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Abstract
Some numerical remarks regarding the crack evolution in failure analysis by the BEM using cells with embedded strong 
discontinuities are addressed in this work. A comparative study between the generation of these cells at any iteration or only 
after a step convergence is firstly performed. Moreover, an analysis is carried out related to the cells size growth throughout 
the iterative-incremental process. As reference, some classical problems whose experimental results are available in the 
literature are used for the numerical analysis which is performed considering the implicit formulation of the boundary ele-
ment method together with the continuum strong discontinuity approach. It was verified that the results are coincident for 
different numbers of steps considered in the simulations when cells are generated during any iteration, showing step size 
independence in this case, while the same is not true for the case of cells generated only after step convergence, in which 
a large number of steps are required for a good accuracy. Finally, it is shown that a small increase in cell size throughout 
the analysis contributes to the reduction in numerical processing time without significantly affecting the results accuracy.

Keywords  Implicit boundary element method · Continuum strong discontinuity approach · Failure mechanics · Step size 
dependence

1  Introduction

The progress in the development of computational resources 
in recent years has led to an increase in the use of numerical 
methods in engineering. In this sense, the numerical study 
of material failure has been one of the most prominent areas, 
since analytical solutions are limited to simple cases and 
experimental tests are usually expensive and laborious. 
Moreover, this kind of study is of great importance in the 
design and avaliation of several types of structures, since it 
allows a determination of the post-critical behaviour, con-
tributing to the establishment of techniques to predict struc-
tural collapse. In this context, the boundary element method 
(BEM), which presents some advantages when compared to 

classical domains methods, has assumed a prominent role, 
mainly after the development of the so-called Dual BEM 
[24, 25]. In this method, cracks are treated as part of the 
boundary, which increases during propagation. Another way 
to address loss of strength is to consider a total or partial 
domain discretization by internal cells, where the inelastic 
fields are interpolated, as for example in [2, 4–7, 20, 27]. 
More recently, the continuum strong discontinuity approach 
(CSDA) originally introduced by [26] was used in BEM 
analyses by the adoption of cells with embedded disconti-
nuities as in [9–11, 23].

In the CSDA, a kinematics characterized by the presence 
of finite discontinuities in the displacement field is consid-
ered and, consequently, infinite discontinuities in the strain 
field are obtained. In this way, it is shown that continuous 
constitutive models, equipped with a strain softening law, 
are compatible with the kinematics of strong discontinuities 
and thus induce a discrete constitutive model on the discon-
tinuous surface [14, 18]. Later on, in [12] and [13], a more 
rigorous detailing of the process of identifying the character-
istics that make conventional continuous constitutive models 
consistent with the strong discontinuity regime was carried 
out. In addition, a more general numerical treatment with 
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the finite element method, using isotropic damage and elas-
toplastic models, to show that the analysis methodology is 
easily extended to any constitutive model was considered.

In many cases, the strong discontinuity kinematics can be 
induced directly after the elastic regime. However, in other 
cases, it becomes necessary to consider an intermediate 
phase when the so-called strong discontinuity conditions are 
not met at the moment of bifurcation which is characterized 
by the inception of a strain localization zone. These condi-
tions consist of a set of equations necessary for the adequa-
tion of the continuous constitutive model to the strong dis-
continuity regime. In this case, a transitional phase between 
the bifurcation and the strong discontinuity, based on weak 
discontinuity kinematics, is considered in the works of [8, 
15, 16, 21]. This kinematics is characterized by continuous 
displacements fields and the presence of finite discontinui-
ties in the strain field. In addition, these works also take into 
account a regularized kinematics capable of representing 
both (weak and strong) kinematics through a single set of 
equations, where a variable bandwidth model is introduced. 
It is shown that this methodology is more suitable to repre-
sent the regions of the fracture process zone.

Despite the CSDA have been extensively explored in 
finite element analyses, its application with boundary ele-
ments remains limited to few works, deserving further study 
on some points. In this sense, [10] and [11] considered con-
stant triangular cells with embedded discontinuity and used 
associative elastoplastic constitutive models with a specific 
yield criterion, together with an exponential softening law, 
to represent the behaviour of cracks in quasi-brittle materi-
als. In [9], the same idea of these works was adopted, how-
ever, using an isotropic damage model and a cells generation 
algorithm to follow the crack path. Also, the strong disconti-
nuity was imposed directly after the end of the elastic regime 
with the discontinuity line direction defined as perpendicular 
to the maximum principal stress. Moreover, in [23], quadri-
lateral cells were used together with another automatic cells 
generation algorithm. Besides that, in [9] the cell generation 
occurs only after step convergence while that in [23], the 
generation is allowed at any iteration inside the steps.

In this article, a material failure analysis is performed 
through the implicit formulation of the boundary element 
method using the continuum strong discontinuity approach 
that was implemented in the INSANE software (INterac-
tive Structural ANalysis Environment) through the work of 
[23]. In this work, the cell generation was performed at any 
iteration, which is not the most adequate procedure from the 
numerical point of view since it is associated to an unbal-
anced state. Such strategy was adopted due to the previous 
lack of knowledge of the progression rate of the crack during 
the analysis and for believing that for monotonic loads this 
would not be a problem. Therefore, in this article we seek 
to evaluate the accuracy and efficiency of this methodology 

comparing the cell generation at any iteration with the gen-
eration only after step convergence of the nonlinear analysis. 
Thus, considering these two cases, two classical problems 
in the literature with monotonic load are analysed using an 
automatic cell generation algorithm. Furthermore, a study 
on the cells size growth throughout the iterative-incremen-
tal process is also carried out which, in turn, has not been 
addressed in previous works. Being thus, step size independ-
ence with satisfactory results is observed for cell generation 
at any iteration while a large number of steps are required 
for better accuracy when cells are generated only after step 
convergence. Finally, it is shown that a small increase in cell 
size throughout the analysis contributes to the reduction in 
numerical processing time without relevant impact on the 
results accuracy.

