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Abstract

In this paper, a new three-node element is proposed for analysis of beams with shear deformation effect. In each node of
this element, there exist translation and rotation degrees of freedom. The element’s formulation is based on the first-order
shear deformation theory. For this aim, the displacement field of the element is approximated by a fifth-order polynomial.
The shear strain is varied as a quadratic function within the element. It is worth noting that the quadratic function can be
used for axial displacement field as well. By employing curvature and shear strain relations of Timoshenko beam theory,
the exact and explicit shape functions of the displacement fields are obtained. By utilizing these shape functions, the stiff-
ness matrix and the geometric stiffness matrix of the element are calculated. The mass matrices of the proposed element
are derived from kinetic energy relation of the beam. Finally, several numerical tests are performed to assess the robustness
of the developed element. The results of the numerical tests prove the absence of the shear locking and demonstrate high
accuracy and efficiency of the proposed element for bending, free vibration and stability analysis of Timoshenko beams.
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1 Introduction

Beams have a wide range of applications in various struc-
tures such as buildings and bridges. Two basic theories have
been developed for analysis of beams. The Euler—Bernoulli
approach neglects shear deformations. This model gives
appropriate and acceptable assessments for thin beams, for
which shear effects are indeed insignificant. However, as
the beam thickness increases the accuracy of the response
provided by the Euler—Bernoulli formulation lowers and the
obtained results get inadequate. Correspondingly, the effect
of shear deformation is formulated in Timoshenko theory.
In this approach, the transverse shear strain is assumed to be
constant along the thickness. Therefore, this model provides
accurate responses for both thin and moderately thick beams.

Up to now, many elements have been proposed based on
Timoshenko theory. These elements are classified into two
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groups which are simple and complex [1-4]. The simple
elements consist of two nodes, and at each node, there are
two degrees of freedom [1]. Distinctly, a complex element
has more than two degrees of freedom at a node or more than
two nodes. The first complex element with eight degrees
of freedom was proposed by Kapur [5]. Lees and Thomas
introduced a hierarchical Timoshenko beam finite ele-
ment by assuming separate polynomial series for displace-
ment and shear deformation [6, 7]. By using the concept
of hierarchical functions, Tessler and Dong [8] presented
conforming Timoshenko beam elements which include the
effects of transverse shear deformation and rotary inertia.
In the recent years, Falsone and Settineri by developing the
Euler—Bernoulli beam theory presented a similar formula-
tion for Timoshenko beams. They obtained a single govern-
ing differential equation expressed in terms of deflection
for Timoshenko beams. It is important to note that the stiff-
ness matrix for these elements with internal nodes is not
symmetric [9]. Bouclier et al. developed a new non-uniform
rational B-splines (NURBS) finite element for analysis of
straight and curved Timoshenko beam problems. To allevi-
ate shear and membrane locking, they utilized the selective
reduced integration to evaluate the terms referring to shear
and membrane energies [10]. Similarly, Cazzani et al. [11]
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developed a plane curved Timoshenko beam element based
on NURBS interpolation for both geometry and displace-
ments. Based on mixed finite element formulation, Lepe
et al. [12] proposed a locking-free element for Timoshenko
beams analysis. For analyzing such geomechanics problems
as beam-type structures and deep pile foundations, Caillerie
et al. [13] proposed a Timoshenko straight beam element
with internal degrees of freedom. By using the flexibility
and stiffness methods, Khajavi [14] introduced stiffness
matrices for both Euler—Bernoulli and Timoshenko tapered
and non-prismatic beams.

