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Abstract
The study presents machining aspects of particulate silicon carbide reinforced aluminium metal matrix composite (Al/

SiCp-MMC) using wire-cut electric discharge machining process. The influences of process parameters such as pulse on

time, pulse off time, spark gap voltage, peak current, wire tension and wire feed rate on response variables such as

workpiece cutting speed, surface roughness (Ra) and spark gap have been investigated. The Box–Behnken’s design has

been utilized to plan the experiments, and response surface methodology is employed for developing quadratic regression

models for selected response variables. Desirability function approach has been used to solve the multi-response opti-

mization problem by assigning the weightages to the selected responses as per the user’s requirement of quality or

productivity. The study recommends optimal process conditions such as pulse on time 0.75 ls, pulse off time 16 ls, spark
gap voltage 35 V, peak current 120 A, wire tension 1200 g, and wire feed rate 10 m/min for effective machining of Al/

SiCp-MMC, which has been validated by conducting confirmation experiments. The developed regression models for

selected responses revealed compatible results, thereby justifying their acceptability.

Keywords Metal matrix composites � Wire-cut electric discharge machining � Optimization � Response surface

methodology � Scanning electron microscope � Box–Behnken’s design

Abbreviations
Al-MMCs Aluminum metal matrix composites

Al/

SiCp-MMC

Particulate silicon-reinforced aluminum

matrix composite

BBD Box–Behnken’s design

RSM Response surface methodology

SEM Scanning electron micrograph

CS Cutting speed

SR Surface roughness, Ra (lm)

SG Spark gap

Ip Peak current

SV Spark gap voltage

Ton Pulse on time

Toff Pulse off time

WF Wire feed rate

WT Wire tension

1 Introduction

Particulate silicon carbide-reinforced aluminum matrix

composite (Al/SiCp-MMC) has high strength-to-weight

ratio, high stiffness, low thermal expansion coefficient,

high thermal conductivity as well as corrosion and wear

resistance [1–3]. These enhanced properties made Al/SiCp-
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MMC a suitable alternate material for use in the industries

such as aerospace, defense, automobile, electronic pack-

aging and sports industries. But the presence of hard

reinforced SiC particles makes machining of such material

difficult by the traditional machining processes because of

severe tool wear [3, 4]. Researchers have applied advanced

machining processes such as electrochemical machining,

abrasive jet machining, electric discharge machining and

laser beam machining to machine aluminum metal matrix

composites (Al-MMCs). Out of various advanced

machining processes available, wire-cut electric discharge

machining (WEDM) process emerged as an efficient and

cost-effective process to machine Al-MMCs [5].

The workforce making use of the WEDM process is

generally interested in higher workpiece cutting speed with

the desired level of accuracy and surface finish. The per-

formance of the WEDM process, however, is affected by

many process parameters (i.e., pulse on time, pulse off time,

peak current, spark gap voltage, wire tension, wire feed rate,

flushing pressure and open gap voltage), and a single

parameter change will influence the machining in a complex

way. In the presence of many influencing parameters and

stochastic nature of the process, achieving the optimal pro-

cess performance is a challenge. An effective way to solve

this problem is to investigate the relationship between

response variables and its process parameters by modeling

the process through suitable mathematical technique and

followed by optimization using suitable optimization tech-

nique [6]. In the present work, response surfacemethodology

(RSM) is used to model the input process parameters,

whereas the optimal parametric setting is realized through

traditional desirability function approach coupled with

user’s preference ratingmethod. The user’s preference rating

method is aweight assignmentmethod that resolves the issue

of assigning weights to multiple responses taking into

account the priorities of multiple users.

The next section illustrates the previous research on

parametric analysis, modeling and optimization of WEDM

process parameters.

2 Review of past research work

Several researchers carried out investigations for improv-

ing the response characteristics during WEDM of Al-

MMCs. Yan et al. [7] studied WEDM of Al/Al2O3-MMC

using one-factor-at-a-time strategy. The effect of the pulse

on time and %volume fraction of Al2O3-reinforced parti-

cles on cutting speed, surface roughness, Ra (SR) and kerf

width was studied. Tosun and Cogun [8] examined the

effect of process parameters on wire wear ratio and mod-

eled it statistically by using regression analysis techniques.

They concluded that high wire wear ratio is always

accompanied by high material removal rate (MRR) and

high SR values. Patil and Brahmankar [9] developed a

semiempirical relation for MRR in WEDM of Al/SiCp-

MMC applying dimension analysis and nonlinear estima-

tion technique. In another communication [10], they pre-

sented investigation on the effect of electrical and non-

electrical parameters on SR, cutting rate and kerf width

making use of Taguchi design of the experiment. They

applied multiple regression techniques to develop predic-

tion models for the response variables separately. Shandi-

lya et al. [11] compared artificial neural network and RSM

methodologies based on prediction accuracy for average

cutting speed in WEDM of Al/SiCp-MMC. Manna and

Bhattacharyya [12] used Taguchi-based design of experi-

ment (i.e., L-18 mixed orthogonal array) and S/N ratio for

the parametric optimization in WEDM of Al/SiCp-MMC.

They used Gauss elimination method for development of

mathematical models. The investigations on WEDM of

different Al-MMCs for single-response optimization were

performed by Patel et al. [13], Shandilya et al. [14] and

Pramanik et al. [15] and concluded that the WEDM can be

efficiently utilized for machining of Al-MMCs.