2 � Integral equations for problems 
with strong discontinuities

2.1 � Strong discontinuity kinematics

A strong discontinuity kinematics capable to distribute the 
effects of the discontinuous surface on a finite region of the 
domain is presented. Thus, with reference to Fig. 1, a sub-
domain �� is defined around the discontinuity line  and 
contained in the domain � . In this case, the discontinuity is 
inserted during the analysis according to a predefined crite-
rion as described further in Sect. 4.4.

Also, it is defined a continuous and arbitrary function, 
�(�) , in ��(�) , such that �(�) = 0 in �−��−

�
 and �(�) = 1 

in �+��+
�
 . In this case, the expression a∖b means the 

domain a excluding the domain b, that is, a�b = a − (a ∩ b) 
and, besides this, the material points are designated by � . 
Thus, the following equation can be defined:

(1)

u̇i(�, t) = ̇̄ui(�, t) + 𝜑(�)[[u̇i]](�, t)
���������������������������������

̇̂ui(�,t)

+ [ (�) − 𝜑(�)]
�������������������

𝜑

 (�)

[[u̇i]](�, t)

= ̇̂ui(�, t) +𝜑

 (�)[[u̇i]](�, t)

Fig. 1   Discontinuous surface contained in an arbitrary subdomain ��
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where the terms ̇̄ui(�, t) , [[u̇i]](�, t) and  (�) represent, 
respectively, the displacement field regular part components, 
the displacement jumps components on the discontinuity 
surface  and the Heaviside function (  = 1 for � ∈ �+ 
and  = 0 for � ∈ �− ). In addition, ̇̂ui(�, t) are continuous 
functions and �

 (�) has null value for all � in � , except 
for � ∈ ��.

Therefore, with the kinematic defined by Eq.  (1) the 
essential boundary conditions (prescribed displace-
ments) can be applied exclusively to the terms ̇̂ui , since 
�u ∩ �� = 0 , provided that �u represents the region of 
the boundary where the essential boundary conditions are 
applied.

The strains are given by the symmetric part of the gradi-
ent of Eq. (1), that is:

Equations (3) to (10) represent internal equilibrium, surface 
forces external continuity, surface forces internal continuity, 
kinematic compatibility, the constitutive compatibility in  , 
the constitutive compatibility in �∖ , the essential bound-
ary conditions and the natural boundary conditions, respec-
tively. In these expressions, the terms ḃi , 𝜎̇+

ij
 , 𝜎̇−

ij
 , 𝜎̇

ij
 , 

𝜎̇
𝛺�
ij

(𝜖̇ij) , �̇i and �̇i represent the rates of: body forces, stresses 

in �+ , stresses in �− , stresses in  , an appropriate continu-
ous constitutive relation, prescribed displacements and pre-
scribed surface forces, respectively. In addition, in Eq. (9), 
as mentioned previously, �u is the boundary region where 
the displacements are prescribed and �� , in Eq. (10), is the 
boundary region where surface forces are prescribed. It 
should also be noted, through Eq.  (8), that a linear 

where the term ̇̂𝜖ij represents the strain field regular portion 
and the term 𝜖̇𝜑

ij
 has nonzero values only in ��.

2.2 � Integral equations with discontinuities

The boundary value problem for a solid medium with the 
presence of a discontinuity surface  is represented by the 
following equations:

(2)

𝜖̇ij(�, t) =
1

2

(
̇̂ui,j +

̇̂uj,i
)

�����������
̇̂𝜖ij

+
𝜑


2

(
[[u̇i,j]] + [[u̇j,i]]

)
−

1

2

(
𝜑,i[[u̇j]] + 𝜑,j[[u̇i]]

)
���������������������������������������������������������������������

−𝜖̇
𝜑

ij

+
𝛿
2

(
[[u̇i]]nj + [[u̇j]]ni

)

= ̇̂𝜖ij − 𝜖̇
𝜑

ij
+

𝛿
2

(
[[u̇i]]nj + [[u̇j]]ni

)

(3)𝜎̇ij,j + ḃi = 0 for � ∈ 𝛺�

(4)𝜎̇+
ij
nj − 𝜎̇−

ij
nj = 0 for � ∈ 

(5)𝜎̇+
ij
nj − 𝜎̇

ij
nj = 𝜎̇−

ij
nj − 𝜎̇

ij
nj = 0 for � ∈ 

(6)𝜖̇ij −
1

2
(u̇i,j + u̇j,i) = 0 for � ∈ 𝛺

(7)𝜎̇ij = 𝜎̇
ij
(𝜖̇ij) for � ∈ 

(8)𝜎̇ij = 𝜎̇
𝛺�
ij

(𝜖̇ij) = Eo
ijkl
𝜖̇kl for � ∈ 𝛺�

(9)̇̂ui = �̇i for � ∈ 𝛤u

(10)𝜎̇ijnj = �̇i for � ∈ 𝛤𝜎

constitutive relation is considered for �∖ despite the 
effects of the strong discontinuity kinematics have been 
numerically distributed in the subdomain ��.

The constitutive relation presented in Eqs. (7) and (8) can 
be rewritten, after applying Eq. (2), as follows:

where the arbitrariness of the function �(�) and the material 
character of  were considered, that is, once the orienta-
tion of an discontinuity surface increment is established, it 
becomes fixed throughout the analysis.