Free vibration analysis of shear deformable beams is an
important stage for the design of skeletal structures. Dawe
[15] presented a three-node element for free vibration of
Timoshenko beams. Lee and Schultz [16] applied a pseu-
dospectral method using the Chebyshev polynomials as the
basis functions, for free vibration analysis of Timoshenko
beams and radially symmetric Mindlin plates. By using
Lagrange equations, free vibration analysis of Timoshenko
beams with different boundary conditions was performed
by Kocatiirk and Simsek [17]. Ferreira [18] utilized the
multiquadric radial basis function method to analyze free
vibrations of Timoshenko beams and Mindlin plates. Also,
Ferreira and Fasshauer [19], by combining collocation
method, radial basis functions and pseudospectral method,
presented a new high accuracy numerical scheme for free
vibration analysis of Timoshenko beams with various sup-
port conditions. Xu and Wang [20] used discrete singular
convolution (DSC) method for analyzing the free vibration
of Timoshenko beam with various boundary conditions. Lee
and Park [21] introduced an isogeometric approach for free
vibration analysis of Timoshenko beams. Moallemi-Oreh
and Karkon [22] proposed a two-node beam element with
two nodal degrees of freedom at each node for stability and
free vibration analysis of Timoshenko beams. Hsu [23] car-
ried out free vibration analysis of Timoshenko beam by
improving a simple linear two-node C° element using two
different enrichment formulations.

Similar to the free vibration case, buckling analysis of
beam-columns is attractive for the researchers due to their
wide application in the design of structures. Kosmatka [24],
based upon Hamilton’s principle, developed a two-node
beam element with four degrees of freedom for stability and
free vibration analysis of Timoshenko beams. For stability
analysis of deep beams, a one-dimensional higher-order the-
ory has been developed by Matsunaga [25]. Wigckowski and
Golubiewski [26] by utilizing smoothed functions obtained
with the aid of the least square technique improved the
accuracy of the finite element method for stability analysis
of Euler-Bernoulli and Timoshenko beams. Carrera et al.
[27] by employing Carrera unified formulation (CUF) and
dynamic stiffness method presented higher-order theories
and exact solutions for buckling analysis of beam-columns.
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In this article, a new three-node element has been sug-
gested for bending, free vibration and stability analysis of
beams based upon the Timoshenko beam theory. The shape
functions, the stiffness matrix, the mass matrices and the
geometric matrix of the element are explicitly derived. In
the following, the accuracy and convergence rate of the pre-
sented element is evaluated with several numerical examples
and the obtained results are compared with those of other
researchers. At first stage, a static analysis of a two-member
frame is performed and internal displacements and forces are
calculated. In the second stage, the free vibration analyses of
Timoshenko beams with different boundary conditions are
performed for various values of thickness-to-length ratios.
Finally, the stability analysis of simply supported beam is
carried out for three different thickness-to-length ratios. The
results prove that the suggested element is able to analyze
the thick and thin beams with high level of accuracy.

2 Governing equations of Timoshenko
beam

The strains and stresses in the Timoshenko beam theory can
be written as:

do dw
=Z—, = — — 0
e=z Y ()
c=FEe, t=2Gy, 2

where w and 6 are transverse displacement and rotation
field, respectively. On the other hand, the internal bending
moments M and shear forces V are calculated in the follow-
ing form:

do
M = dA = E[—
/Aza 0 3)

dw
V=kS/ATdA=GAkS<a—9>, @)

where k,, G and A denote the shear correction factor, shear
modulus and cross-sectional area of beam, respectively. The
equilibrium of moments and shear forces are:

dM

V(ix)— a =0 5)
L = . ©)

Substituting Eqs. (3) and (4) into Egs. (5) and (6) trans-
forms the equilibrium equations into:

—% (GAkyy) = q(x) 7
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GAKk,y — %(EI%) —0. 8)

3 Finite element formulation

In the finite element method, displacement and rotation
fields of the element are related to the nodal degrees of
freedom via the shape functions. Figure 1 shows the pro-
posed three-node Timoshenko beam element. In order to
compute the shape functions of aforementioned beam ele-
ment, a fifth-order and a second-order polynomial functions
are used for deflection and shear strain field approximations,
respectively:

w=a, +a+ a3§2 + a4§3 + a554 + a6§5
= [P,]{a}, E=2x/1-1 ©)
y =a7+a8£j+a9§2. (10)

In the FSDT beam theory, the rotation field of the element
is calculated as:

= -7 (11)