It is revealed from the review of the literature on WEDM

that researchers had defined an objective function in several

ways to solve multi-response optimization problems. Milan

et al. [16] used a simple weighing method to transform

multi-responses, i.e., MRR and SR into a single response,

and obtained the optimal parametric combination by uti-

lizing artificial bee colony-based optimization. In the sim-

ple weighing method, the investigators generally assigned

equal weights to response variables based on their own

assumptions. Mahapatra and Patnaik [17] presented an

investigation on optimization of WEDM process parame-

ters using Taguchi design of the experiment. The authors

applied the Genetic algorithm for multi-response opti-

mization with the assignment of different combination of

weights to response variables for overcoming the different

machining situations arising out of user’s requirement. Fard

et al. [18] associated an artificial bee colony algorithm with

adaptive neuro-fuzzy inference system models in order to

maximize cutting speed and minimize SR, simultaneously

during dry WEDM of Al/SiCp-MMC. In their work, the

weights in the range of 0.6–0.9 and 0.1–0.4 are considered

for cutting speed and SR, respectively, according to their

importance in the process. They presented optimal solutions

for various combinations of weights and discussed the

effect of variation of weights on the response variables. In a

similar way, Mahapatra and Patnaik [19] assigned weights

to response variables during multi-response optimization of

WEDM process parameters in machining of D2 tool steel

using Taguchi design of experiments. Garg et al. [20]

investigated machining characteristics and optimized

WEDM process parameters during machining of newly

458 Page 2 of 19 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:458

123



developed Al/ZrO2-MMC material making use of response

surface methodology. They have assigned the weight in a

random manner to the response variables. Prasad and

Krishna [21] divided the problem as (a) optimization of kerf

width with wire wear as a constraint and (b) optimization of

wire wear with kerf width as a constraint. They arrived at

the optimal parameters by applying harmony search algo-

rithm-based optimization. Assarzadeh and Ghoreishi [22]

used desirability function approach to optimize the process

performance under each machining regime, i.e., finishing

(Ra B 3 lm), semi-finishing (3 lm\Ra\ 4.5 lm) and

roughing (Ra[ 4.5). They presented sets of optimal solu-

tions which make the MRR as high as possible and keep the

SR within their specified range.

From the review of the literature, it is realized that most

of the investigations in WEDM of Al/SiCp-MMC had been

focused on parametric analysis and single-response opti-

mization problems using Taguchi method. To the best of

author’s knowledge, only a few works have been reported

on multi-response optimization in WEDM of Al/SiCp-

MMC. It has also been observed that the investigators

generally assign equal weights to response variables while

defining objective function, based on their own assump-

tions or past experience. The assignment of weights,

however, could be different for the responses as per the

requirement. Additionally, if in a group, users have a dif-

ference of opinion over the weights of response variables, it

becomes difficult to make decisions [23].

To deal with this situation, user’s preference rating

method has been applied in the present work for calculating

the weights of response variables in order to satisfy the

priorities of multiple users. Multi-response optimization

has been done based on desirability function approach

coupled with the user’s preference rating for effective

machining of Al/SiCp-MMC. Further, along with work-

piece cutting speed (CS) and SR, the spark gap (SG) is also

considered as the response variable in this work. The SG is

an important response variable but was less investigated in

the previous studies. The quadratic regression models have

been developed for selected response variables in terms of

six prominent input parameters using RSM. The study also

investigates the machined surface in terms of surface

topography and material diffusion between the wire elec-

trode and workpiece material.

The next section depicts the development of quadratic

regression models for the response variables in WEDM.

3 Modeling of WEDM parameters
for response variables

The relationship between the controllable WEDM param-

eters and the output response variables has been quantified

with the help of RSM. The six-factor-3-level Box–Behn-

ken’s design (BBD) has been utilized to plan the experi-

ments. The BBD is very efficient in RSM for fitting the

second-order model with a smallest possible number of

experiments. The BBD has no points at the vertices of the

cube defined by the ranges of the factors; that is, the design

does not contain combinations where all the factors are at

their higher or lower levels [24]. In the present study, BBD

design consists of six parts; each carries eight runs. Within

each part, three parameters are arranged in a full three-level

factorial design, while the level of other parameters is set at

zero (coded value). Therefore, the six-parameter BBD

requires 48 runs plus the 6 number of replicates at the

center point to estimate the pure error.

The chemical composition of the stir cast Al/SiCp-MMC

used for the experimental work is shown in Table 1. Fig-

ure 1 shows the scanning electron micrograph (SEM) and

corresponding spectra of energy-dispersive X-rays (EDX)

of the Al/SiCp-MMC workpiece at two selected regions.

The SEMs of the Al/SiCp-MMC were taken at accelerating

voltage 20 kV and 9 100 magnification. The EDX is a

technique used to identify the elemental composition of a

specimen. The spectrum-1 in the scanned region shows the

presence and distribution of reinforced SiC particles in the

aluminum matrix material. Spectrum-2 in the figure depicts

the elemental analysis for the reinforcing phase. Peaks of

silicon (Si) and carbon (C) indicate the presence of rein-

forced SiC particles in the matrix material.

Details of setups used in experimentation are given

below:

• Machine type/make: sprintcut CNC-WEDM,

Electronica

• Wire electrode: brass, u250 lm diameter

• Dielectric fluid: deionized water (temperature

22–25 �C)
• Workpiece specification: cavity size: 5 mm 9 5 mm 9

15 mm, Al/SiCp-MMC (Stir cast)

• Surface roughness measuring device: Mitutoyo’s sur-

face roughness tester (S J 301)

• Spark gap measuring device: TESAMASTER microm-

eter (least count = 0.001 mm)

Table 1 Composition of Al/SiC-MMC used for experiment

Type of MMC Type of reinforced particle %wt. SiC % Cu % Mg % Si % Fe % Mn % Ti Remaining

Particulate MMC (Stir cast) SiC (APS: 37 lm) 10 0.02 0.628 0.492 0.32 0.12 0.01 Al
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The average CS was calculated for each experimental

run by measuring the total area machined by the wire

electrode and the required machining time [7]. The SR is

measured at three chosen locations on each machined

surface. The average values have been taken as test results

and utilized for further analysis. The size obtained after

machining (i.e., actual size) of workpiece was measured

using a TESAMASTER micrometer. The SG was calcu-

lated from the relationship (Eq. 1) as follows:

Diameter of wireþ 2 spark gapð Þ
¼ geometrical size traced by the center of wire

�size obtained after machining

ð1Þ

To select the process parameters and their range during

WEDM of Al/SiCp-MMC, the pilot experiments were

conducted using one-factor-at-a-time approach. In this

approach, experiments were performed by varying one

parameter at a time keeping all other parameters at fixed

levels. This approach is effective when emphasis is only to

estimate main effects of the parameters on response vari-

ables especially during pilot experiments where it is

desirable to identify the key parameters and their levels.

