is a 
very smooth behaviour of profiles in free stream indicating 
that an effectively large infinity boundary condition is pre-
scribed in both numerical quadrature and the ADM codes. 
Confidence in the shooting quadrature method is therefore 
justifiably high.

5 � Computational results and discussion

Broad calculations have been conducted with shooting quad-
rature technique and are visualized in Figs. 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11 and 12 for the primitive variables (i.e. normal 
velocity, tangential velocity, temperature and concentra-
tion) and in Table 1 for derivative functions (local heat flux 
and local mass flux). We note that for brevity we constrain 
the values of certain geometric parameters i.e. a

c
 (stretching 

Fig. 9   Variation of concentration j(y) with magnetic body force 
parameter, M 

Fig. 10   Variation of concentration j(y) with Schmidt number, Sc

Fig. 11   Variation of concentration j(y) with homogeneous chemical 
reaction, k

1

Fig. 12   Variation of concentration j(y) with heterogeneous chemical 
reaction, k

2

Table 1   Variation in local heat flux −��(0) and mass flux j�(0) when 
�1 = 0.1, �2 = 0.1, � = 0.2,

a

c
= 0.1, �1 = 0.5, Pr = 0.1,Bi = 0.1.

k
1

k
2

M Sc −��(0) j�(0)

0.1 0.1 0.1 0.1 0.05422
0.2 0.05216
0.3 0.04959
0.1 0.1 0.1 0.1 0.05422

0.2 0.07399
0.3 0.08437

0.1 0.1 0.1 0.1 0.05605 0.05427
0.5 0.05508 0.05311
1.0 0.05413 0.05202

0.1 0.1 0.1 0.1 0.05422
0.2 0.06598
0.3 0.07214
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ratio) fixed at 0.1 and �1 =
b

c
 (obliqueness parameter) is fixed 

at 0.5 as is thermal relaxation parameter (γ).
Figures 3, 4 and 5 illustrate the behaviour of tangential 

velocity h�(y), with variation in, respectively, relaxation 
Deborah number �1 , mixed convection parameter, � , and 
finally Biot number, Bi. Tangential velocity h�(y) increases 
with greater relaxation Deborah number �1 close to the wall 
but further from the wall it decreases. As noted earlier, relax-
ation time incorporates elastic as well as viscous properties 
of material. Higher Deborah number materials acts as rheo-
logical fluid while for smaller Deborah number, it works as 
a Newtonian fluid. The destruction in momentum in the nor-
mal direction (reduced normal velocity component) is com-
pensated with a generation in tangential momentum. The 
higher Deborah number therefore only decelerates the nor-
mal velocity field component but acts to accelerate the tan-
gential field. Figure 4 shows that with increasing mixed 
convection parameter � , tangential velocity h�(y) declines 
close to surface whereas away from the surface it is acceler-
ated. � =

g1�(Tf−T∞)
c
√
�c

 and embodies comparative involvement 

of thermal buoyancy force to viscous hydrodynamic force. 
When this parameter is increased the flow is energized with 
buoyancy and the viscous effect is reduced. However, owing 
to the dominance of viscosity in boundary layer, the net 
effect is to inhibit tangential flow near the sheet and to 
enhance it further from the wall towards the edge of the 
boundary layer. Figure 5 specifies that with increasing Biot 
number Bi the tangential component of velocity h�(y) , is 
reduced near the wall whereas it is elevated further from the 
wall. Magnitudes of Biot number less than 0.1 infer that heat 
conduction within body is much quicker than heat convec-
tion away from surface, and temperature gradients are insig-
nificant inside. This range is therefore ignored in our study 
(Biot number lesser than 0.1 corresponds to “thermally thin” 
scenarios). We consider exclusively cases wherein the Biot 
number is much larger than 0.1 and this relates to “thermally 
thick” regimes. All values of Biot number are associated 
with thermally thick behaviour. The Biot number is directly 
proportional to convection heat transfer coefficient at surface 
and inversely proportional to thermal conductivity, with 
other parameters fixed ( Bi = −

h

k

√
�

c
 ). Higher thermal con-

ductivities imply a lower Biot number and vice versa. The 
modification in thermal regime at the wall exerts an indirect 
influence on the tangential component of velocity. Increasing 
Biot number boosts the temperature near the wall which 
decreases momentum diffusion here and depresses the tan-
gential velocity near wall. This effect is though reversed 
further towards the free stream where wall conduction 
effects are negated.

Figures 6 and 7 illustrate the response in temperature pro-
file �(y) with relaxation Deborah numbers �1 and Prandtl 

number Pr. From Fig. 6 it is evident that temperature is 
elevated with increasing Deborah number �1 . The increase 
in viscous effects associated with larger relaxation Deborah 
number serves to reduce momentum diffusion and to 
enhance thermal diffusion, for fixed Prandtl number. This 
manifests in heating in the boundary layer and increasing 
thermal boundary layer thickness. With increasing Prandtl 
number Pr, the tangential velocity h�(y) , declines near the 
surface whereas it is accelerated further from the surface, as 
observed in Fig. 7. This is so as smaller Prandtl number 
fluids are vastly conductive and their thermal diffusivity 
decreases with increasing values of Prandtl number. This 
stifles thermal diffusion and enhances momentum diffusion 
leading to flow acceleration further from the wall. Figures 8, 
9, 10, 11 and 12 visualize the evolution in species concentra-
tion profile j(y) with various parameters. Figure 8 shows that 
concentration magnitude is reduced by increasing relaxation 
Deborah number �1 . The increased viscous effect associated 
with greater relaxation Deborah number implies a reduction 
in momentum diffusion rate. Via coupling with the concen-
tration field the latter is therefore also adversely affected and 
this results in a decrease in concentration boundary layer 
thickness. Figure 9 shows that similarly an increase in mag-
netic body force parameter, M =