It is worth emphasizing that the rotation field approxima-
tion is of fourth order. According to Eq. (8), the shear strain
of the element can be written as follows:

2
p. & E

=222, A= —
4 & GAK 2

12)

By equating the shear strain of Eqgs. (10) and (12), the
unknown parameters a,, ag and a, are rendered:

48

a, = —7(,1@4 + 804%ay) 13)
ay =~ as (14)
ag = _‘;SOA%. (15)
> x G —¢ lt
(= oy )
0 Wi I’V](lk ! le /j
< 1 >

Fig.1 Three-node Timoshenko beam element

By substituting the parameters a,, ag and a, in relation
(11), the rotation field is obtained in the following form:

_1
0= [
[o 2 4 6(E2 +84) BE(E2 +244) 10(&* + 48482 +384/12)]

la} = [Pg]{a}. (16)

In order to calculate the shape functions of the element,
the indirect method is used. In this strategy, the element’s
field functions w and 6 and nodal displacement vector {D}
are expressed by the following equations:

w Nw _
{ 0 } = HNo”{D} = [N{D} 17)
{D} =[Gl{a} (18)
Dy ={ w; 6, w 6, w; 6} (19)

In expression (17), [Nw] and [Ng] denote the shape func-
tions of the deflection and rotation field of the element. Also,
the square matrix [G]in Eq. (18) is dependent on the element
geometry, and its rows are formed by substituting the nodes’
coordinates or their derivatives in matrices [PW] and [Pe]:

1-1 1 =l l -1
0 2 —46(8A+1) —8(244+1) 10(3844> +484+1)
Gl= 100 0 0 0
{02 0 484 0 384042
11 l l l
02 4 6BA+1) 8244+1) 10(3844% +484+1)

(20)

On the other hand, the following relation holds for the
shape functions [N] and the approximants of the element
unknowns:

=[] =[5 e e

Therefore, the explicit forms of the deflection shape func-
tions [Nw] can be found:

[N,] = Ny N, Ny Ny N5 N | (22)
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N, = —%5(5 — 1)(115204%¢ + 576047 — 14447 — 24452 + 456 A& + 1204 — 3&° — & + 4¢)

N, = ég(gz — 1) (921604 — 11524%£% + T684% + 2447 — 60A& — 244 + &> — &)

N; = —%(60/1 +1)(E-1) (- +484+1)

(23)
N, = —%15(48/1 +1)(&2 = 1)(9604% — 124£% + 1084 — £* + 1)
N = %5(5 + 1)(115204%¢ — 57604% — 144A&° + 24482 + 456 A& — 1204 — 3E° + & + 4¢)
Ny = ég(gz —1)(921604% — 1152472 + 76817 + 248> + 60A¢ — 244 + & + &).
Parameter f in these relations is defined as: In the present formula, [C] is the elastic rigidity matrix.
For Timoshenko beam element, this matrix has the follow-
f = 230404% + 8644 + 8. (24)  ing shape:
Furthermore, the rotation shape functions [Ng] of the ele-
ment are, similarly, obtained as:
[No] = [ N; Ng Ny Nyy Nyj Npy | (25)
4.2
N, = /715(5 — 1)(15& — 4804 + 720A¢ — 8)
Ng = —%5(5 — 1)(57604%E* + 57604% — 57604 — 12048 + 120A& + 241 — 5&% — & +2)
Ny = %5(602 +D(E-1)
4 (26)
Nyg = 5(48/1 +1)(&2 = 1)(60A&% — 604 + 5% — 1)
Ny = —ﬂilé(éz - 1)(155 + 4804 + 7204A¢ + 8)
Ny, = —35(5 + 1)(57604%& — 57604%¢ — 576047 — 12047 — 1204& + 244 — 5% + & +2)
2773 :
To derive the stiffness matrix, the strain matrix is
required. The strains of the Timoshenko beam element are EI 0
given by: [Cl= [ 0 GAkQ]’ (30)
dw By calculating expression (29), the stiffness matrix of the
le} = % o (~ [BI{D} 27 proposed element is:
[ ki ki ks kg ks kg ]
ki ky  kyz kyy —kig Ky
[ e] 64 | ki3 kyz ksz 0 ki3 —kys 31)