In addition, from Eqs. (2) and (12) one can write:

where the symmetries associated to the regime of small 
strains in isotropic media were taken into account.

Therefore, a first integral formulation of this problem can 
be obtained on the basis of the following weighted residues 
equation, that is:

(11)𝜎̇
ij
(𝜖̇ij) = 𝜎̇

ij

(
̇̂𝜖ij, [[u̇i]], [[u̇i,j]]

)

(12)𝜎̇
𝛺�
ij

(𝜖̇ij) = Eo
ijkl
𝜖̇kl = Eo

ijkl

[
̇̂𝜖kl − 𝜖̇

𝜑

kl

(
[[u̇i]], [[u̇i,j]]

)]

(13)𝜎̇
𝛺�
ij

= Eo
ijkl

̇̂uk,l − Eo
ijkl
𝜖̇
𝜑

kl

(14)

�𝛺�

(
𝜎̇
𝛺�
ij,j

+ ḃi

)
u∗
i
d𝛺 + �

nj

(
𝜎̇+
ij
− 𝜎̇−

ij

)
u∗
i
d𝛤

+ �𝛤𝜎

(
�̇i − ṫi

)
u∗
i
d𝛤 + �𝛤u

(
u̇i − �̇i

)
t∗
i
d𝛤 = 0
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where u∗
i
 and t∗

i
 represent weighted fields which, for the time 

being, are arbitrary.
In this way, based on Eq.  (14), and considering also 

Eq. (13), we arrive at the integral governing equations of the 
boundary value problem (for more details, see [23]), that is:

In Eqs. (15–17), the tensors u∗
ij
(�,�) , t∗

ij
(�,�) and �∗

ijk
(�,�) 

are the Kelvin’s fundamental solutions and represent, respec-
tively, displacements and surface forces in the j direction and 
jk stress components, at a field point � , due to a concen-
trated unit load at the source point � applied in the i direc-
tion. Already the tensors u∗

ijk
(�,�) , t∗

ijk
(�,�) and �∗

ijkl
(�,�) 

represent the Kelvin’s fundamental solutions derivatives 
with respect to the source point � and the terms F��

ijkl
 and 

cij(�) are free terms associated with particular analytical 
integrations.

2.3 � Equilibrium equation of the discontinuous 
interface

The integral equations presented in Sec. 2.2 do not com-
pletely define the boundary value problem, since the internal 
continuity condition of the surface forces [Eq. (5)] is not 
met. Therefore, this condition is imposed separately, as in 
[19], adopting the strong form of the equation.

Initially we note that Eq. (5) is equivalent to the follow-
ing equation:

Therefore, considering Eq. (18), together with Eqs. (11) and 
(12), we obtain the interface equilibrium equation that is 
given by:

(15)

̇̂ui(�) = ∫𝛤

u∗
ij
(�,�)ṫj(�)d𝛤 (�) − ∫𝛤

t∗
ij
(�,�) ̇̂uj(�)d𝛤 (�)

+ ∫𝛺

u∗
ij
(�,�)ḃj(�)d𝛺(�) + ∫𝛺

𝜎∗
ijk
(�,�)𝜖̇

𝜑

jk
(�)d𝛺(�)

(16)

cij(�)
̇̂ui(�) = ∫𝛤

u∗
ij
(�,�)ṫj(�)d𝛤 (�) − ∫𝛤

t∗
ij
(�,�) ̇̂uj(�)d𝛤 (�)

+ ∫𝛺

u∗
ij
(�,�)ḃj(�)d𝛺(�) + ∫𝛺

𝜎∗
ijk
(�,�)𝜖̇

𝜑

jk
(�)d𝛺(�)

(17)

̇̂𝜖ij(�) = ∫𝛤

u∗
ijk
(�,�)ṫk(�)d𝛤 (�) − ∫𝛤

t∗
ijk
(�,�) ̇̂uk(�)d𝛤 (�)

+ ∫𝛺

u∗
ijk
(�,�)ḃk(�)d𝛺(�) + ∫𝛺

𝜎∗
ijkl
(�,�)𝜖̇

𝜑

kl
(�)d𝛺(�)

+ F𝜖𝜖
ijkl
𝜖̇
𝜑

kl
(�)

(18)ti(�, t) = �
��
ij

(�, t)nj(�) = �
ij
(�, t)nj(�)

where �ij is given by the time integration of Eq. (2) which, 
for points on  , corresponds to the following expression:

In the context of the boundary element method, Eq. (19) can 
be solved numerically by the adoption of cells with embed-
ded discontinuities that, in this case, provide the displace-
ments jump components ([[ui]]) required to calculate ��

ij
 . 

Furthermore, these components are considered to be con-
stant within the cells causing null values for the gradient 
tensors, that is, [[ui,j]] = 0 . In this way, considering a given 
regular strain 𝜖ij and taking into account  Eq. (20), we can be 
written Eq. (19) as fi ≡ fi([[ui]]) = 0 . Therefore, after the 
linearization of this equation its solution can be obtained 
through Newton’s method.

From these considerations, a regularized constitutive 
equation that relates stresses and regular strains (𝜖ij) is 
defined. Therefore, using Eq. (12), we find:

where [[ui]](𝜖ij) represents the solution of Eq. (19).