Range of the various controllable process parameters for

detailed experiments was decided by analyzing the

acquired pilot experiment data [25]. Table 2 shows the

settings of six process parameters with their levels, units

and notations as considered for experimentation. Table 3

shows the experimental matrix with results. A total of 54

experimental trials were conducted as per BBD in random

order to avoid any systematic error creeping into the sys-

tem. Figure 2 shows the photograph of machined

workpieces.

Fig. 1 SEM micrograph with EDX analysis of stir cast Al/SiCp-MMC at two selected regions (spectrum-1 selected region on Al/SiCp-MMC and

spectrum-2 selected region on reinforced SiC particle)

Table 2 WEDM process parameters with their levels

S. no. Parameter Notation Units Level

- 1 0 1

1 Pulse on time Ton ls 0.6 0.9 1.2

2 Pulse off time Toff ls 16 22 28

3 Spark gap voltage SV V 20 30 40

4 Peak current Ip A 120 150 180

5 Wire tension WT g 850 1000 1200

6 Wire feed rate WF m/min 6 8 10
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Table 3 Design matrix with response values

Std. run no. Machine input parameters Response variables

Ton (ls) Toff (ls) SV (V) Ip (A) WT (g) WF (m/min) CS (mm2/min) SR (Ra, lm) SG (mm)

Part 1

1 0.6 16 30 120 1000 8 67.53 2.88 0.0407

2 1.2 16 30 120 1000 8 93.52 3.26 0.050

3 0.6 28 30 120 1000 8 35.48 2.85 0.034

4 1.2 28 30 120 1000 8 78.29 3.21 0.048

5 0.6 16 30 180 1000 8 71.64 3.04 0.042

6 1.2 16 30 180 1000 8 97.29 3.89 0.053

7 0.6 28 30 180 1000 8 48.73 3.08 0.041

8 1.2 28 30 180 1000 8 97.57 3.68 0.053

Part 2

9 0.9 16 20 150 850 8 89.34 3.74 0.047

10 0.9 28 20 150 850 8 75.39 3.48 0.042

11 0.9 16 40 150 850 8 88.09 3.42 0.058

12 0.9 28 40 150 850 8 48 3.22 0.047

13 0.9 16 20 150 1200 8 95.68 3.28 0.045

14 0.9 28 20 150 1200 8 70.56 3.38 0.037

15 0.9 16 40 150 1200 8 90.34 3.18 0.045

16 0.9 28 40 150 1200 8 56.35 3.12 0.040

Part 3

17 0.9 22 20 120 1000 6 87.67 3.48 0.046

18 0.9 22 40 120 1000 6 65.58 3.14 0.040

19 0.9 22 20 180 1000 6 99.63 3.62 0.044

20 0.9 22 40 180 1000 6 73.47 3.77 0.053

21 0.9 22 20 120 1000 10 90.43 3.48 0.037

22 0.9 22 40 120 1000 10 60.68 2.96 0.043

23 0.9 22 20 180 1000 10 96.83 3.7 0.042

24 0.9 22 40 180 1000 10 80.38 3.76 0.051

Part 4

25 0.6 22 30 120 850 8 42.56 2.95 0.042

26 1.2 22 30 120 850 8 89.63 3.38 0.047

27 0.6 22 30 180 850 8 60.84 3.31 0.045

28 1.2 22 30 180 850 8 99.84 3.83 0.054

29 0.6 22 30 120 1200 8 45.58 2.75 0.034

30 1.2 22 30 120 1200 8 84.38 3.07 0.045

31 0.6 22 30 180 1200 8 60.37 3.02 0.036

32 1.2 22 30 180 1200 8 96.78 3.62 0.054

Part 5

33 0.9 16 30 150 850 6 94.18 3.79 0.052

34 0.9 28 30 150 850 6 62.93 3.35 0.045

35 0.9 16 30 150 1200 6 87.73 3.42 0.047

36 0.9 28 30 150 1200 6 77.38 3.38 0.036

37 0.9 16 30 150 850 10 92.35 3.68 0.048

38 0.9 28 30 150 850 10 64.14 3.47 0.045

39 0.9 16 30 150 1200 10 90.89 3.19 0.044

40 0.9 28 30 150 1200 10 67.04 3.24 0.039

Part 6

41 0.6 22 20 150 1000 6 47.92 3.08 0.033
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To study the effect of WEDM parameters, i.e., pulse on

time, pulse off time, peak current, spark gap voltage, wire

tension and wire feed rate on response variables, i.e., CS,

SR and SG, a second-order response model is fitted into the

following equation:

y ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

biix
2
i þ

XX

i\j

bijxixj ð2Þ

Here, y is a response variable and xi and xj 1; 2; . . .kð Þ are k
input controllable process parameters.The coefficientb0 is the
free term, the coefficients bi are the linear terms, the coeffi-

cientsbii are the quadratic terms, and the coefficientsbij are the

interaction terms [24]. Equations for CS, SR and SG are then

derived, bydetermining thevalues of the coefficients using the

least square techniques for the data collected in 54 experi-

mental trials as shown in Table 3 and presented as follows:

Cutting speed CSð Þ ¼ 46:44222þ 207:46667 � Ton
� 2:23417 � Toff þ 2:06279 � SV
� 1:08328 � IP� 89:88426 � T2

on

þ 4:26852E�003 � IP2 þ 2:77847
� Ton � Toff � 1:33083 � Ton � SV
� 0:072938 � Toff � SV

ð3Þ

Surface Roughness SRð Þ ¼ 7:49549 þ 2:56399 Ton
� 0:073857 Toff
� 0:077750 SV� 0:013306 Ip