[ (28) [k = 22
[B] = l d dxl] [[[xw” 5P| kg Ky O kyy —kyy kyy
& 4 kis —kig ki =k ki —kyy
kig kyg —kyz koy —kiy ko |

where [B] is the strain matrix. The element stiffness matrix

is then calculated as an integral:
The entries of this matrix are given in “Appendix,” see

expressions (45). Note that the proposed element is free of

1 (29) shear locking. For thin beams, parameter A will be very small

1
k| = / [B]T[C][B]dx=§ / [B"[CI[B]dé.
1 -1
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and, therefore, the presented shape functions and stiffness
matrix degenerate to the shape functions and stiffness matrix
of three-node Euler—Bernoulli element, which can be found
in references [28-30]. Also, the nodal force vector of the
element is obtained:

[F] = /I g[v,]"dx, (32)

where ¢ is the load distributed along the element.

4 Mass matrix

The kinetic energy of a Timoshenko beam, including the
effects of shear deformation and rotary inertia, can be writ-
ten as:

T = / pAWdx + / pl6%dx, (33)
1 1

where the dot denotes the time derivative. Moreover,p, A
and / are the mass density of the material, area of the cross
section and the second moment of area, respectively. By
substituting Eq. (21) into (33) and applying Lagrange’s prin-
ciple, one may arrive to an expression for the mass matrix:

1

] = [oas) + og] = £ [ oa)

;o - (34)
N, Jae + L / o) o),
where the first term is associated with the translational iner-
tia mass matrix and the second part is associated with the
rotary inertia mass matrix. The translation mass matrix [Mﬂ
is given by:

my mp myz My Mys Mg
My My Mg Mg —Me My
[ e]= 64pA | miz myg myy; 0 myg
346542 myy myg 0

mys =My M3
Mmye Myyg —Myg Mg

—myg

My —Myy Mg
My My —mMyp
—myp myy |

(35)

In addition, the explicit form of the rotary mass matrix
[M;] can be expressed as:

My Myy  Mpz Myy  Mps  Nyg

Myy My Mpg  Myg My My
[MS] =ﬂ Myy Mg My 0 my3 —myg . (36)
31562 myy Myy O mypy —myy, My
Mys —Mye Moz —Myy My —Hip
Myg Myyg —Mpg Mpg —Nlpy My |

The nonzero entries of the mass matrices [Mf] and [M;]
are given in formulas (46) and (47) of “Appendix.” It is well
known that the equation of free vibration can be expressed
as follows:

(K] - @2[M1){¢,} =0, (37)
where o, and ¢, represent the natural frequency and the
mode shape associated with the nth mode. Also, [K] and

[M] are the stiffness matrix and mass matrix of the whole
structure, respectively.

5 Geometric stiffness matrix

The concept of the neutral state of equilibrium is used for
buckling analysis of beam. As a result, the strain energy
associated with axial load P can be expressed as follows:

_P (&)
AW—E/O <a> dr. (38)

Therefore, the element geometric stiffness matrix of the
proposed element can be calculated as [31]:

-5 e

whose explicit form is:

Ky ko kg ky kg ke
ng kg7 kg8 kg9 kg6 kglO
§ 315ﬂ2 kg4 kg9 0 kg|2 kg4 kg9
ks —kgs ks —kes kg —kg
_kg6 kglO k8 kg9 kg2 kgS
a
a
q
3 ——
a
250
a
1
Yoz -
I ’ I ’ I

Fig.2 Geometry and loading of plane frame
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The entries of this matrix are given in “Appendix,” see
expression (48). The equation of stability analysis can be
expressed as:

(K] = P |[K,] ) {@} =0. 41

Similar to free vibration analysis, P, ; and ¢ represent the
critical load and mode shape associated with the ith mode.
Also, [K] and [Kg] are the stiffness matrix and the geomet-
ric stiffness matrix of the whole structure, respectively. The
exact value of the beam-column buckling load with shear

deformation effect can be written as [32]:

_ 71'2EI (Leffi)zGAks

P 2 2 2
L2 \ L2, GAK, + (zi)El

42)

cr,i

where L is the effective beam length and i indicates the
mode number.