3 � Implicit formulation of the BEM 
for problems with discontinuities

Equations (15–17) can be rewritten in matrix form, after 
BEM standard discretization, as:

From an algebraic manipulation of these equations, we arrive 
at a single nonlinear equation, as in the implicit formulation 
developed by [28]. Therefore, through consideration of the 
essential and natural boundary conditions, Eqs. (22) to (24) 
are rewritten as:

(19)fi =
{
Eo
ijkl

[
𝜖kl − 𝜖

𝜑

kl

(
[[ui]], [[ui,j]]

)]
− 𝜎

ij
(𝜖ij)

}
nj = 0

(20)𝜖ij = 𝜖ij − 𝜖
𝜑

ij
+

1

2h

(
[[ui]]nj + [[uj]]ni

)

(21)𝜎̃ij(𝜖ij) = 𝜎
𝛺�
ij

(
𝜖ij − 𝜖

𝜑

ij

(
[[ui]](𝜖ij)

))
= Eo

ijkl

(
𝜖kl − 𝜖

𝜑

kl

)

(22){ ̇̂u
𝛺
} = [Gu]{ṫ} − [Hu]{ ̇̂u} + [Qu

𝜖𝜑
]{𝜖̇𝜑}

(23)[H]{ ̇̂u} = [G]{ṫ} + [Q𝜖𝜑]{𝜖̇
𝜑}

(24){ ̇̂𝜖} = [G𝜖]{ṫ} − [H𝜖]{ ̇̂u} + [Q𝜖
𝜖𝜑
]{𝜖̇𝜑}

(25){ ̇̂u
𝛺
} = [Au]{ẋ} + [Bu]{ẏ} + [Qu

𝜖𝜑
]{𝜖̇𝜑}

(26)[A]{ẋ} = [B]{ẏ} + [Q𝜖𝜑]{𝜖̇
𝜑}

(27){ ̇̂𝜖} = [A𝜖]{ẋ} + [B𝜖]{ẏ} + [Q𝜖
𝜖𝜑
]{𝜖̇𝜑}
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where in {ẏ} and {ẋ} are grouped, respectively, the prescribed 
and the unknown values of the boundary stemming from the 
vectors { ̇̂u} or {ṫ} . In addition, the matrices [A] and [B] are 
composed, respectively, by the coefficients from the matrices 
[H] and [G].

Isolating the vector {ẋ} in Eq. (26), we find:

where we have that:

Now replacing Eq. (28) in Eqs. (25) and (27), it is found:

where:

The constitutive model considered in this work is time inde-
pendent, so the rates can be replaced by finite increments, 
that is, ̇(⋅) = 𝛥(⋅) ≡ (⋅)i − (⋅)i−1 , where the i term is an incre-
mental index. Thus, considering the i-th increment of pre-
scribed loads, {y} , Eqs. (28), (30) and (31) are rewritten as 
follows:

where the term �i is a cumulative scalar value called load 
factor whose evolution depends on a specific control method, 
see for example [7, 20].

From Eq. (36), and taking into account the matrix form 
of the regularized constitutive equation [Eq. (21)] applied to 
the complete set of internal cells, we define an equilibrium 
vector, {Q}i ≡ {Q(𝜖i, 𝜆i)} , as a function of the regular strains 
and the load factor, that is:

where [Eo] now represents the linear elastic quasi-diagonal 
matrix and the vector {𝜎̃(𝜖)} represents the appropriate stress 
vector.

In this work, this equation is solved using the solution 
strategy implemented in INSANE software through the work 
of [23] where, in this case, the load factor is considered an 
additional variable of {Q}i.

(28){ẋ} = [N]{ẏ} + [M𝜖𝜑]{𝜖̇
𝜑}

(29)[N] = [A]−1[B], [M��] = [A]−1[Q��]

(30){ ̇̂u
𝛺
} = [Nu]{ẏ} + [Mu

𝜖𝜑
]{𝜖̇𝜑}

(31){ ̇̂𝜖} = [N𝜖]{ẏ} + [M𝜖
𝜖𝜑
]{𝜖̇𝜑}

(32)
[Nu] = [Au][A]−1[B] + [Bu], [Mu

��
] = [Au][A]−1[Q��] + [Qu

��
]

(33)
[N�] = [A�][A]−1[B] + [B�], [M�

��
] = [A�][A]−1[Q��] + [Q�

��
]

(34){x}i = �i[N]{y} + [M��]{�
�}i

(35){û𝛺}i = 𝜆i[Nu]{y} + [Mu
𝜖𝜑
]{𝜖𝜑}i

(36){𝜖}i = 𝜆i[N𝜖]{y} + [M𝜖
𝜖𝜑
]{𝜖𝜑}i

(37)
{Q}i = 𝜆i[N𝜖]{y} + [M𝜖

𝜖𝜑
]
(
{𝜖}i − [Eo]−1{𝜎̃(𝜖)}i

)
− {𝜖}i = {0}

4 � Numerical aspects

4.1 � Cells with embedded discontinuity

From the definition of the function �(�) (Sect. 2.1), we can 
see that the dissipative effects are restricted to the subdo-
main �� . Therefore, only this region needs to be discretized 
by cells, as illustrated by Fig. 2a.

Thus, for each internal cell with embedded discontinuity, 
typically represented in Fig. 2b, only one collocation point 
is adopted and, besides this, the field ��

ij
 is considered con-

stant inside the entire cell domain, that is, for � ∈ �c:

However, the cells geometry is parametrized by conventional 
linear functions defined by the natural coordinates �i , that is:

where the � index refers to the corner points (numbered from 
1 to 4 in Fig. 2b).

Therefore, in a cell with embedded discontinuity, an inter-
nal collocation point and a set of geometric interpolation 
points can be distinguished. In addition, the discontinuity 
line orientation is defined by the unit normal vector and a 
very small value parameter, k, is used to regularize the Dirac 
delta function.