� 2:11263E�003WT

� 0:36366WF� 1:51703 T2
on

þ 0:021335WF2

þ 7:50000E�003 TonIp

þ 6:32883E�005 ToffWT

þ 4:45833E�004 SV Ip

ð4Þ

Spark gap SGð Þ ¼ 0:21209� 0:012017 � Ton
� 2:32801E�003 � Toff
� 8:83333E�004 � SV

� 7:47551E�004 � IP

� 1:47797E�004 � WT

þ 4:26031E�005 � T2
off

þ 2:00758E�006 � IP2
þ 5:00325E�008 �WT2

þ 3:17114E�005 � Ton �WT

þ 7:58333E�006 � SV � IP ð5Þ

Table 3 (continued)

Std. run no. Machine input parameters Response variables

Ton (ls) Toff (ls) SV (V) Ip (A) WT (g) WF (m/min) CS (mm2/min) SR (Ra, lm) SG (mm)

42 1.2 22 20 150 1000 6 104.45 3.89 0.047

43 0.6 22 40 150 1000 6 48.25 2.89 0.039

44 1.2 22 40 150 1000 6 82.56 3.64 0.052

45 0.6 22 20 150 1000 10 48.38 3.01 0.033

46 1.2 22 20 150 1000 10 96.29 3.76 0.047

47 0.6 22 40 150 1000 10 46.59 2.83 0.042

48 1.2 22 40 150 1000 10 84.78 3.36 0.054

Central points

49 0.9 22 30 150 1000 8 73.54 3.35 0.039

50 0.9 22 30 150 1000 8 72.48 3.36 0.040

51 0.9 22 30 150 1000 8 80.82 3.41 0.042

52 0.9 22 30 150 1000 8 72.38 3.32 0.041

53 0.9 22 30 150 1000 8 79.25 3.3 0.042

54 0.9 22 30 150 1000 8 76.64 3.4 0.0385

Fig. 2 Photograph of machined workpieces
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Table 4 depicts the corresponding analysis of variance

(ANOVA). To test whether the data are well fitted in

models or not, the calculated ‘p values’ for all the pre-

diction models are obtained to be less than 0.05 (i.e., 95%

confidence level), indicating that developed models are

Table 4 ANOVA test for cutting speed, surface roughness (Ra) and spark gap

Source Sum of squares DF Mean square F value Prob[F R-square

Analysis of variance for cutting speed

Model 16223.15 9 1802.57 77.68 \ 0.0001 R2 = 0.940

Adj R2 = 0.905 Pred R2 = 0.928

Adeq Precision = 36.19

Ton 9660.50 1 9660.50 416.30 \ 0.0001

Toff 3190.58 1 3190.58 137.49 \ 0.0001

SV 1312.76 1 1312.76 56.57 \ 0.0001

Ip 840.64 1 840.64 36.23 \ 0.0001

(Ton)
2 732.94 1 732.94 31.58 \ 0.0001

(Toff)
2 165.29 1 165.29 7.12 0.0106

Ton.Toff 200.10 1 200.10 8.62 0.0053

Ton.SV 127.52 1 127.52 5.50 0.0236

Toff.SV 153.21 1 153.21 6.60 0.0136

Residual 1021.04 44 23.21

Lack of fit 955.12 39 24.49 1.86 0.2540

Pure error 65.92 5 13.18

Analysis of variance for surface roughness (Ra)

Model 4.47 11 0.41 66.19 \ 0.0001 R2 = 0.945

Adj R2 = 0.931

Pred R2 = 0.907

Adeq Precision = 33.45

Ton 1.98 1 1.98 322.86 \ 0.0001

Toff 0.070 1 0.070 11.32 0.0016

SV 0.28 1 0.28 46.19 \ 0.0001

Ip 1.00 1 1.00 163.48 \ 0.0001

WT 0.39 1 0.39 62.69 \ 0.0001

WF 0.048 1 0.048 7.76 0.0080

(Ton)
2 0.24 1 0.24 38.81 \ 0.0001

(WF)2 0.093 1 0.093 15.16 0.0003

Ton. Ip 0.073 1 0.073 11.86 0.0013

Toff. WT 0.071 1 0.071 11.58 0.0015

SV. Ip 0.14 1 0.14 23.29 \ 0.0001

Residual 0.26 42 6.144E-003

Lack of fit 0.25 37 6.667E-003 2.92 0.1159

Pure error 0.011 5 2.280E-003

Analysis of variance for spark gap

Model 1.691E-003 10 1.691E-004 28.84 \ 0.0001 R2 = 0.870

Adj R2 = 0.8401 Pred R2 = 0.7898

Adeq Precision = 22.64

Ton 8.829E-004 1 8.829E-004 150.60 \ 0.0001

Toff 1.777E-004 1 1.777E-004 30.31 \ 0.0001

SV 1.550E-004 1 1.550E-004 26.45 \ 0.0001

Ip 1.460E-004 1 1.460E-004 24.91 \ 0.0001

WT 2.048E-004 1 2.048E-004 34.93 \ 0.0001

(Toff)
2 2.588F-005 1 2.588E-005 4.41 0.0416

(Ip)2 4.104E-005 1 4.104E-005 7.00 0.0113

(WT)2 2.455E-005 1 2.455E-005 4.19 0.0469

Ton. WT 2.248E-005 1 2.248E-005 3.83 0.0567

SV. Ip 4.141E-005 1 5.863E-006 7.06 0.0110

Residual 2.521E-004 43 5.863E-006

Lack of fit 2.406E-005 38 6.331E-006 2.75 0.1295

Pure error 1.149E-005 5 2.299E-006
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significant. The ‘R2’ value represents the proportion of

variation in the response explained by the regression

model. The values of ‘R2’ for Eqs. (3), (4) and (5) are 0.94,

0.94 and 0.87, respectively, which clearly indicate the

significance of prediction models. Additionally, the

developed models for selected responses have been

checked using residual analysis. The residual plots for

response variables CS, SR and SG are given in Figs. 3a, 4a

and 5a, respectively. The ‘Fat pencil thickness test’ has

been shown for a quick visual assessment of normality of

data.