6 Numerical examples

In order to assess the accuracy of the proposed element,
some numerical problems have been analyzed and the results
are compared with the data available in the literature. At
first, static analysis of a two-member plane frame is per-
formed. In subsection 6.2, free vibration analysis of beams
with different boundary conditions is considered. Finally,

2 . i °
Reduced integration (RIE)

— IIE 2-node element
Exact

Proposed element and
Falsone (3-node element)

1.5

0.5

0 3 6 9
Deflection (w><10'5 m)

Fig.3 Transverse deflection along the vertical member
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2 T T
Reduced integration (RIE)
— IIE 2-node element
Exact
e Proposed element and
Falsone (3-node element)
15} g
E ]
x
0.5} E
0 & 1 1
-1 0 3 6 9

Rotation (8x107)

Fig.4 Rotation along the vertical member

buckling analysis of simply supported beam is carried out
for three thickness-to-length ratios.

2 T L
Reduced integration (RIE)
— IIE 2-node element
Exact
Proposed element and
151 Falsone (3-node element) 7
S ]
X
0.5} ]
0 - 1
-10 -5 0 5

Bending moment (M x10° N.m )

Fig.5 Internal bending moment along vertical member
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Reduced

integration (RIE)
— IIE 2-node element
Exact

Proposed element
® and Falsone
(3-node element)

0 °
-4 0 5

Shear force (V x10% N )

Fig. 6 Internal shear force along vertical member

6.1 Static analysis of a frame

In order to reveal the accuracy and robustness of the pro-
posed element in static analysis, a two-member plane frame
is considered. The frame geometry and its loading are shown
in Fig. 2. It should be mentioned that the second-order poly-
nomial function is used for the axial displacement approxi-
mation. The size of parameter a appearing in this figure is
given equal to @ = 1 m. The material properties of the mem-
bers are given as: Young’s modulus E = 25 X 10° N/m? and
Poisson’s ratio v = 0.25. Moreover, the axial and bending
stiffnesses of the vertical member of the frame are consid-
ered as EA = 3 x 10° N and EI = 4 x 10" Nm?, respectively.
These quantities for the angled member are assumed to be
EA = 7.8125 x 10° N and EI = 3.75 x 107 Nm”. Note that
the shear correction coefficient for the Timoshenko beam
element is taken to be k, = 5/6. As shown in Fig. 2, the
vertical member is loaded by a triangular distributed load,
with maximum value ¢ = 30 kN/m. Additionally, two con-
centrated loads P = 20 kN are applied as: a horizontal force
at the node 3 and a vertical force at the node 4. The structure
is analyzed by using a single element of the proposed type
for each member.

The diagrams of the displacements, rotations, inter-
nal moment and shear force along the vertical member
are plotted in Figs. 3, 4, 5 and 6, respectively. The results
obtained with the proposed element are compared with
those of reduced integration element (RIE) [3], two-node
interdependent interpolation element (IIE) [3], Falsone and

Table 1 Non-dimensional frequency parameter A, of the SS thin beam (¢/ [ = 0.002) for different meshes

:1 Present solution: mode number

Method

15

14

13

12

11

10

16.6146
12.5923
12.5676
12.5657
12.5657
12.5657
12.5657
12.5664
12.5657
12.5746
12.5494

