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Abstract
Considering time-varying meshing stiffness, gear backlash, static transmission error and tooth face friction, a nonlinear 
dynamic model for a spur gear pair is proposed to research systematically the dynamic behaviors of system, in which the 
meshing stiffness of gear pair is deduced and calculated in terms of the extending period method. Meanwhile, the sliding fric-
tion force under single-tooth and double-tooth meshing regions is constructed as a function of the meshing principle. Based 
on the developed model, the bifurcation and chaos characteristics of system under lightly and heavily loaded conditions are 
studied, respectively, by applied Runge–Kutta numerical method, and the parametric effects of rotational speed, damping ratio 
and gear backlash on the dynamic behaviors are investigated detailedly. Bifurcation diagram, three-dimensional frequency 
spectrum, time-domain waveform, frequency plot, phase diagram, Poincaré map and dynamic load are used to discuss and 
determine motion states and dynamic responses of system. The numerical results represent that with the change of control 
parameters the system undergoes various types of motion states under different loaded conditions. The corresponding mesh-
ing contact states of tooth pair are transformed among no impact, single-sided impact and double-sided impact. The research 
results can provide certain guidance for choosing suitable parameter values to reduce the amplitude of vibration and even 
avoid the chaotic response in gear system.
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1  Introduction

Gear system is widely applied in various machineries as 
power transmission equipment, whose dynamic perfor-
mance directly affects the stability of system. However, the 
nonlinear factors consisting of the static transmission error, 
meshing stiffness, tooth face friction, gear backlash and so 
forth, are prone to deteriorating vibration response of gear 
pair, which may cause the system to become unpredictable 
and uncontrollable. Thus, it is of importance to determine 
accurately the dynamic characteristics of gear set for avoid-
ing serious vibration and ensuring the running stability of 
machinery [1, 2].

To improve the dynamic performance of gear transmis-
sion system, a sea of studies have been carried out in recent 
decades. Kahraman and Singh [3–5] simplified the gear 
system to the mathematical models with single degree of 
freedom (single DOF) or multi-DOF and then analyzed the 
dynamic behaviors of system with the effect of clearance and 
meshing stiffness. Raghothama and Narayanan [6] investi-
gated the periodic and chaotic motions in gear–rotor–bear-
ing system by adopting the incremental harmonic balance 
method (IHBM) and numerical simulation method. Theo-
dossiades and Natsiavas [7] used the analytical methodology 
to research the dynamics of a gear pair system with back-
lash and time-dependent mesh stiffness and then verified the 
obtained results by numerical calculation. The influences of 
meshing damping, amplitude of meshing stiffness and static 
torque on dynamic characteristic of two gear pairs were 
described by Al-Shyyab and Kahraman [8, 9]. Then, Shen 
et al. [10] derived a system model of a spur gear pair with 
single-DOF, in which the influences of damping ratio and 
the excitation amplitude on system response were analyzed 
by using IHBM. Likewise, to determine the effect of back-
lash on dynamic characteristics in two-stage gear system, 
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Walha et al. [11] developed a torsional dynamic model and 
used Newton–Raphson algorithm to obtain the dynamic 
behaviors of system. Considering the nonlinear suspen-
sion, Chang-Jian [12] studied the dynamic response of a 
gear–bearing system, which demonstrated the motion forms 
of the system by using nonlinear dynamic analysis method. 
In Refs. [13, 14], Melnikov analytical method was applied 
by Farshidianfar and Saghafi to predict the key values of 
system parameter for the occurrence of homoclinic bifurca-
tion and onset of chaos. With the aim to obtain the torsional 
dynamic behaviors of wind turbine gearbox, Zhao and Ji 
[15] built a nonlinear dynamic model under the internal and 
external excitations and thus the influences of excitation 
parameters on the dynamic responses of system were inves-
tigated through a numerical integration method. Wang et al. 
[16] proposed a three-DOF torsional dynamic model of the 
locomotive traction system to carry out the dynamic analy-
sis. The dynamic behaviors of system were identified and 
described by time-domain response diagram, phase plane 
diagram, Poincaré map and bifurcation diagram. In addition, 
Gou et al. [17] modified a dynamic model of a gear system 
to analyze the influence of flash temperature on the dynamic 
responses of system, in which the temperature stiffness was 
constructed and considered into the mathematical model. 
The analysis result confirmed that the developed method of 
the flash temperature is useful. For the purpose of investigat-
ing the relationship between backlash and bearing clearance, 
Liu et al. [18] considered several kinds of forces such as the 
backside contact force, bearing forces and shift of the bear-
ing position in the model, where the detailed research was 
carried out in quasi-static and dynamic analyses.

Considering the effect of friction on the dynamic fea-
tures of the gear system, Howard et al. [19] established a 
dynamic model with 16-DOF and simulated the dynamic 
behaviors under different working conditions. Vaishya 
and Singh [20] presented a dynamic model of a gear pair 
with meshing stiffness, damping and tooth face friction. 
Then, they [21] analyzed further the effect of the strong 
nonlinearity caused by sliding friction on the system and 
discussed the dynamic behaviors to the change of key 
parameters. Several sliding friction formulations applied 
in the spur gear system are examined and compared in 
the influence on the dynamic response in Ref [22]. Sub-
sequently, Wang et al. [23] investigated and compared the 
nonlinear phenomena in a gear pair with the friction and 
non-friction and obtained the crucial differences in the 
system behavior. Considering meshing stiffness, backlash 
and friction, Chen et al. [24] provided a dynamic model 
for a gear pair system with multi-DOF and predicted the 
motion states. Based on the model above, Moradi [25] 
studied the nonlinear oscillations with the backlash nonlin-
earity, and confirmed the dynamic responses of the system 
consisting of primary, super-harmonic and sub-harmonic 