The geometry interpolation functions can also be used to 
define the function �(�) inside the cell since the conditions 
( �(�) = 0 in �−��−

�
 and �(�) = 1 in �+��+

�
 ) are satisfied 

by the choice:

In this case, the summation is performed considering the 
interpolation functions associated with the corners located 
in �+

c
 (e.g. points 2 to 4 in Fig. 2b).

(38)

⎧
⎪⎨⎪⎩

�
�

11
(�)

�
�

22
(�)

�
�

12
(�)

⎫
⎪⎬⎪⎭
≈

⎧
⎪⎨⎪⎩

�
�,c

11

�
�,c

22

�
�,c

12

⎫
⎪⎬⎪⎭
= {��,c}

(39)Xj(�1, �2) ≈ M�(�1, �2)X
�
j

(40)�(�(�1, �2)) =
∑
�+

M�+(�1, �2)

(a) (b)

Fig. 2   BEM discretization of a solid with discontinuity surface: a 
boundary and domain discretization, b cell with embedded disconti-
nuity [23]
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4.2 � Evaluation of displacement jumps

The displacement jump inside a cell is obtained through 
the numerical solution of the interface equilibrium equa-
tion [Eq. (19)]. Thus, it is considered that the displacement 
jump, [[ui]](�) , is constant inside the cell, that is:

Also, we assume a Dirac delta function regularization 
through a very small value parameter k, that is:

Using Eqs. (2) and (41), one can write the vector of Eq. (38) 
in terms of the displacement jump:

where �c are the collocation points coordinates of the cell c 
and, from Eqs. (39) and (40),

Therefore, using Eqs. (42) and (43), we obtain the following 
matrix form for Eq. (19):

where:

Finally, Eq. (45) is solved by the Newton iterative method, 
noting that its linearized form, for a known value of {𝜖c} , is 
given by:

where j is an iterative index and

(41)

{
[[ui]](�) ≈

{
[[uc

1
]] [[uc

2
]]
}T

= {[[uc]]} for � ∈ �c

[[ui,j]](�) = 0 for � ∈ �c

(42)

{
� ≈

1

k
for � ∈ 

� = 0 for � ∈ ��

(43)

{��,c} =

⎧⎪⎨⎪⎩

�
�,c

11

�
�,c

22

�
�,c

12

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

�,1 (�
c) 0

0 �,2 (�
c)

1

2
�,2 (�

c)
1

2
�,1 (�

c)

⎤⎥⎥⎦

�
[[uc

1
]]

[[uc
2
]]

�
= [∇s�c]{[[uc]]}

(44)�,i =
��

��k

��k

�Xi

=

(
�M�

��k
X�
i

)−1
(

�

��k

[∑
�+

M�+

])

(45)

{f } = [N̄c]T ([Eo]{𝜖c} − [Eo][∇s𝜑c]{[[uc]]}

−{𝜎 ({𝜖c} − [∇s𝜑c]{[[uc]]} +
1

k
[Nc]{[[uc]]})}

)
= {0}

(46)

[N̄c] =

[
n1 0 n2
0 n2 n1

]T
; [Nc] =

[
n1 0

1

2
n2

0 n2
1

2
n1

]T

(47){f }j−1 +

[
�{f }

�{[[uc]]}

]

j−1

{�[[uc]]}j ≈ {0}

In Eq. (48), the term 
[
��
��

]
 is the tangent operator of the 

continuous constitutive model used to represent the dissipa-
tive effects on the discontinuity line .

4.3 � Regularized constitutive model

The matrix form of Eq. (21) for an internal cell is given by:

Thus, the tangent operator associated to this regularized con-
stitutive model and necessary for the solution of the implicit 
BEM formulation’s equilibrium condition vector of Eq. (37) 
can be obtained from Eq. (49), that is:

4.4 � Discontinuity line tracking algorithm

In the INSANE software, an automatic cell generation 
algorithm was implemented to allow the discontinuity line 
propagation along the solid domain. A schematic drawing 
of the algorithm operation is shown in Fig. 3.

In front of the last generated cell with embedded discon-
tinuity (Cell i − 1 ), there is always a cell in elastic regime 
(Cell i). When the elastic limit is reached or the bifurcation 
condition is met in this cell, a straight discontinuity segment 
is introduced ensuring discontinuous line continuity (line 
i−1 and i ). In this case, the segment orientation will be 
defined according to a predefined criterion: perpendicular to 
maximum principal stress, as in [23], or following a bifurca-
tion analysis, as in [21]. Then, a new cell (i + 1) is generated 
from the following steps:

(48)

[
𝜕{f }

𝜕{[[uc]]}

]

j−1

= [N̄c]T

[
−[Eo][∇s𝜑c] −

[
𝜕𝜎
𝜕𝜖

]

j−1

[
1

k
[Nc] − [∇s𝜑c]

]]

(49)
{𝜎̃(𝜖c)} = [Eo]({𝜖c} − [∇s𝜑c]{[[u]]}) = [Eo]({𝜖c} − {𝜖𝜑,c})

(50)

[
𝜕𝜎̃

𝜕𝜖c

]
= [Eo]

(
[I] − [∇s𝜑c]

[
𝜕{f }

𝜕{[[uc]]}

]−1
[N̄c]T

(
[Eo] −

[
𝜕𝜎
𝜕𝜖

]))

Fig. 3   Automatic cell generation algorithm [23]
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1.	 The edge of the cell (i) that contains the end of the dis-
continuity line is assumed to be the starting edge of the 
cell ( i + 1);

2.	 A straight segment is drawn from the end point of the 
discontinuity segment of the previous cell following the 
same orientation as this, but with length weighted by a 
scalar factor, �;

3.	 The opposite side of the new cell is created perpendicu-
larly to this segment, with its same size and taking its 
final point as the side’s midpoint;

4.	 The other two sides of the new cell are created by con-
necting the end points of these first two sides.

Numerically speaking, the introduction of a new cell cor-
responds to the amplification of the matrices presented 
in Sect. 3, as described in [22], which can be done in any 
iteration or only after step convergence in the incremental-
iterative solution strategy.