11.4811

3.1420 6.2964

3.1416
3.1416
3.1416

1
2
4
8

Proposed Element

33.2330
25.1809
25.1311

28.1689
22.0803

163192 22.9628

15.7130
15.7067
15.7066
15.7066
15.7066
15.7080
15.7066
15.7136
15.6749

9.4384
9.4246
9.4245
9.4245
9.4245
9.4245
9.4248
9.4245
9.4307
9.4176

6.2840
6.2831
6.2831

63.2055

56.3508

36.6479 459309 49.6765
34.5715

32.6341

28.8834
28.2719

18.8753
18.8474
18.8473
18.8473
18.8473

377376 40.9242 44.1414 47.3975

37.6811

31.4181

21.9881

43.9545  47.0904

40.8181

34.5435
34.5434
34.5434
34.5575

31.4054
31.4053
31.4053
31.4159
31.4053
31.3508
31.1568

28.2666
28.2666
28.2666
28.2743
28.2666
28.2406
28.0845

25.1273
25.1273
25.1273
25.1327
25.1273

21.9875
21.9875
21.9875

3.1416  6.2831
3.1416  6.2831
3.1416  6.2831

3.1416
3.1416
3.1408
3.1413

16
32
64

40.8174 43.9532 47.0881

40.8174 43.9531
40.8407

37.6807
37.6807
37.6991

47.0880

47.1239
47.0880

43.9823

18.8496  21.9911
18.8473
18.8535
18.7926

6.2832
6.2831
6.2862
6.2811

EBT

40.8174  43.9531

37.6807
37.5265
37.2565

34.5434
34.4613

21.9875

Ref. [16]

46.6156

40.6156  43.5748

40.2815

21.9862 25.1167
21.9010

Ref. [18]

43.2886 46.2769

34.2145

24.9988

number of elements

*
el”

Ref. [23]
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10
—6— Mode 1
Mode 2
‘101 3 —%— Mode 3
—+— Mode 4
—&— Mode 5
X 100k Mode 6
S —%— Mode 7
5 —A— Mode 8
1
o 10 E
=
©
° =" %
X 10 % X
10° 3
(¢} © ©
4
10 A . . .
0 2 4 8 16 32

Number of element

Fig. 7 Error percentage for the first 8 frequencies of the SS beam

Settineri three-node element [9] and exact solution. These
figures reveal that the proposed element gives the exact solu-
tion in all the cases. It should be mentioned that the exact
solution of this problem is a polynomial of fifth order and
thus a single element per each member of the frame is suf-
ficient to capture it.

6.2 Free vibration analysis

In order to assess the accuracy of the proposed element for
free vibration analysis of shear deformable beams, four types
of beams—simply supported (SS) beam, clamped—clamped
(CC) beam, free—free (FF) beam and clamped-free beam
(CF)—are analyzed and the results are compared with the
references available in the literatures. For convenience,
the following non-dimensional natural frequencies are
introduced:

A 43)

To investigate the effect of the number of elements,
at first, the free vibration behavior of a simply supported
thin beam (¢/ = 0.002) is analyzed, and first fifteen non-
dimensional frequency parameters are obtained. The results
of the proposed element are compared with those of Lee
and Schultz [16], Ferreira [18], Hsu [23] and Euler—Ber-
noulli beam theory solution (EBT). Table 1 reveals that
the proposed element has high accuracy and a rapid rate of
convergence. So that, by using the 32 proposed elements,
the results of all fifteen frequencies will be converged.
Figure 7 shows the reduction in the relative error for the
first 8 frequencies of the simply supported thin beam with
t/1=0.002. The corresponding mode shapes are shown in
Fig. 8.

In the following examples, frequencies of Timoshenko
beams with different boundary conditions and aspect ratios
(t/ 1) are obtained, by utilizing meshes of 32 and 64 ele-
ments. The findings are compared with published results
of the other researchers. The first fifteen non-dimensional
frequency parameters of the SS beam are listed in Table 2.
Furthermore, Table 3 lists these parameters for CC beam.
The results of the FF beam and the CF beam are presented in
Tables 4 and 5, respectively. These tables demonstrate that
the proposed element has high accuracy, and the rate of con-
vergence is quite independent of the boundary conditions.
It is also observed that the thickness-to-length ratio does
not have influence on the convergent rate, and the suggested
element is free from the shear locking effect.