�B2

0

�c
, also depresses concen-

tration profile j(y). The inhibiting effect of Lorentzian mag-
netohydrodynamic drag associated with magnetic parameter 
serves to retard the flow. This decreases momentum diffu-
sion in the boundary layer and again via coupling with the 
concentration field also indirectly opposes species diffusion. 
Concentration boundary layer thickness is also therefore 
depleted with greater magnetic field applied transverse to 
the wall. Asymptotically smooth convergence of all concen-
tration plots is also achieved in the free stream confirming 
again the imposition of a sufficiently large infinity boundary 
condition in the computations. Figure 10 demonstrates that 
for an increment in Schmidt number Sc , there is a consider-
able enhancement in concentration magnitudes and therefore 
boosts the concentration boundary layer thickness. Schmidt 
number is chosen between 0.1 and 0.5 and these correspond 
to communal diffusing chemical species which including 
(hydrogen, Sc ~ 0.1), (helium, Sc ~ 0.2), (water vapour, 
Sc ~ 0.4–0.8). Schmidt is ratio of momentum to species dif-
fusivity. Small values of Sc lead to enhanced chemical 
molecular diffusivity. Sc also represents relative thickness 
of velocity boundary layer to concentration (solutal) bound-
ary layer. Larger Sc fluids have lower mass diffusion charac-
teristics. Evidently Sc modifies significantly the concentra-
tion distribution throughout the regime. Figures 11 and 12 
show that concentration profile j(y) declines with intensifica-
tion in strength of either homogeneous or heterogeneous 
reactions i.e. increase in either k1 and k2. Owing to consump-
tion of the reactive species, the concentration magnitudes 
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are suppressed rapidly as k1 and k2 increase. Thus the diffu-
sion rates can be tremendously altered by destructive first-
order homogeneous or heterogeneous chemical reactions 
which both serve to thin the concentration boundary layer 
thickness.

Table 1 depicts the response in local heat and mass flux 
−��(0), j�(0) with a variation in homogeneous or heteroge-
neous reactions k1 and k2, magnetic field parameter M , and 
Schmidt number Sc . In this table, it is found that with elevat-
ing homogeneous reactions k1 , there is no tangible change 
in heat flux −��(0), since the homogeneous reactions do not 
affect heat transfer rates but do impact on the mass transfer 
rate. Local mass flux j�(0) decreases with increasing homo-
geneous reaction, k1 . Also it shows that the heat flux is not 
noticeably modified with heterogeneous reaction parameter, 
k2, whereas there is a considerable elevation in local mass 
flux. It is mentioned that with greater magnetic field param-
eter, M, both heat and mass flux −��(0), j�(0) are suppressed. 
It also demonstrates that with elevation in the Schmidt num-
ber Sc , heat flux −��(0) is not altered whereas there is a 
substantial accentuation in mass flux j�(0).

6 � Concluding remarks

Motivated by simulating rheological transport phenomena 
in nuclear reactor thermos-hydraulics near-wall regimes, 
a mathematical study has been conducted for time-inde-
pendent hydromagnetic mixed convective heat and mass 
transfer in Oldroyd-B viscoelastic electrically conducting 
fluid non-orthogonal (oblique) stagnation flow impinging 
on a stretching sheet under homogeneous–heterogeneous 
chemical reaction effects. Non-Fourier Cattaneo–Christov 
heat flux model is being utilized in the model. The non-
dimensional governing boundary layer equations along with 
viable boundary conditions are solved expending shooting 
algorithm. Validation has been performed with the Adomian 
decomposition method (ADM). Important deductions from 
the present simulation may be summarized as follows:

1.	 Momentum boundary layer thickness declines whereas 
thermal boundary layer thickness upsurges with cumu-
lative relaxation Deborah number and magnetic body 
force parameter.

2.	 Concentration of chemical species increases with elevat-
ing Schmidt number whereas it is depleted with increas-
ing strength of homogeneous- heterogeneous reactions.

3.	 Normal and tangential velocity components are influ-
enced differently with increasing relaxation Deborah 
number.

4.	 With increasing Prandtl number the tangential velocity 
component is accelerated further from the wall whereas 
it is decelerated near the wall.

5.	 Increasing Biot number decelerates tangential velocity 
near the wall whereas it induces the opposite effect fur-
ther from the wall towards the free stream.

6.	 Local heat flux is stifled with increasing magnetic field 
parameter M.

7.	 Local mass flux is reduced with increasing homogene-
ous reaction parameter and also with greater magnetic 
field parameter whereas it is elevated with increasing 
heterogeneous reaction parameter and Schmidt number.

An important implication of the current work is that the 
complex rheology, reactive and other effects have a signifi-
cant impact on the fluid dynamics of the stagnation flow. 
The multi-physics is therefore important in more realistic 
simulations for nuclear reactor transport phenomena. It is 
envisaged that inclusion of these complex phenomena (non-
Fourier, rheological, magnetic etc.) associated with real 
fluids in nuclear engineering should not be neglected. The 
current simulations have considered a no-slip wall condition 
for velocity. Future studies will investigate both isotropic and 
anisotropic hydrodynamic slip and furthermore may explore 
thermal and solutal slip also.
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Appendix

Introducing Eq. (31) into Eqs. (23–30) and eliminating the 
pressure term we have:
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