resonances by using the multiple scale method. Xiang et al. 
[26] built a six-DOF mathematical model of a spur gear 
pair with surface friction and used the support stiffness 
and rotational speed as control parameters to analyze the 
nonlinear dynamic features. Based on a quasi-static wear 
model and a translational–rotational-coupled nonlinear 
dynamic model, Liu et al. [27] developed a wear predic-
tion method to describe the relationship between surface 
wear and dynamic responses of system. The numerical 
results revealed that the interaction relation between the 
above two is strong. A six-DOF model of gear pair under 
friction–vibration interactions was built by Jiang and Liu 
[28], in which the dynamic responses of system with slid-
ing friction were obtained. Wang et al. [29] presented a 
dynamic model for locomotive gear transmission system 
with tooth surface and performed the investigation for the 
influence of tooth surface friction on the parametric vibra-
tion stability. Zhou et al. [30] proposed a gear–rotor–bear-
ing model with 16-DOF, which took into consideration 
friction force, gravity, eccentricity and so on, and studied 
the influences of mean load and friction coefficient on the 
dynamic behaviors using numerical integration method. 
The corresponding results indicated that the friction force 
could increase the vibration amplitude of system.

From above, a multitude of works have investigated 
the nonlinear dynamics with and without frictional force, 
respectively. Nevertheless, the dynamic model with the 
frictional force in some references should be improved. 
It is due to the deficiency that only the frictional force 
under single-tooth meshing area is considered. Addition-
ally, the meshing force is assumed to be uniform distri-
bution between the tooth pairs when the frictional force 
under double-tooth meshing area is considered in the gear 
system. Overcoming the two shortcomings above, the 
influence of frictional force on the dynamic response of 
gear system can be more factually reflected based on the 
proposed dynamic model. Rotational speed, damping ratio 
and meshing backlash as control parameters are used to 
research the dynamic characteristics of the gear system 
in detail. Meantime, the nonlinear dynamic behaviors of 
the system are discussed utilizing time-domain waveform 
diagram, frequency plot, phase portrait, Poincaré map and 
dynamic load diagram.

The structure of the study is organized into four sec-
tions. The dynamic model and equation of motion for a 
spur gear pair system are presented in Sect. 2, where the 
nonlinearity of friction factor and time-varying meshing 
stiffness are described as well. In Sect. 3, the equation of 
motion for the system is solved by numerical method and 
then bifurcation and chaos features with different bifurca-
tion parameters are investigated. Finally, some brief con-
clusions are drawn from the research in Sect. 4.
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2 � Description of dynamic model for a spur 
gear pair system

2.1 � Time‑varying meshing stiffness

In order to ensure the steady gear transmission, the meshing 
coincidence degree of gears ε is not generally an integer, 
which is under the range of 1–2. Therefore, the alternation 
meshing between single tooth and double teeth occurs, lead-
ing to the change of meshing stiffness periodically. When 
calculating the meshing stiffness, only the abrupt changes 
caused by the single-tooth meshing and double-tooth mesh-
ing alternately are taken into account in many researches. 
However, the change of the stiffness of the tooth itself with 
the movement of the meshing point is neglected. The way 
to deal with meshing stiffness may result in large error and 
cannot reflect the actual situation of gear meshing. Based 
on the previous research [26], the extending period method 
is thus introduced to calculate the time-varying meshing 
stiffness so as to analyze conveniently and accurately the 
meshing situation and the dynamic meshing force between 
the meshing teeth.

Figure 1 presents the meshing schematic diagram of 
the spur gear pair. In Fig. 1a, rai and rbi are the radius of 
addendum circle and base circle of the gear system, respec-
tively. ωi denotes the rotational speed of the gear i (i = 1, 
2), respectively. N2 and N1 are the starting point and ending 
point of theoretical meshing line, respectively. It is assumed 
that the gear pair starts meshing in point B2 and moves 
along the meshing line N1N2 to the point B1 out of contact. 
From Fig. 1b, it can be seen in the moving distance N1N2 
of the meshing points that B2K2 and K1B1 are double-tooth 
meshing areas and K1K2 is the single-tooth meshing area, 
respectively.

The situation of gear meshing is expanded in time axis, as 
shown in Fig. 2. Here, Tm = 2π/z1ω1 = 2π/z2ω2 is the meshing 

period. T1 is equal to Tm, where T1 represents the time that 
the meshing point moves a basic pitch Pn along the meshing 
line. According to the definition of mesh coincidence degree, 
ε = B1B2/Pn. Hence, T2 = ε · Tm, in which T2 is the time that 
the meshing point moves from point B2 to point B1. In addi-
tion, t1 refers to the time that the meshing point is under 
the double-tooth meshing area. Likewise, t2 shows the time 
that the meshing point is in the single-tooth meshing area. 
In time domain, the meshing gear pair can be divided into 
odd meshing gear pair and even meshing gear pair. It can 
be found from the Fig. 2 that the time interval between the 
two odd meshing gear pairs or two even meshing gear pairs 
is 2T1. For instance, the meshing point moves from point 
B2 to point C, and in the time process, tooth pair 1 is out of 
meshing and tooth pair 3 starts to be in meshing. However, 
it clearly shows that the tooth pair 1 does not involve in the 
meshing when it moves from B1 to C, which means that the 
meshing stiffness is zero. Therefore, the time-varying mesh-
ing stiffness of odd meshing gear with the period 2T1 can be 
expressed as follows:

Similarly, the period of even meshing gear pair is also 
2T1, in which the meshing stiffness of even meshing gear 

(1)k1(t) =

{
k(t) 0 < t < T2
0 T2 < t < 2T1

Fig. 1   Schematic illustration of 
meshing between the gear pairs. 
a Sketch of meshing at the end 
surface of gears. b Physical 
interpretation of meshing coin-
cidence degree

o1

o2

N1B1

B2N2

ra2
rb2

rb1ra1

P

1

2

Pn

B2 K2
Pn

( -1)Pn

Pn

K1

(2- )Pn ( -1)Pn

B1

t2t1
T1

T2

B2 K2 K1 B1

Tooth pair 1

Tooth pair 2

Tooth pair 3

t

C

Fig. 2   Sketch of mesh stiffness extending on meshing time
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pair can be written as k2(t) = k1(t + 2T1) . Therefore, when 
the gear backlash is 2bc, the elastic restoring force Fki, i.e., 
the dynamic load of the gear transmission [31], is defined 
as follows:

where f(x) refers to the nonlinear backlash function which 
could adopt the following expression:

Here, bc is half of the tooth backlash and x is the total rela-
tive elastic deformation.

According to the nonlinear backlash function f(x) in 
Fig. 3, there are three impact states consisting of no impact 
(state I), single-sided impact (state II) and double-sided 
impact (state III) in a gear system [2, 3]. From Fig. 3, when 
x is in the range of xmin > bc or xmax < − bc, there is no tooth 
separation where the gear system shows no impact in state 
I. It means that the dynamic load Fki is always greater than 
zero. Then, when x is at xmax > bc and xmin > − bc or xmax < bc 
and xmin < − bc, the gear system has single-sided impact in 
state II, in which the dynamic load Fki would have zero value 
but wll not have negative values. Additionally, the double-
sided impact (state III) will occur in the gear system when x 
is in the range of xmin < − bc and xmax > bc. The corresponding 
Fki will have negative values.

The damping force can be defined as

where cmi denotes the meshing damping for the gear pair i 
(i = 1, 2).

Hence, the dynamics meshing force can be written as:

2.2 � Nonlinearity of friction factor

Based on the actual situation of gear meshing, the relative 
sliding velocity direction of the tooth surface for the mesh-
ing gear pair is opposite around the pitch circle. Meantime, 
the meshing force of the tooth surface changes with the 

(2)Fki = ki(t) ⋅ f (x) (i = 1, 2)

(3)f (x) =

⎧
⎪⎨⎪⎩

x − bc, x > bc
0, �x� ≤ bc
x + bc, x < − bc

(4)Fci = cmi ⋅ ẋ

(5)Fi = Fki + Fci (i = 1, 2)

movement of meshing point. Hence, the direction of the 
frictional force at the pitch could be changed abruptly by 
the above reasons. The point that the tooth pair 1 in Fig. 2 
starts to enter meshing is selected as a starting point. Thus, 
the direction coefficient of sliding friction force of tooth sur-
face can be expressed with period 2T1 as follows:

As a function of the Coulomb’s law of friction, the mag-
nitude of the frictional force is proportional to the positive 
pressure. The friction force can be expressed by

where μ represents the coefficient of friction and Fi is the 
dynamics meshing load.

In terms of gear geometry in Fig. 1a, the frictional force 
arms are expressed as follows [32]:

where l1i and l2i are the frictional force arms of the tooth pair 
i (i = 1, 2), respectively.

Then, the friction torque of gear i caused by friction force 
between ith tooth pair can be given by:

From the previous analysis, the meshing force, friction 
force and friction torque between the gear pair are written as:

where N is the maximum number of pairs of meshing gears 
and can be obtained as

Here, ceil(ε) is the smallest integer that is greater than or 
equal to ε.

2.3 � Equations of the gear pair system

The generalized lumped dynamic model with torsional-DOF 
for a spur gear pair system is provided, ignoring the trans-
verse and axial elastic deformation of the drive shaft and 

(6)𝜆i =

⎧
⎪⎨⎪⎩

1 0 < t < t2
−1 t2 < t < T2 (i = 1, 2)

0 T2 < t < 2T1

(7)Ffi = �i�Fi (i = 1, 2)

(8)

l11(t) = (rb1 + rb2) tan � −

√
r2
a2
− r2

b2
+ rb1�1t

l12(t) = (rb1 + rb2) tan � −

√
r2
a2
− r2

b2
+ rb1�1t + Pn = l11(t + T1)

l21(t) =

√
r2
a2
− r2

b2
− rb1�1t

l22(t) =

√
r2
a2
− r2

b2
− rb1�1t + Pn = l21(t + T1)

(9)Tf1i = Ffi ⋅ l1i Tf2i = Ffi ⋅ l2i (i = 1, 2)

(10)

F =

N∑
i=1

Fi Ff =

N∑
i=1

Ffi Tf1 =

N∑
i=1

Tf1i Tf2 =

N∑
i=1

Tf2i (i = 1, 2)

(11)N = ceil(�)

bc-bc o x

f(x)

Fig. 3   Backlash nonlinear function
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the elastic deformation of the support system, as shown in 
Fig. 4. For the sake of convenient calculation in the model, 
it is assumed that the driving and driven gears are stand-
ard involute gears. The meshing stiffness and damping 
parameter are same on the unit tooth width. And the slid-
ing friction factors are equal and constant in the system, 
neglecting the rolling friction. Here, θ1 and θ2 represent the 
torsional vibration displacement of the driving and driven 
gears, respectively. I1 and I2 show the moment of inertia for 
the two gears, respectively. m1 and m2 mean the equivalent 
mass of the two gears, respectively. rb1 and rb2 represent 
the radius of base circles of the gear system, respectively. 
Tin and Tou are the torques acting on the driving and driven 
gears, respectively. Ff refers to the sliding friction between 
the gears. In addition, k(t), cm, e(t) and 2bc are time-varying 
meshing stiffness, meshing damping, the static transmission 
error and gear backlash in the gear pair system, respectively. 