6.3 Stability analysis

In this section, the robustness of the proposed element for
buckling analysis of shear deformable beams is evaluated.
For this aim, a simply supported beam-column (SS) with
three thickness-to-length ratios is analyzed and the first five
buckling loads are obtained. For simplicity, the critical loads
are given in non-dimensional form as follows:

_ 2
=P . X —.
cr,i cr,i 7[2EI

44)

Fig.8 First 8 mode shapes of the SS beam
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Table 6 Non-dimensional #1  Mode Proposed element EBT TBT  Ref.[25] Ref.[27]
critical buckling loads P, ; of
the SS Timoshenko beam with Ny=2 Ny=4 N,=8 Ny=16 N =32
different thickness-to-length
ratios 0.002 1 1 1 1 1 1 1 1 - -
2 4.0021 39998 39998 3.9998 3.9998 4 3.9998 - -
3 9.0459 89995 89992 8.9992 89992 9 8.9992 - -
4 16.1137 16.0063 159974 15.9974 15.9974 16 159974 - -
5 28.1248 25.0302 24.9938 24.9936 24.9936 25 249936 - -
005 1 0.9936  0.9936  0.9936  0.9936  0.9936 09936 09919  0.992
2 3.9038 3.8999 3.8999 3.8999 3.8999 4 3.8999 3.8734  3.874
3 8.5813 85098 85087 8.5087 8.5087 9 8.5087  8.3875 8.391
4 147092 14.5379 14.5108 14.5106 14.5106 16 145106 14.1767 -
5 255057 21.6396 21.5462 21.5447 21.5446 25 21.5446 20.8549 -
0.1 1 09750 09750 0.9750 0.9750 0.9750 1 0.9750  0.9683  0.9685
2 3.6345 3.6277 3.6277 3.6276  3.6276 3.6276  3.5442 -
3 7.4112 73133 7.3115 7.3114 73114 9 73114  7.0159 -
4 11.5619 11.3806 11.3432 11.3429 11.3429 16 11.3429 10.7364 -
5 18.3804 15.3259 15.2317 15.2298 15.2297 25 152297 143076 -
0.2 1 0.9069 0.9069 0.9069 0.9069 0.9069 1 0.9069 0.8860  0.8865
2 2.8451 2.8358 2.8357 2.8357 2.8357 2.8357 2.6841 -
3 47524 4.6800 4.6783 4.6783 4.6783 9 4.6783 43865 -
4 6.1553  6.0752  6.0555 6.0553 6.0553 16 6.0553 5.7168 -
5 7.8371 7.0429 7.0112 7.0105 7.0105 25 7.0105 6.7048 -

The results obtained using the proposed element are
compared with those of Matsunaga [25], Carrera [27],
the Euler—Bernoulli beam theory solution (EBT) and the
Timoshenko beam theory solution (TBT) in Table 6. The
data listed in this table confirm the element’s high accu-
racy and rapid convergence. Moreover, it is obvious that the
obtained results converge to the TBT solution as the number
of elements increases.

7 Conclusion

In this study, a highly efficient three-node element was
proposed for static, free vibration and buckling analysis of
beams, based on the Timoshenko beam theory. For element
formulation, deflection and shear strain fields’ approxim-
ants are chosen of fifth and second orders, respectively. By
employing these fields and classical finite element method

relations, the shape functions of the proposed element were
calculated in the explicit form. Then, by utilizing these
shape functions, the stiffness matrix, the geometric stiffness
matrix and the mass matrices of the element were explicitly
derived. Finally, the extensive numerical testing was per-
formed to assess the accuracy and efficiency of the author’s
formulation. The results reveal that the suggested three-node
element has a very high accuracy and convergence rate for
static, free vibration and buckling analysis of thick and thin
beams. Moreover, the numerical experiments prove that the
element is free of shear locking for extremely thin beams. In
conclusion, the solution accuracies of the famous benchmark
problems provide the justification of the suggested element.