The adoption of a progressive cell size growth becomes 
important in some cases to prevent the occurrence of numer-
ical instabilities. In addition, the use of small values for the 
� parameter can contribute to a shorter numerical process-
ing time. However, as will be seen further in the numerical 
examples, the adoption of high values for this parameter can 
result in the generation of oversized cells. This event, in turn, 
generates discrepant results since much of the crack trajec-
tory is approximated by straight segments. Furthermore, a 
large distance between cells collocation points also leads to 
a loss of accuracy, since the crack progression is delayed.

5 � Isotropic damage constitutive model

5.1 � Constitutive equations

In the numerical analyses performed in this work, an iso-
tropic damage constitutive model is used. This model can be 
synthesized through the following equations [23]:

(51)�(�ij, r) = [1 − D(r)]�o(�ij), �o(�ij) =
1

2
�ijE

o
ijkl
�kl

(52)�ij =
��(�ij, r)

��ij
= (1 − D)Eo

ijkl
�kl = Eijkl�kl

(53)D ≡ D(r) = 1 −
q(r)

r
, D ∈ [0, 1]

(54)ṙ = 𝛾̇ ,

�
r ∈ [ro,∞),

ro = r�t=0 = ft√
E

 Equation (51) represents the expression for Helmholtz free 
energy. In this equation, the term r is the strain-like scalar 
internal variable. In addition, D is the damage variable and 
Eo
ijkl

 represents the elastic constitutive tensor for isotropic 

materials which is given by:

where �ij is the Kronecker delta and the terms � and 𝜆̄ repre-
sent the Lamé constants that are expressed as:

where E is the elasticity modulus, � is the Poisson’s ratio 
and 𝜈̄ is given by:

Already Eqs. (52) to (57) represent, respectively, a constitu-
tive equation, an expression for the damage variable, the 
evolution law of the internal variable, a damage criterion, 
the Kuhn–Tucker conditions and a softening law. In these 
expressions, the term �ij represents the Cauchy stress tensor, 
Eijkl represents the secant tensor of the constitutive relation, 
q is the stress-like internal scalar variable, � is the dam-
age multiplier, ft refers to the tensile strength, F̄ represents 
the damage function in the strain space, �� is the equivalent 
strain and H is the hardening–softening modulus.

Different damage criteria can be obtained from the choice 
of the �� parameter [Eq. (55)]. In this work, the same damage 
criterion used by [17] is adopted, that is:

In Eq. (61), the tensor �+
ij
 is defined, taking into account a 

coordinate system aligned with the strain principal direc-
tions, such as:

where the term �k represents the k-th principal strain, 𝐞̂k rep-
resents a unit vector in the corresponding principal direction 
and ⟨�k⟩ = (��k� + �k)∕2 . Thus, this model becomes suitable 

(55)F̄(𝜖ij, r) = 𝜏𝜖 − r

(56)F̄ ⩽0, 𝛾̇ ⩾ 0, 𝛾̇F̄ = 0, 𝛾̇ ̇̄F = 0

(57)q̇ = H(r)ṙ, (H = q�(r) ⩽ 0),

{
q ∈ [0, ro],

q|t=0 = ro

(58)Eo
ijkl

= 𝜆̄𝛿ij𝛿kl + 𝜇(𝛿ik𝛿jl + 𝛿il𝛿jk)

(59)𝜇 =
E

2(1 + 𝜈)
; 𝜆̄ =

2𝜇𝜈̄

1 − 2𝜈̄

(60)𝜈̄ =

{
𝜈, for 3D and plane strain state
𝜈

1 + 𝜈
, for plane stress state

(61)�� =
√

�+
ij
Eo
ijkl
�kl

(62)𝜖+
ij
=

ndim�
k=1

⟨𝜖k⟩𝐞̂k ⊗ 𝐞̂k
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for the representation of quasi-brittle materials, since the 
degradation will occur in traction states preferentially.

And finally, an incremental constitutive equation can be 
obtained from Eq. (52) considering the inelastic loading con-
dition (ṙ = 𝜏̇𝜖) , that is:

where Et
ijkl

 is the constitutive tangent tensor.

5.2 � Softening law

For the strong discontinuity regime, an exponential sof-
tening law that compatibilizes the continuous constitutive 
model with the strong discontinuity kinematics [9, 23] is 
adopted for Eq. (57), that is:

where Gf  represents the fracture energy and k is a small 
value parameter later presented in Eq. (42).

From Eqs. (53) and (64), we find the following expression 
for the damage variable evolution:

6 � Numerical examples

In this section, the above formulation is used for the 
numerical simulations of two problems whose experimen-
tal results are available in the literature. The simulations 
were performed using only cells with constant jumps for 
the displacement components, and the isotropic damage 
constitutive model presented in Sec. 5.1 together with the 
exponential softening law outlined in Sec. 5.2 was taken into 
account. Beside this, we considered the plane stress state 
with the parameter k = 0.01mm [Eqs. (64) and (65)] and a 
convergence tolerance equal to 1 × 10−4 was adopted in the 
incremental-iterative process. Analyses were performed with 
cell generation only after step convergence and at any itera-
tion considering, for each of these cases, simulations with 
40, 70 and 170 steps. Moreover, an analysis of the growth 
rate of the cells size was performed. In this case, the same 
problem was simulated by adopting 70 steps and different 
values for the parameter � which is defined in Sect. 4.4.