According to Newton’s laws of motion, the dynamic dif-
ferential equations of the gear pair system in Fig. 4 can be 
expressed as follows:

Due to the presence of gear backlash, the gear pair con-
tains a rigid body displacement [33]. To eliminate the rigid 
body displacement that makes the equation solvable, the 
relative coordinate x is thus described in the gear system, 
which can be represented by

where e(t) = em + er · sin(ωt + φ) refers to the static transmis-
sion error, in which em is the mean value, er represents the 
volatility value, and φ stands for the initial phase of error.

Substituting the relative coordinate x as a new degree of 
freedom into Eq. (12), Eq. (12) can then be rewritten as the 
following expressions:

(12)
I1𝜃̈1 + rb1F + Tf1 = Tin

I2𝜃̈2 − rb2F − Tf2 = −Tou

(13)x = rb1𝜃̇1 − rb2𝜃̇2 − e(t)

(14)
ẍ +

1

me

[
𝜂1(t) + 𝜂2(t)

]
cmẋ

+
1

me

[
𝜂1(t)k1(t) + 𝜂2(t)k2(t)

]
f (x) =

F

me

− ë(t)

where me = 1/(1/me1 + 1/me2) shows the equivalent mass 
of the gear pair. Here, me1 and me2 are the equivalent 
mass of the driving and driven gears, respectively, which 
can be obtained by me1 = I1/r2

b1 and me2 = I2/r2
b2. And, 

F = T1/rb1 = T2/rb2 is the average force caused by external 
torque. In addition, η1(t) and η2(t) are the period function 
about frictional force arms, which are written as follows:

In order to improve the accuracy of calculation, Eq. (14) 
should be transformed with dimensionless form.

Then, the dimensionless parameters τ = ωnt and nominal 
dimension bn are introduced, where the system response 
parameters could be expressed with x = Xbn , ẋ = Ẋbn𝜔n , 
ẍ = Ẍbn𝜔

2
n
 and Ω = ω/ωn. Additionally, the dimensionless 

nonlinear backlash function f(X) can be described as follows:

where b = bc/bn.
Hence, the dimensionless equation of system can be rep-

resented by:

where � =
cm

2me�n

 , Fm =
F

bnme�
2
n

 , Fa =
er

bn
.

In addition, the dimensionless dynamic load can be given 
by

3 � Numerical simulation and discussion

Owing to the existence of the tooth surface friction, time-
varying stiffness, backlash and the static transmission 
error, the gear system is a complex system with nonlinear-
ity and time variation. To understand comprehensively the 
dynamic features of system, rotational speed Ω, damping 
ratio ζ and backlash b are selected as bifurcation param-
eter to investigate the influences on the system response, in 
which the corresponding dynamic equations are solved using 
Runge–Kutta numerical method with the initial conditions 
X(0) = 0 and Ẋ(0) = 0 . The dynamic responses of the gear 

(15)
�1(t) = 1 + me��1

(
L11

m1rb1
+

L12

m2rb2

)

�2(t) = 1 + me��2

(
L21

m1rb1
+

L22

m2rb2

)

(16)f (X) =

⎧
⎪⎨⎪⎩

X − b, X > b

0, �X� ≤ b

X + b, X < − b

(17)
Ẍ + 2𝜁

[
𝜂1(𝜏) + 𝜂2(𝜏)

]
Ẋ +

1

km[
𝜂1(𝜏)k1(𝜏) + 𝜂2(𝜏)k2(𝜏)

]
f (X) = Fm + Fa𝛺

2 cos(𝛺𝜏 + 𝜑)

(18)Fk =
1

km

[
�1(�)k1(�) + �2(�)k2(�)

]
f (X)

o1rb1
1

m1 I1
m2 I2

Tin Tou

b2

2

rb2 o2

cm

k(t) 2bc

e(t)
Ff

Fig. 4   Dynamic model of a spur gear pair system with sliding friction
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system with sliding friction can be systematically analyzed 
from bifurcation diagrams and 3-D frequency spectrum. The 
main physical parameters of system are listed in Table 1. 
Besides, when the external load varies, the force ratio Fm/Fa 
that reflects the carrying capacity of gear transmission sys-
tem also changes. Apparently, in order to study the effect of 
Fm and Fa on dynamic behaviors, it is essential to analyze 
the bifurcation and chaos characteristics under lightly and 
heavily loaded conditions, respectively [3].

3.1 � Model validation

Tooth surface friction force has an evident effect on the 
dynamic behaviors of the gear system. Thus, a number of 
literatures have considered the sliding friction factor in the 
dynamic models, where some models with friction should 
be perfected owing to the fact that the obtained friction force 
cannot factually reflect the effect on the vibration of the gear 
pair system. Therefore, time-domain waveform of the rela-
tive coordinate along the line of meshing is illustrated in 
Fig. 5 to verify the accuracy of the dynamic model for a 
spur gear pair system with sliding friction in this paper. The 
contrast between the proposed model and the model in the 
literatures is first carried out without friction to prove the 
correctness of the model of this study and, second, per-
formed under friction condition to analyze the difference 
between models.