Appendix

The nonzero entries of the stiffness matrix [K¢]is:

@ Springer



497 Page 140f 16 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:497

ky, = 4EI(4015872004° + 194400004° + 2921404 + 1273)

ki, = 2EI1I(—18579456004" + 767232004% + 68140804* + 1193404 + 569)

ki = —3584EI(604 + 1)*

k4 = 1920E1/(48 + 1)*(16804* + 1804 + 1)

ks = —4EI (2080512004 + 97632004* + 1308604 + 377)

ke = 2E11(—18579456004" — 200448004° + 19756804 + 387004 + 121)

ky, = 4EI/*(37158912004° + 6220800A* + 159494404° + 9679804% + 166054 + 83)
ky; = —896EIL(604 + 1)

kyy = 320EI7 (484 + 1)*(—403204° — 26404% + 1564 + 1)

kye = 2EI11*(74317824004° — 2778624004* — 140659204 + 1165204° + 54904 + 19)
ky; = 7T168EI(604 + 1)

kyy = 1280E1%(484 + 1)*(201604° + 384047 + 1924 + 1).

(45)

The nonzero entries of the translation mass matrix [M‘f] is:

my, = 1(21897216004* + 1790553604 + 58286884* + 885544 + 523)
mp, = %12(—729907200,15 +364953604* + 28713604 + 930604% + 20614 + 19)

my3 = 441604 + 1)* (1209647 + 5401 + 5)
my, = —40P2 (484 + 1)*(—237604° — 7924% + 1774 + 1)

mys = %1(1368576000/14 + 1414195204° + 4440816 4% + 496684 + 131)

myg = —3—112 (43794432004° — 2189721604* — 1209604° + 5266804% + 95464 + 29) (46)

my; = P(350355456004° + 2919628804° — 113356804* + 1935364° + 67744 + 1294 + 2)
myg = 221604 + 1)*(724 + 1)

myg = =348 + 1)*(101376004* + 9292804° — 94404% + 764 + 1)

My = %13 (467140608004° + 3892838404° — 151142404 + 2580484° — 416847 — 2681 — 1)

myy, = 14081(604 + 1)*(30244% + 1084 + 1)
m, = 320(484 + 1)7 (19008004* + 4118404 + 249604% + 2884 + 1).
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The nonzero entries of the rotary mass matrix [M;] is:

12

my, = T(403200,12 + 148804 + 139)

my, = —(559872004° + 19699204% + 154441 — 39)

yy = —@(601 +1)?

My, = —240(484 + 1)*(604 — 1)

mys = 1—12(57600,12 +4804—11)

My = —(—=20736004° + 20736047 + 50764 + 9)

my; = 41(2198016004* + 971136047 + 1531444% + 12634 +7)

myg = 48(604 + 1)*(3364 — 1)
Mg = —81(481 + 1)*(—180004% + 6004 + 1)
My = 1(82944004% + 25574404° + 99364% — 9244 - 5)

3072

Moy = == (604 + 1)?

My, = 2561(48A + 1)*(36004% + 604 + 1).

is:

(47)

The nonzero entries of the geometric stiffness matrix [K g]

ke = % (24095232004* + 1377216004° + 29538004” + 301564 + 139)

ke, = —3(222953472004° + 5971968004 + 26956804 + 806404° + 11524 — 13)

k

g3

—@(60,1 + 1)*(25204% + 844 + 1)

koy = 240(484 + 1)*(2419204° + 266404% + 2284 + 1)

kes = —1—12(1243307200/14 + 603072004 + 88020047 + 40444 + 11)
kyo = —9(74317824004° + 1990656004* — 7142404 — 76804% + 5764 + 1) (48)

ky; = 41(66886041600A° + 3981312004° — 174182404* + 48384047 + 151744 + 4714+ 7)

ke = 48(604 + 1)°(844 — 1)

kgo = —8I(484 + 1)*(290304004* + 25920004° — 309604% + 4204 + 1)

k1o = 1(2675441664004° + 15925248004° — 696729604* + 193536047 — 559444 — 20764 — 5)
Ko = 222604+ 17(25204% + 844+ 1)

ke = 2561(484 + 1)*(18144004* + 3888004° + 2304047 + 2404 + 1).
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