From these figures, it is observed that there is no severe

departure from normality. As a whole, analysis of normal

plots of residuals of selected responses, the models do not

reveal inadequacy. Using the above models, the experi-

mental and predicted data are plotted in Figs. 3b, 4b and 5b

for CS, SR and SG, respectively. These figures clearly

indicate that the predictions made by the regression models

are in good conformity with the experimental values.

Adequate precision (‘Adeq Precision’) measures the signal-

to-noise ratio and are well above ‘4’ in all models which is

desirable (Table 4). Hence, it can be concluded that

developed models are useful in predicting the selected

response variables.

These models hence developed will provide an effective

guideline to select the parametric settings for achieving

desired CS, SR and SG during WEDM of Al/SiCp-MMC.

The selection of proper parameters will help to reduce the

manufacturing cost, improve product quality and increase

productivity. These models are valid for machining of Al/

10wt%SiCp-MMC on Sprintcut WEDM machine tool for

the specified range of input process parameters. The

knowledge of SG is essential to achieve the desired level of

dimensional accuracy during shop floor machining. If the

SG for a given parameter set is known in advance (i.e.,

using Eq. 5), that can be used for estimating the wire offset

setting, thereby getting a dimensionally accurate product.

Hence, these models could be very useful for the

machinists on the shop floor for effective machining of Al/

SiCp-MMC.

The next section briefly describes the multi-response

optimization considering multiple users preference.

4 Multi-response optimization

Multi-response optimization implemented in the present

work is based on desirability function approach coupled

with user’s preference rating method. Desirability function

approach can solve multi-response optimization problem

by converting it into single-response optimization problem.

It provides flexibility to the investigators in assigning dif-

ferent weight to the responses as per the requirements in

terms of the product quality, productivity and acceptability

of the product.

4.1 Calculation of weights by user preference
rating method

The user’s preference rating method has been applied for

resolving the issue of assigning weights to multiple

responses taking into account of conflicting interests of

multiple users. The present work considers the viewpoints

of four different users who have a different opinion on the

weights of response variables. The preferences for each

user have been represented in preferences graph (PG) as

shown in (Fig. 6). The following steps have been followed

for the calculation of weights [23].

(a) Adjacency matrix

The relationship shown in user’s PG (Fig. 6) is transformed

in a matrix form, known as an adjacency matrix. An

adjacency matrix can be expressed as

PGn ¼ pgij
� �

M�M
i; j ¼ 1; 2; . . .Mð Þ ð6Þ

where n is the number of users, M is number of responses,

and pgij gives the dominance of i over j in aM 9 M matrix.

Using Eq. (6), adjacency matrices are calculated as

PG1 ¼

CS SR SG

0 0 1 CS

0 0 1 SR

0 0 0 SG

PG2 ¼
0 1 0

0 0 0

0 1 0

PG3 ¼
0 1 0

0 0 1

0 0 0

PG4 ¼
0 0 0

0 0 1

1 0 0

(b) Dominance matrix

The dominance matrix (Dn) is formed with the help of

adjacency matrix. It is expressed as

Dn ¼ PG1
n þ PG2

n þ � � � þ PGm
n þ PGM�1

n ð7Þ

cFig. 3 Residuals and response surface plots for cutting speed through

response surface modeling. a, b Residuals plots, c–e response surface
plots, f contribution of significant parameters
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Fig. 4 Residuals and response surface plots for surface roughness (Ra) through response surface modeling. a, b Residuals plots, c–e response

surface plots, f contribution of significant parameters
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Fig. 5 Residuals and response surface plots for spark gap through response surface modeling. a, b Residuals plots, c, d response surface plots,

e contribution of significant parameters
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Also dnm ¼
PM

j¼1 pgmj where dnm represents the sum of

entries (pgmj) in row m of dominance matrix. Using

Eq. (7), the dominance matrices are calculated as

D1 ¼
0 0 1 ¼ 1

0 0 1 ¼ 1

0 0 0 ¼ 0

D2 ¼
0 1 0 ¼ 1

0 0 0 ¼ 0

0 1 0 ¼ 1

D3 ¼
0 1 1 ¼ 2

0 0 1 ¼ 1

0 0 0 ¼ 0

D4 ¼
0 0 0 ¼ 0

1 0 1 ¼ 2

1 0 0 ¼ 1

(c) Relative degree of performance

The relative degree of performance (RDP) exhibits the

weightage of preference of the responses, in the scaled

form (i.e., 0 to 1) by taking into account the preference of

each user. It is shown by the following equation:

RDPnm ¼
1þ dnm
� �

maxm¼1...M 1þ dnm
� � ð8Þ

Using Eq. (8), RDP for each user can be given by

RDP1 = (1, 1, 0.5); RDP2 = (1, 0.5, 1); RDP3 = (1,

0.66, 0.33); RDP4 = (0.33, 1, 0.66)

(d) Relative importance rating

The relative importance rating (RIR) represents the com-

bined rating of single-response characteristics taking into

account the views of four users. It can be expressed as

RIRm ¼
PN

n¼1 RDP
n
m

maxm¼1;...M

PN
n¼1 RDP

n
m

ð9Þ

The relative importance ratings for CS, SR and SG

derived from Eq. (9) can be given by

RIR ¼ ð3:33=4; 3:16=4; 2:49=4Þ ¼ 0:833; 0:790; 0:622ð Þ

(e) Weight computation

The weight of each response characteristics is calculated by

using the following Eq. (10)

wm ¼ RIRmPN
m¼1 RIRm

wm ¼ ð0:833=2:244; 0:790=2:244; 0:622=2:244Þ
¼ 0:370; 0:352; 0:277ð Þ

ð10Þ

The user preference rating for different response variables

such as CS, SR and SG are 0.371, 0.352 and 0.277, respec-

tively, considering conflicting interests of multiple users.