When the coefficient of friction μ is zero and the other 
parameters of the model in Fig. 4 are the same as those in 
Ref. [5], Fig. 5a explicitly shows that the displacement X is 
equal to the displacement P in Ref. [5], which means that 
the built model without friction is equivalent to the model 

in Ref. [5]. Then, considering the friction factor that the 
friction coefficient μ is 0.07, the displacement X is larger 
than the displacement P in Fig. 5b. It clearly indicates that 
tooth face friction could aggravate the vibration of gear pair, 
which is in agreement with the research conclusion in Ref. 
[30]. Besides, the friction force of tooth surface is briefly 
expressed as the product of the contact force between the 
gear teeth and friction coefficient in Ref. [29]. Thus, keep-
ing the system parameters same with the above analysis, the 
displacement Y can be solved as seen in Fig. 5b, in which 
the method of calculating the friction force in Ref. [29] is 
adopted. It could be observed that the displacement Y is less 
than displacement P, which seems to reveal that the friction 
could suppress the system response. The result is caused 
by the unreasonable assumptions that the dynamic change 
of friction force is omitted. Overall, based on the models 
in the literature, the proposed model with friction force is 
reasonably improved that can factually reflect the influence 
of tooth surface friction on gear vibration.

3.2 � Effect of rotational speed Ω on bifurcation 
and chaos characteristics

Rotational speed Ω is one of the main physical parameters 
for the gear transmission system. Thus, Ω is chosen as a 
control parameter to investigate the influence on the bifur-
cation and chaos feature of system. Meanwhile, the other 
system parameters are listed as follows: friction coeffi-
cient μ = 0.07, damping ratio ζ = 0.07, gear backlash b = 1, 
force ratio Fm/Fa = 0.5 or 2; namely, the gear system is under 
lightly or heavily loaded condition. Figures 6 and 7 show the 
bifurcation diagrams and three-dimensional (3-D) spectrum 
programs with the varying rotational speed Ω under different 
loaded conditions. From these figures, when Ω increases, 
the system presents complex motion forms, including period 
motion, i.e., period-one and multi-period motions, chaotic 
motion and so on. Specifically, comparing Fig. 6a with 
Fig. 6b, it can be clearly found that the system undergoes the 
wider region of chaotic motion under the condition of light 
load than that under the condition of heavy load, where the 
chaos is nearly replaced by period motion under the condi-
tion of heavy load. The phenomenon can be inspected from 
the corresponding 3-D spectrum programs in Fig. 7. Chaotic 

Table 1   Parameters of the gear pair system

Parameters Value

Number of teeth, z1/z2 25
Modulus, m (mm) 5
Mass, m1/m2 (kg) 1
Moment of inertia, I1/I2 (kg mm2) 800
Face width, B (mm) 60
Pressure angle, α (°) 20

Fig. 5   Time-domain waveform. 
a Without friction; b with fric-
tion coefficient μ = 0.07
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motion always means that the system is under the unstable 
and uncontrollable state. It could be concluded that the sta-
ble motion occupies the dominant position under the heavily 
loaded condition, in which there is similar conclusion in 
Ref. [5].

In order to clearly reveal the motion states under lightly 
loaded condition, time-domain waveform, frequency plot, 
phase diagram, Poincaré map and dynamic load curve are 
used to demonstrate the dynamic features of system from 
Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17. In the range of 
Ω < 0.78, the gear pair keeps in the period-one state. Under 
Ω = 0.3, the time-domain waveform is a single periodic 

sinusoid, frequency plot possesses an obvious amplitude 
peak, the phase diagram is an approximate ellipse, and 
there is only a point in the Poincaré map, as shown in 
Fig. 8a–c. These reveal that the system is in period-one 
state. The dynamic load in Fig. 8d is always greater than 
zero, which demonstrates the meshing gear pairs are in 
no impact state (state I). In other words, there cannot 
appear separation between the meshing teeth, which also 
represents the system is under the stable state. Although 
jump discontinuity phenomena appears when Ω = 0.61, 
the motion form of the gear system does not change in 
Fig. 6a. As Ω increases, the system response changes from 

Fig. 6   Bifurcation diagrams 
with the varying of Ω under 
lightly and heavily loaded con-
ditions, respectively
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Fig. 7   3-D frequency spectrum with the varying of Ω under lightly and heavily loaded conditions, respectively
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period-one to period-two motion. Meantime, the meshing 
state of gear pair transforms from no impact to single-
sided impact state. Choosing Ω = 0.83, frequency plot in 
Fig. 9 comes out demultiplication frequency component, 
namely 0.5Ω and 1.5Ω. And the meshing gear pair is in 
state between no impact state and single-sided impact 
state alternately in Fig. 8d due to the discontinuous pres-
ence of dynamic load Fk = 0. Besides, single-sided impact 