(63)

𝜎̇ij = (1 − D)Eo
ijkl
𝜖̇kl − ḊEo

ijkl
𝜖kl

= Eijkl𝜖̇kl −
(
𝜕D

𝜕r

)
ṙEo

ijkl
𝜖kl

=

[
Eijkl −

(
𝜕D

𝜕r

)( 𝜕𝜏𝜖

𝜕𝜖kl

)
Eo
ijrs
𝜖rs

]
𝜖̇kl

= Et
ijkl
𝜖̇kl

(64)q(r) = roe

r2ok

Gf

(
1−

r

ro

)

(65)D(r) = 1 −
ro

r
e

r2ok

Gf

(
1−

r

ro

)
for r > ro

6.1 � Example 1: Arrea and Ingraffea (1982) [1]

Initially the mixed-mode fracture simulation of a pre-
notched concrete beam subjected to shear with forces at four 
points is considered. A schematic model of this test, which 
has been studied experimentally by [1], is presented in Fig. 4 
where the geometric properties, loads, boundary conditions 
and the approximate crack path obtained in the experiments 
are shown. In addition, the values considered in the numeri-
cal analysis for the elasticity modulus E, Poisson’s ratio � , 
tensile strength ft and fracture energy Gf  are also presented.

The boundary discretization was performed considering 
642 linear elements, and a square cell with a diagonal of 
1.6mm was pre-introduced at the notch tip. Furthermore, the 
origin of the discontinuity segment within the cell was estab-
lished as the midpoint of the side common to the boundary 
of the notch.

In the automatic cells generation algorithm (Sec. 4.4), 
a progressive increase in cell size was considered using 
� = 1.001 as shown in Fig. 3. However, when a new dis-
continuity segment exceeded 8mm the cell growth was 
stopped. As previously mentioned in Sect. 4.4, the adoption 
of a progressive increase in the cells size is mandatory in 
some cases, since it can reflect in the reduction of instabili-
ties during the analysis.

The nonlinear analysis was controlled by vertical dis-
placement component of point A (Fig. 4), and the direct 
introduction of strong discontinuity at the end of the elastic 
regime was considered. Thus, the results for the applied load 
versus the relative vertical displacement between the two 
sides at the initial tip of the notch (the crack mouth slid-
ing displacement—CMSD) are presented through Fig. 5a, 
b. In these figures, the experimental envelope obtained by 
[1] is also outlined. In addition, the initial an the final (after 
cells generation) meshes are presented through Fig. 6a, b, 
respectively.

Fig. 4   Shear test with forces at four points [23]
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6.1.1 � Growth rate analysis of the cells size

The same example was also considered to analyse the impact 
of parameter � on the numerical results. In this case, all anal-
yses were performed with 70 steps and cells generation was 
allowed at any iteration. Thus, the following � values were 
adopted: 1.001, 1.005 and 1.010. No interruption was forced 
in cells growth rate, and therefore, the next cell generated 
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Fig. 5   Example 1: Results for load P versus CMSD; a cell generation at any iteration, b cell generation after step convergence

Fig. 6   Example 1: a initial mesh, b final mesh
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Fig. 7   Example 1: Results for load P versus CMSD with cell genera-
tion at any iteration; � evaluation

Fig. 8   Final mesh for different � values: a � = 1.010 , b � = 1.005 , c 
� = 1.001
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was always larger than the previous one. The results for the 
applied load versus the CMSD are presented in Fig. 7.

Moreover, the final meshes obtained for the different � 
values are presented in Fig. 8.

6.2 � Example 2: García‑Álvarez et al. (2012) [3]

The second example analysed in this paper is the eccentri-
cally notched beam under three points bending which has 
been experimentally studied by [3]. In Fig. 9, a schematic 
drawing of this problem together with the values considered 
for the parameters E, � , ft and Gf  is presented.

Three different values were considered for each param-
eter e and d, totalling nine different kinds of specimens. 
They were: d = 80 mm, 160 mm, 320 mm and e = 0.0 mm, 
0.3125d, 0.625d. However, in this work we only analysed 
the problem with d = 160 mm and, besides this, the dark 

grey area shown in Fig. 9 was disregarded in order to reduce 
computational costs.

In the numerical simulations of this problem were used a 
factor � = 1.000 (cells with the same size); however, unlike 
the previous problem (Sec. 6.1) it was necessary to adopt a 
bifurcation analysis for discontinuity line progression, as 
detailed described in [21], due to the occurrence of numeri-
cal instabilities. In this way, the boundary discretization was 
performed considering 542 linear elements and a square cell 
with edge size of 2.0mm was pre-introduced at the notch tip. 
In addition, the vertical displacement of point B (Fig. 9), 
located 0.5 mm to the right of the application load point, 
was used to control the nonlinear analysis.

Thus, the results for the applied load versus the relative 
horizontal displacement between the two sides at the initial 
tip of the notch (the crack mouth opening displacement—
CMOD) were obtained and are shown in Figs. 10, 11 and 12 
together with the experimental envelopes obtained from [3].  

Besides this, as for example 1, the initial and final meshes 
are also shown through Figs. 13, 14 and 15 for cases in  
which e = 0.0 mm, e = 0.3125d and e = 0.625d , respectiv- 
ely.