4.2 Desirability function approach

In the present work, CS, SR and SG have been considered as

response variables. It is observed that with the increase in CS,

the other response variables SR and SG also increase. How-

ever, in machining, the optimal parametric setting should

produce themaximumCS alongwithminimumSR and SG.A

single-response optimization will not serve any purpose, as

these objectives are conflicting in nature. In this study, the

selected response variables have been optimized simultane-

ously using the developedmodels, i.e., Equations 8, 9 and 10,

based on desirability function approach. The detail of this

method is given in [24]. This method makes use of overall

desirability function, Do, as an objective function, and trans-

forms individual responses into a scale-free value (Di) called

individual desirability. The optimization is accomplished in

the following steps:

(a) Compute the individual desirability value (Di) for the

selected responses using the formula proposed by the

‘Derringer and Suich’ that varies over the range

0 B DiB 1. The highest value in the range is one

which represents the ideal case; zero indicates that one

or more responses are outside their acceptable limits.

(b) Calculate the overall desirability (Do). The individ-

ual desirability values of all the responses can be

Fig. 6 Preference graphs for

representing relative importance

of response variables
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combined to form a single value in the form of

overall desirability (Do) by the following Eq. (11)

Do ¼ Dw1

1 � Dw2

2 � � � � � Dwn

n

� �1=n¼
Yn

i¼1

Dwi

i

 !1=n

ð11Þ

where n is the number of response variables under

consideration and wi reflects the weight (relative

importance) of different response characteristics.

The weight, wi, must satisfy the conditions

0\wi \ 1 and
Pn

i¼1 wi ¼ 1. Weights may be

assigned according to the relative importance of

responses in the multi-response optimization.

(c) Maximize the overall desirability and identify the

optimal parametric setting. The higher overall

desirability value ðDoÞ implies better overall perfor-

mance of the process. The parametric setting with

maximum overall desirability is considered to be the

optimal parametric combination.

Utilizing the weights calculated by user’s preference

rating method and according to Eq. (11), the overall

desirability function is expressed as

Do ¼ D0:371
CS � D0:352

SR � D0:277
SG

� �1=3 ð12Þ

The range of response variables and the goal and

weights of the selected responses, e.g., CS, SR and SG, are

shown in Table 5. The objective in the present case is to

find out optimal parametric setting of process parameters

which maximizes the overall desirability function (i.e.,

Equation 12). Minitab-16 software has been used for multi-

response optimization of WEDM parameters. Figure 7

represents the optimization plot which shows how the

parameters affect the predicted responses and also the

optimization results. The vertical lines on the graph rep-

resent the current parametric setting, and horizontal dash

lines represent the current values of response variables.

Three optimal parametric settings of input process param-

eters for maximum overall composite desirability are

reported in Table 6. The current optimal parametric set-

tings are: pulse on time 0.75 ls, pulse off time 16 ls, spark
gap voltage 35 V, peak current 120A, wire tension 1200 g

and wire feed rate 10 m/min in machining of Al/SiCp-

MMC considering the preference of multiple users.

A set of confirmation runs have been performed at

optimal parametric settings, and their average values were

computed for each response variables. As per the machine

Table 5 Desirability analysis

for cutting speed, surface

roughness (Ra) and spark gap

Response Goal Lower Limit Upper Limit Weight Importance

Cutting speed (mm2/min) Maximize 70 110 1 0.371

Surface roughness, Ra (lm) Minimize 2.4 3.5 1 0.362

Spark gap (mm) Minimize 0.035 0.045 1 0.277

Cur
High

Low0.43197
D

Optimal

d = 0.31547

Maximum
CS

y = 82.6187

d = 0.64275

Minimum
SR

y = 2.7930

d = 0.39150

Minimum
SG

y = 0.0411

0.43197
Desirability
Composite

6.0

10.0

850.0

1200.0

120.0

180.0

20.0

40.0

16.0

28.0

0.60

1.20
Toff SV Ip WT WFTon

[0.7515] [16.0] [34.9495] [120.0] [1200.0] [10.0]

Fig. 7 Multi-response

optimization plot for optimal

performance
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and hardware constraints, the confirmation tests have been

performed with the nearest available parametric setting

value to the optimum one (Tables 6 and 7). The values of

CS, SR and SG predicted through models (Eqs. 3, 4 and 5)

and obtained by confirmation runs are presented in Table 7.

From the analysis of Table 7, it can be observed that the

prediction error is very less. The percentage absolute error

between experimental and predicted values at the optimal

settings of WEDM parameters for selected responses is less

than 5.5%. This confirms excellent reproducibility of the

experimental conclusions.

The next section describes the parametric effects on

selected response variables and the analysis of machined

surface.

5 Parametric effects on response variables

The parametric analysis has been carried out to study the

influence of the input process parameters such as pulse on

time, pulse off time, peak current, spark gap voltage, wire

tension and wire feed rate on response variables, i.e., CS,

SR and SG in WEDM of Al/SiCp-MMC. Response surface

using quadratic regression models has been plotted to

assess the change of response surface.

5.1 Parametric effects on cutting speed

Based on RSM model, the effects of the pulse on time

and pulse off time on CS, while keeping other parameters

at the center level, are shown in Fig. 3c. The nonlinear

nature of variation of CS with parameter pulse on time

has been observed. From the figure, it is clear that

increasing pulse on time leads to an increase in cutting

speed for all setting values of pulse off time. Figure 8

compares the SEM of the machined surface generated

under two experimental trials. By comparing Fig. 8a, b at

the same magnification, it is observed that higher pulse on

time and lower pulse off time generate high discharge

energy, which results in the development of larger, deeper

and overlapped craters on the machined surface. This, in

turn, will remove more volume of material from the

workpiece resulting in higher cutting speed. The results

are in agreement with the work of Rao and Krishna [26],

and Satishkumar et al. [27].