state represents a repeated state that the meshing gear 
contact, separate, re-contact only on the positive tooth 
surface, which reveals the instability of the system. By 
increasing the rotational speed Ω further, the gear pair 
keeps under the single-sided impact state and the dynamic 
load Fk increases gradually at 0.83 < Ω < 1.04. Further-
more, the system response switches between period-two 
and period-four motions twice, which can be observed in 
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Fig. 9   Dynamic response curves at Ω = 0.83. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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Fig. 10   Dynamic response curves at Ω = 0.941. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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Fig. 11   Dynamic response curves at Ω = 0.958. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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Figs. 9, 10, 11 and 12. Then, Ω keeps increasing even fur-
ther, the system starts into chaotic motion. For instance, 
at Ω = 1.05, there appear continuous frequency compo-
nents in frequency spectrum diagram, the phase diagram 
is disorder, and a great deal of discrete points evolved into 
two fractal structures exist in the Poincaré map in Fig. 13, 
which shows the characteristics of chaos. Before entering 
the next chaotic window, gear pair experiences a narrow 

region of period-five motion. As shown in Fig. 14, under 
Ω = 1.2, the time-domain waveform is a periodic motion 
and the Poincaré map has five discrete points, revealing 
that the system is under period-five motion state. Then, 
the system goes into the chaos once more. Likewise, when 
Ω = 1.5, Fig. 15 displays the chaotic behavior of system. 
Even though system is in chaotic motion under the above 
two values, the fractal part from Fig. 15c is different with 
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Fig. 12   Dynamic response curves at Ω = 1.0. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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Fig. 13   Dynamic response curves at Ω = 1.05. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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Fig. 14   Dynamic response curves at Ω = 1.2. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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that in Fig. 13c. Increasing the rotational speed Ω sequen-
tially, the gear system turns into period-two state from 
the chaos motion, and finally converges to the period-one 
motion, as seen in Figs. 16 and 17. Overall, it could be 
clearly observed from Figs. 8, 9, 10, 11, 12, 13, 14, 15, 
16 and 17 that the dynamic load Fk of the system under 
chaotic motion is generally larger than that under period 
motion, which could deteriorate the dynamic responses of 

system. In addition, when rotational speed Ω changes, the 
meshing state of gear pairs only has no impact and single-
sided impact, except the double-sided impact. It is thus 
imperative to choose the suitable parameter to control the 
motion state of the system and then reduce the vibration 
and avoid the chaos.
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Fig. 15   Dynamic response curves at Ω = 1.5. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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Fig. 16   Dynamic response curves at Ω = 1.82. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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Fig. 17   Dynamic response curves at Ω = 2.1. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load 
curve
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3.3 � Effect of damping ratio ζ on bifurcation 
and chaos characteristics

To study the influence of damping ratio ζ on the dynamic 
behaviors, the damping ratio ζ is selected as the varying 
parameter in the corresponding bifurcation diagram and 
3-D frequency spectrum. The other parameters of the sys-
tem used in the next numerical simulation are as follows: 
μ = 0.07, Ω = 1, b = 1 and Fm/Fa = 0.5 or 2. Thus, Figs. 18 
and 19 illustrate the bifurcation diagrams and 3-D frequency 
spectrums of the gear system under lightly and heavily 
loaded conditions, in which damping ratio ζ is under the 
range of 0 < ζ < 0.2.

As seen in Fig. 18a, under lightly loaded condition, the 
gear system shows diverse motion states including period-
one, multi-period and chaotic motions. Therefore, it is indis-
pensable to determine motion state of system in detail by 
using time-domain waveform, frequency plot, phase dia-
gram, Poincaré map and dynamic load. When ζ > 0.17, the 
time-domain waveform is periodic sinusoid, frequency plot 
has an amplitude peak, the phase diagram is an approximate 
ellipse, and the Poincaré map occurs a single point. The 
result indicates that the gear system is in period-one motion. 
The corresponding dynamic load is zero but has no negative 
value, where there exists single-sided impact when meshing. 
As damping ratio ζ is decreased, the system bifurcates into 
period two in the interval of 0.07 < ζ < 0.17. For instance, 

when ζ = 0.15, the time-domain waveform is period-two har-
monic response, frequency plot shows harmonics frequen-
cies including 0.5Ω and 1.5Ω, the phase diagram is a non-
circular closed curve and the Poincaré map has two discrete 
points, which can be observed from Fig. 21a–c. When ζ is 
0.115 around, there appears jump discontinuity phenomena, 
where the vibration displacement changes abruptly whereas 
the system is also in the state of period two. Further decreas-
ing damping ratio ζ, the gear system goes into period-four 
motion, even turns into period-eight motion. When ζ is equal 
to 0.068, the Poincaré map is four discrete points, revealing 
that system motion is period four, as shown in Fig. 22c. Sim-
ilarly, under ζ = 0.061, the Poincaré map in Fig. 23c is eight 
discrete points and the complex frequencies about Ω/4, Ω/2, 
3Ω/4, Ω, 5Ω/4, 3Ω/2 appear in frequency diagram. These 
mean that the system is in period-eight motion. Finally, 
the gear system displays under the chaotic motion in the 
range of ζ < 0.058. As ζ = 0.05, the time-domain waveform 
is non-periodic curve, there are continuous and different 
frequency components in frequency plot, many disordered 
curves occur in the phase diagram, and the Poincaré map has 
lots of discrete points, as shown in Fig. 24a–c. When damp-
ing ratio ζ decreases, the dynamic loads have zero value 
among Figs. 20d, 21d, 22d, 23d and 24d, indicating that the 
system is always in the single-sided impact state (state II), 
while the amplitude of dynamic load increases gradually. In 
other words, as the damping ratio ζ is chosen to the smaller 

Fig. 18   Bifurcation diagrams 
with the varying of ζ under 
lightly and heavily loaded con-
ditions, respectively
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Fig. 19   3-D frequency spectrum with the varying of ζ under lightly and heavily loaded conditions, respectively
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value, the dynamic load largens. Apparently, there exists the 
similar change trend of vibration amplitude as can be seen in 
frequency plot. However, as damping ratio ζ decreases fur-
ther, the dynamic load has a negative value, which exhibits 
that the state of meshing gear pairs turns from single-sided 
impact into double-sided impact in Fig. 25 and could aggra-
vate the dynamic characteristic of system.