In [3], experimental results are also presented for the 
crack paths considering e = 0.3125d and e = 0.625d . There-
fore, in Figs. 16 and 17 the obtained numerical trajectories 
for the simulations with cells generation at any iteration and 
only after step convergence are compared to those experi-
mental results.

Fig. 9   Eccentrically notched beam under three points bending
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Fig. 10   Example 2: Results for load P versus CMOD for d = 160 mm and e = 0.0 mm; a cell generation at any iteration, b cell generation after 
step convergence
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7 � Discussions

7.1 � Cell generation criteria

As can be seen from Figs. 5a, 10a, 11a and 12a, the curves 
obtained for all the three simulations (40, 70 and 170 steps) 
were practically coincident and also had a good approxima-
tion with the experimental results. However, the same is not 
observed for the curves obtained considering cell generation 
only after step convergence (Figs. 5b, 10b, 11b and 12b). In 
this case, the three curves presented very different profiles 

and, besides this, in Figs. 5b, 10b and 11b only the curves 
obtained in the simulation with 170 steps presented good 
agreement with the experimental results and converge to 
the same results obtained with generation at any iteration. 
Already for e = 0.625d , as can be seen in Fig. 12b, more 
steps are needed for a better approximation with the experi-
mental results.

For this last case, the number of cells with embedded dis-
continuity generated is proportional to the number of steps 
used in the analysis. Thus, the smaller the number of steps 
the more rigid the model will be, which explains, therefore, 
the different profiles sketched through Figs. 5b, 10b, 11b 
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Fig. 11   Example 2: Results for load P versus CMOD for d = 160 mm and e = 0.3125d ; a cell generation at any iteration, b cell generation after 
step convergence
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Fig. 12   Example 2: Results for load P versus CMOD for d = 160 mm and e = 0.625d ; a cell generation at any iteration, b cell generation after 
step convergence



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:520

1 3

520  Page 12 of 14

and 12b. On the other hand, increasing the number of steps, 
better is the agreement with the experimental results.

Regarding Figs. 16 and 17, a good agreement of the crack 
trajectories obtained numerically with cells generation at 
any iteration and after the step convergence is observed. 
Moreover, these results presented a good approximation with 

respect to the experimental results, especially for the case 
where e = 0.3125d (Fig. 16).

7.2 � Growth rate of cells size

Using example 1 as reference, an initial � value equal to 
1.010 was stipulated in the analysis to define the growth rate 
of the cells size. However, as can be seen from Fig. 8a, the 
generated cells have reached a very high size thus compro-
mising the good delineation of the discontinuity line. Also, 
the results for the applied load versus the CMSD did not 

Fig. 13   Example 2: a Initial mesh for e = 0.0 mm, b final mesh for 
e = 0.0 mm

Fig. 14   Example 2: a initial mesh for e = 0.3125d , b final mesh for 
e = 0.3125d

Fig. 15   Example 2: a Initial mesh for e = 0.625d , b final mesh for 
e = 0.625d
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Fig. 16   Example 2: Results for the crack trajectory; e = 0.3125d
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presented a satisfactory agreement with the experimental 
ones as can be seen from Fig. 7.

On the other hand, for the � value equal to 1.005 the 
results were slightly better than the previous one. However, 
large size cells were still observed (Fig. 8b) and non-accept-
able results for the applied load versus CMSD were again 
verified (Fig. 7).

Finally, the last � value tested was 1.001. In this case, the 
cells did not reach a very large size so as to impair the crack 
path prediction (Fig. 8c). Besides that, as shown by Fig. 7, 
the numerical results showed a very satisfactory agreement 
with the experimental ones.

The adoption of a progressive increase in cell size 
becomes important in some cases in the prevention of 
numerical instabilities. In addition, the use of the � factor 
contributes to a decrease in the numerical processing time. 
However, as can be seen from Figs. 7 and 8, care must be 
taken in the use of high values for this variable.

8 � Conclusion

In this work, two studies related to material failure analy-
sis using the implicit formulation of the boundary element 
method were presented. For this purpose, numerical simula-
tions of two classical problems whose experimental results 
are available in the literature were performed. In the first of 
these studies, two different cells generation criteria along 
the nonlinear analysis were considered: cells generation at 
any iteration and cells generation only after step conver-
gence. For each of these cases, three different step sizes were 
adopted in the incremental-iterative process. In the second 
of these studies, an analysis on the cell size growth rate was 
performed considering three values for the cell growth factor 

(parameter � ). For this case, in all the simulations 70 steps 
were used and only the cells generation at any iteration was 
considered.

In the cell generation criteria analysis, where the cells 
generation was considered at any iteration, step size inde-
pendence was observed in the structural response. In addi-
tion, the results showed good accuracy with the experimen-
tal results even with the cells generation occurring in an 
unbalanced state. For cells generated after step convergence, 
that is the most correct form from the numerical point of 
view, a strong dependence on the step size was observed. In 
this case, we verified that the number of steps is proportional 
to the number of cells generated which, in turn, are directly 
related to the softening or hardening branch of the model.

Regarding the analysis of the growth rate of the cells size, 
it was found that small values must be used for the growth 
factor in order to prevent numerical instabilities or to reduce 
the computational cost. However, the use of high values may 
lead to discrepant results due to the emergence of large cells. 
Thus, the use of this factor must be done with some care 
and a balance between results precision and processing time 
must be performed in order to obtain the ideal � value for the 
problem under analysis.

It is important to note that only monotonic loads were 
considered in the numerical analyses; therefore, for other 
types of loads the conclusions obtained in this work may 
not be valid.
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