Response surface of CS versus spark gap voltage and

pulse on time is presented in Fig. 3d. At the lower spark

gap voltage, it can be observed that the CS increases

sharply with the pulse on time. The increase in CS, how-

ever, becomes gradual at higher spark gap voltage. The

lower spark gap voltage narrows the gap between the

workpiece and wire electrode which results in increase in

the number of sparks produced leading to the increased

metal removal and hence higher CS. Figure 3e shows the

effects of pulse off time and spark gap voltage on CS. From

the figure, it can be noticed that lower pulse off time and

lower spark gap voltage combination results in higher CS

due to higher pulse frequency. In this parametric setting,

higher thermal energy gets transferred from wire electrode

to workpiece. The non-cutting time during machining is

reduced at smaller pulse off time. This, in turn, will

increase the pulse frequency leading to better CS. How-

ever, application of the too low value of pulse off time has

an arcing tendency during machining resulting in wire

breakage. It can be noticed that both pulses off time and

spark gap voltage have linear nature of variation for CS.

Table 6 Optimization results through desirability functions approach

Sol. no. Machine input parameters Responses Composite desirability

Ton (ls) Toff (ls) SV (V) Ip (A) WT (g) WF (m/min) CS (mm2/min) SR (lm) SG (mm)

1 0.75 16 35 120 1200 10 82.61 2.79 0.0411 0.432

2 0.83 16 39.87 120 1200 9.67 80.28 2.72 0.0416 0.397

3 0.78 16 20 180 1200 8.35 93.24 3.23 0.0409 0.385

Table 7 Confirmation experiments and results

Sol

no.

Modified input parameters Experimental Predicted Prediction error (%)

Ton
(ls)

Toff
(ls)

SV

(V)

Ip

(A)

WT

(g)

WF (m/

min)

CS (mm2/

min)

SR

(lm)

SG

(mm)

CS (mm2/

min)

SR

(lm)

SG

(mm)

CS (mm2/

min)

SR

(lm)

SG

(mm)

1. 0.75 16 35 120 1200 10 78.32 2.70 0.043 82.61 2.79 0.041 5.47 3.33 4.65

2. 0.85 16 40 120 1200 10 86.08 2.72 0.040 81.94 2.77 0.042 4.82 1.85 4.38

3. 0.8 16 20 180 1200 8 97.39 3.37 0.042 94.63 3.26 0.041 2.84 3.43 2.87
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The results are corresponding to the work of Satishkumar

et al. [27].

The percentage contribution of significant process

parameters on CS is shown in Fig. 3f. Referring to the sum

of squares in Table 4, the parameter pulse on time makes

the largest contribution to the total sum of squares

[(9660.5/16025.52) 9 100 = 60.2%]. The pulse off time

makes the next largest contribution (20%), whereas the

parameters spark gap voltage and peak current together

make only 14% contributions. The parameters wire tension

and wire feed rate have no significant effect on CS.

5.2 Parametric effects on surface roughness, Ra

The effects of the pulse on time and peak current on SR are

shown in Fig. 4c. It can be seen that lower pulse on time

and lower peak current combination results in lower SR due

to lower discharge energy in machining which produces

small and shallower discharge crater on the machined

surface. The same is verified from the SEM in Fig. 8b. This

parametric combination causes lesser deterioration of

machined surface. Also, the surface irregularities are found

to be less frequent. The results are in agreement with work

of Patil and Brahmankar [10], Rao and Krishna [26] and

Satishkumar et al. [27].

Figure 4d shows the variation in SR with pulse off time

and wire tension. It can be seen from the figure that higher

wire tension and higher pulse off time combination results

in lower SR. This is because increasing wire tension

decreases the chances of wire deflection and vibration

during machining which results in stable machining;

therefore, it produces better surface finish on the machined

surface. Further, an increase in pulse off time increases the

non-cutting time and hence better flushing of debris and

dislodged reinforced SiC particle from machining zone.

The results are in agreement with the work reported by

Patil and Brahmankar [10] but are contrary to the work

reported by Rao and Krishna [26]. The results might have

differed due to the variation in the size of reinforced SiC

particles used in their work. The effects of spark gap

voltage and peak current on SR are shown in Fig. 4e. It can

be seen that lower peak current and higher spark gap

voltage combination results in the better surface finish. In

this machining condition, small and shallower craters are

formed on the machined surface [28].

The percentage contribution of significant parameters on

SR is shown in Fig. 4f. Pulse on time is the major

parameter affecting the SR, i.e., 49%. The percentage

contribution of peak current, wire tension and spark gap

voltage on SR is 24%, 10%, and 7%, respectively.

5.3 Parametric effects on the spark gap

The effects of the pulse on time and wire tension on SG are

shown in Fig. 5c. The linear nature of variation of SG with

a pulse on time has been observed. The SG increases with

the increase in pulse on time for all setting values of wire

tension. It can be seen that lower pulse on time and higher

wire tension combination results in lower spark gap. This is

due to the fact that the volume of material removed is less

at smaller pulse on time due to the less thermal energy

released in the machining gap. On the other hand, an

increase in wire tension avoids wire deflection and vibra-

tions from its straight path which causes stable machining

(i.e., least fluctuation in actual spark gap voltage during

machining), thereby producing lower SG. It can be noticed

that lowest pulse on time (0.6 ls) and highest wire tension

(1200 g) are needed to get minimum value of SG. The

results are in agreement with the work of Patil and Brah-

mankar [10].