From Fig. 18b, the period motions are the main motion 
responses of system in range of 0 < ζ <0.2 under the heav-
ily loaded condition. It should be pointed out that the 
system is in the chaotic motion only at very low values 

of damping ratio ζ, where there appear continuous and 
complex frequencies observed from the corresponding 
3-D frequency spectrum. Hence, it clearly shows that the 
dynamic behaviors of system are more complex under the 
condition of light load than under the condition of heavy 
load. Partly, it is due to the fact that the static meshing 
force will increase as well with the increase of external 
load and the contact states consisting of double-sided and 
single-sided impacts may disappear gradually and then 
make gear pair meshing continuously.
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Fig. 20   Dynamic response curve at ζ = 0.19. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load

200 250 300 350

0.5

1

1.5

X

(a)

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

 A
m

pl
it

ud
e

(b)

0 0.5 1 1.5
-0.5

0

0.5

X

dX

(c)

200 250 300 350
0

0.2

0.4

0.6

F
k

(d)

Fig. 21   Dynamic response curve at ζ = 0.15. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 22   Dynamic response curve at ζ = 0.068. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Through above analysis, as damping ratio ζ decreases 
from 0.2 to 0, the gear pair starts with period-one state, 
and then goes through multi-period motion, i.e. period-
two, period-four and period-eight, and finally bifurcates 
into chaotic motion. Keeping rotational speed, gear back-
lash and other parameters constant, it could enhance sta-
bility and reliability of the gear system as ζ increases, 
owing to the energy consumed by the power transmission.

3.4 � Effect of gear backlash b on bifurcation 
and chaos characteristics

Considering manufacture and assembly errors, gear lubri-
cation and so forth, there exists backlash all the time in 
gear system. The strong nonlinearity caused by gear back-
lash makes the meshing contact state of gear pair change 
frequently. Under single-sided impact, double-sided 
impact or alternate states between the above two impact 
forms, the system may be in violent vibration. Thus, it 
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Fig. 23   Dynamic response curve at ζ = 0.061. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 24   Dynamic response curve at ζ = 0.05. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load

Fig. 25   Dynamic loads at 
ζ = 0.01, 0.03
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is vital to analyze the effect of gear backlash b on the 
dynamic behaviors of system.

In this subsection, the gear backlash b is selected as a 
control parameter in the bifurcation diagram and 3-D fre-
quency spectrum. Meantime, the other parameters in the 
gear system are set as follows: ζ = 0.07, Ω = 1, μ = 0.07 and 
Fm/Fa = 0.5 or 2. Then, the bifurcation diagrams and the cor-
responding 3-D frequency spectrums with the change of b 
under lightly and heavily loaded conditions, respectively, 
are illustrated in Figs. 26 and 27. Under lightly loaded con-
dition, as gear backlash b increases, the gear system shows 
rich bifurcation features which contains period-doubling 
bifurcation, reverse bifurcation and so forth, indicating the 
system goes through complex motion states. However, under 
heavily loaded condition, with the increasing of b, the gear 
is always at period-one state, as shown in Fig. 26b. It means 
that gear backlash b does not affect the motion property and 
only changes the displacement amplitude of system.

Owing to the complexity of bifurcation character, it 
is inevitable to show clearly the evolution process about 
motion states of gear system under lightly loaded condi-
tion. Figure 28 exhibits the particular bifurcation diagram 
with the range of 0.1 ≤ b ≤ 0.7. Time-domain waveform, 
phase diagram, frequency plot, Poincaré map and dynamic 
load diagram are used to interpret the dynamic behaviors 
of gear set. When b < 0.2, the time-domain waveform is a 
single periodic sinusoid, frequency plot exists an amplitude 

of excitation frequency, the phase diagram is sealed curve, 
and there is only a point in corresponding Poincaré map, as 
shown in Fig. 29a–c. The results represent the system under-
goes period-one motion. The dynamic load alternately has 
a positive value and a negative value in Fig. 29d, indicating 
the meshing gear pair is under alternation states among no 
impact, single-sided impact and double-sided impact. How-
ever, in period motion, the system is subjected to severe 
tooth meshing states including tooth separation, tooth impact 
and large dynamic load, leading to the worse dynamic char-
acteristic of system. Then, the system enters into the peri-
odic doubling state, namely period-two and period-four 
forms. As gear backlash b keeps increasing, the system 
gets into chaotic motion in the scope of 0.22 < b < 0.27. 

Fig. 26   Bifurcation diagrams 
with the varying of b with 
respect to X under lightly and 
heavily loaded conditions, 
respectively
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Fig. 27   3-D frequency spectrum with the varying of b under lightly and heavily loaded conditions, respectively
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When b = 0.25, the time-domain waveform shows the non-
periodic motion, the phase diagram becomes disorder, and 
the Poincaré map is evolved into the fractal structure, as 
shown in Fig. 30. These results mean the system is in the 
chaotic motion. However, the corresponding dynamic load 
is equal or lesser than zero in most of time of gear mesh-
ing process, which shows the meshing contact state of gear 
pair is under the state between single-sided impact and 
double-sided impact frequently alternately. After the width 
of chaotic motion region, the system bifurcates to period-
three motion, as shown in Fig. 31. Comparing Fig. 31d 
with Fig. 30d, the time that dynamic load is greater than 

zero increases in Fig. 31d, which demonstrates no impact 
state appears frequently. Subsequently, the system enters 
into chaos motion again in the interval of 0.31 < b < 0.35, 
where Fig. 32 illustrates the chaos state at b = 0.32. As b 
increases further, the system gets into period-four motion. 
When b = 0.36, the time-domain waveform shows the four 
periodic curve, and there are four discrete points in Poincaré 
map, as seen in Fig. 33a–c. The dynamic load still shows 
that the gear pair often switches meshing contact forms 
among the three impact states. And then, the gear system 
goes into period-two state by the route of reverse bifurca-
tion. Keeping gear backlash b increasing further, the system 
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Fig. 29   Dynamic response curve at b = 0.1. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 30   Dynamic response curve at b = 0.25. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 31   Dynamic response curve at b = 0.28. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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enters into the chaotic motion once more. When b = 0.53, 
the time-domain waveform represents the non-periodic 
curve, the phase diagram is disorder and the Poincaré map 
is evolved into two fractal structures, as shown in Fig. 34a–c. 
Likewise, Fig. 34d suggests the meshing gear pair goes into 
severe contact states. Before getting into the next window 
of chaotic state, there exists a certain width of period-eight 
motion. When b = 0.55, there are eight discrete points in 
Poincaré map in Fig. 35c, indicating the system is under 
the period-eight motion. Then, the gear system goes into 
the chaos motion, as shown in Fig. 36. Increasing the gear 

backlash b even further, the system gets back to the period 
motion. At b = 0.605, the time-domain waveform, phase 
diagram and Poincaré map all show that the system enters 
period-four motion in Fig. 37. Then, the window of chaos 
motion appears again, as shown in Fig. 38. After the region 
of chaos, the gear pair bifurcates to period-four motion and 
then goes through period-two form, finally turns into period-
four motion. When b = 1, the corresponding dynamic load 
has the negative value no longer, as illustrated in Fig. 39. 
It means that the meshing contact of gear pair only has no 
impact state and single-sided impact state.
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Fig. 32   Dynamic response curve at b = 0.32. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 33   Dynamic response curve at b = 0.36. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 34   Dynamic response curve at b = 0.53. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Based on the analysis above, it can be concluded that 
the varying gear backlash b gives rise to complex bifurca-
tion features that the system goes through a diverse range 
of motion forms. In the chaotic state, the motions of sys-
tem become unpredictable and uncontrollable. In addition, 
the dynamic load is high sensitivity to the change of gear 
backlash, which results in different impact states. There-
fore, it is crucial to choose the suitable value of gear back-
lash for suppressing vibration of gear system, controlling 
impact state and avoiding chaos.

4 � Conclusion

This paper builds a nonlinear dynamic model of a spur 
gear pair, which includes several nonlinear factors such as 
tooth face friction, static transmission error, backlash and 
time-varying stiffness. According to the extending period 
method, the time-varying meshing stiffness of gear pair 
is calculated. Meantime, the tooth face friction is derived 
based on the meshing principle. Then, the dynamic 
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Fig. 35   Dynamic response curve at b = 0.55. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 36   Dynamic response curve at b = 0.586. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 37   Dynamic response curve at b = 0.605. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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differential equation of the system is solved by applying 
Runge–Kutta numerical integration method. Rotational 
speed, damping ratio and backlash are selected as the 
control parameters to analyze the effect on the bifurcation 
and chaos characteristics under different loaded condi-
tions. The dynamic responses of system are determined 
and discussed in detail from time-domain waveform dia-
gram, frequency plot, phase portrait, Poincaré map and 
dynamic load diagram.

The analysis results show that as rotational speed 
increases under the condition of light load, the gear sys-
tem initiates with periodic state, then goes through chaos, 
and lastly turns into the period motion again, showing 
rich motion forms. The corresponding meshing contact 
states are changed from no impact to single-sided impact 
state. However, under the condition of heavy load, the 
system only is in period motion including period-one and 
period double forms. Likewise, decreasing the damping 
ratio, the gear system turns into the chaotic motion via 
the channel of period double motion. The corresponding 
dynamic load is gradually increased with the decreasing 
of the damping ratio, where the meshing contact state of 
system is transferred from single-sided impact to double-
sided impact. By contrast, when the gear system is under 

the condition of heavy load, the width of chaos region 
becomes narrow extremely, which is almost superseded 
by periodic motion. Besides, when gear backlash changes, 
there are several windows of the chaotic motion in bifurca-
tion diagrams under lightly loaded condition. When gear 
backlash is smaller value, the dynamic load has a negative 
value, which means the meshing gear pair is in the state 
of double-sided impact. Whereas the system is always 
in period-one state with gear backlash increasing under 
heavily loaded condition. Overall, the nonlinear dynamic 
responses of gear system with friction are investigated in 
detail; especially, the proper values of system parameters 
should be chosen to reduce vibration amplitude, avoid the 
chaos and enhance the stability of system.

Though the bifurcation and chaos features for a spur 
gear pair system with sliding friction have been analyzed, 
there are some crucial topics that should be investigated in 
the future. Therefore, the stability analysis and the effect 
of friction on vibration displacement, chaos and bifurca-
tion of gear system will be studied in the next stage.
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Fig. 38   Dynamic response curve at b = 0.618. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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Fig. 39   Dynamic response curve at b = 1. a Time-domain waveform, b frequency plot, c phase diagram and Poincaré map, d dynamic load
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