The investigation of possible surface and subsurface

defects due to improper selection of machining parameters

Fig. 8 SEM micrographs (980) of machined surface of Al/SiCp-MMC under two test conditions a. Run.2- Ton = 1.2 ls Toff = 16 ls SV = 30 V

Ip = 120A WT = 1000 g WF = 8 m/min, b. Run.3- Ton = 0.6 ls Toff = 28 ls SV = 30 V Ip = 120A WT = 1000 g WF = 8 m/min
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for WEDM has been described in detail in various studies

[29, 30]. In the present work, it is identified that wire

vibration and deflection are the most important reasons of

defect occurrences during machining of Al/SiCp-MMC

which has not been yet investigated in detail. The study

explores the effect of process parameters on the workpiece

edge which is very important in terms of dimensional

accuracy of final product. Figure 9a, b shows the SEM

images of the machined edge generated under two exper-

imental trials. By comparing at the same magnification, it

is observed that higher pulse on time and lower wire ten-

sion generate step-like appearance on machined workpiece

edge due to deflection or vibration of the brass wire during

machining. It affects adversely the dimensional accuracy of

the machined workpiece. The wire deflection is caused due

to wire slackness at higher discharge energy and lower wire

tension.

Figure 10 shows SEM of the machined surface having

wire deflection marks (or band marks) when machining

was carried out at run no.9 (i.e., Ton= 0.9 ls, Toff= 16 ls,

SV= 20 V, Ip= 150A, WT= 850 g, WF= 8 m/min). It is

believed that wire deflection marks on the machined sur-

face are formed due to the erroneous feedback signal,

which has been generated because of non-conductive dis-

lodged SiC particles in the spark gap. This phenomenon

might have occurred as the gap voltage sensor could not

estimate the real gap in the presence of dislodged non-

conducting SiC particles in the gap. The fast forward speed

of wire may cause the wire electrode to collide with the

workpiece material and form wire deflection mark on the

machined surface. It is believed that the chances of

occurrence of deflection mark can be reduced with the

increase in wire tension. The influencing parameters such

as spark gap voltage, wire tension and pulse off time need

to be precisely controlled to minimize these surface

defects. This phenomenon was also reported by Yan et al.

[7], Patil and Brahmankar [10], and Habib and Okada [31].

Figure 5d shows the effects of spark gap voltage and peak

current on SG. At the higher peak current, it can be

observed that the SG increases sharply with parameter

spark gap voltage. The increase, however, becomes gradual

at lower peak current. It indicates a significant interaction

between spark gap voltage and peak current. It could be

observed that lower spark gap voltage and lower peak

current combination results in lower SG.

From the ANOVA of spark gap shown in Table 4 and

also from Fig. 5e, it is found that pulse on time is the major

parameter affecting the SG (49%). The percentage contri-

bution of wire tension, pulse off time, spark gap voltage

and peak current on SG is 11%, 10%, 9% and 8%,

respectively.

Analysis of the machined surface in terms of material

diffusion between work material and wire electrode has

been presented in the next section with the help of energy-

dispersive X-rays (EDX).

Fig. 9 SEM micrographs (980) of machined surface/edge of Al/SiCp-MMC under two test conditions a. Run.6- Ton = 1.2 ls Toff = 16 ls
SV = 30 V Ip = 180A WT = 850 g WF = 8 m/min b. Run.29- Ton = 0.6 ls Toff = 22 ls SV = 30 V Ip = 120A WT = 1000 g WF = 8 m/min

Fig. 10 SEM micrograph (9150) of machined surface band of Al/

SiCp-MMC (Run.9-Ton = 0.9 ls Toff = 16 ls SV = 20 V Ip = 150A

WT = 850 g WF = 8 m/min)
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6 Energy-dispersive X-rays (EDX) analysis

Complex chemical reactions among the work material, wire

electrode material and the dielectric fluid are the basic

elements of a WEDM process. The EDX spectra are taken

to analyze the presence of elements on the machined surface

of the workpiece. Figure 11a, b is the spectra when

machining was carried out at high discharge energy and at

low discharge energy, respectively. From Fig. 11a, it is

clear that copper (3.25%) and zinc (3.75%) are present on

the machined surface. However, the work material Al/SiCp-

MMC has only 0.02% copper and does not contain any zinc

element before machining. It clearly indicates that during

machining these elements got diffused to the work material

from wire electrode material. This may be due to the

melting and re-solidification of the brass wire on the

workpiece surface during machining. The specimen corre-

sponding to run no.1 (i.e., Ton= 0.6 ls, Toff= 16 ls,

SV= 30 V, Ip= 120A, WT= 1000 g and WF= 8 m/min)

contains very less amount of copper and zinc into the

machined surface as shown in Fig. 11b. From the figure, it

is evident that at low discharge energy, the diffusion of wire

constituents on the machined surface of the work material is

low. The results are in agreement with the work of Goswami

and Kumar [32].The spectra of EDX also show the presence

of carbon and oxygen. It is due to interaction of dielectric

fluid which normally contains carbon and oxygen.

7 Conclusions

The wire electric discharge machining of Al/SiCp-MMC

has been investigated based on Box–Behnken’s design.

The quadratic regression models have been developed to

establish the relationships between the WEDM parameters

and the selected responses (i.e., CS, SR and SG). The

Fig. 11 Comparison of spectra of EDX of machined surfaces under

two test conditions. a Run no. 6, Table 3 (Ton = 1.2 ls Toff = 16 ls
SV = 30 V Ip = 180A WT = 1000 g WF = 8 m/min), b Run no. 1,

Table 3 (Ton = 0.6 ls Toff = 16 ls SV = 30 V Ip = 120A WT =

1000 g WF = 8 m/min)
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multi-response optimization results have been obtained

using desirability function approach coupled with user’s

preference rating method. Based on the experimental

results, the following conclusions are drawn:

1. Pulse on time has been found to be the most significant

parameter affecting all selected response variables,

while wire feed rate has little effect on responses.

2. The R2 values of the proposed cutting speed, the

surface roughness (Ra) and spark gap regression

models have been found to be 0.94, 0.94 and 0.87,

respectively, which signifies the ability of the models

for making excellent predictions. Confirmatory tests

also validate the same as maximum prediction error

lies within 5.5%. The developed regression models

will provide a guideline for the setting of WEDM

parameters to get desired cutting speed, the surface

roughness (Ra) and spark gap.

3. User’s preference rating method has been used to

determine the weights for responses while desirability

function approach has been used to combine the

multiple responses into a single response. This opti-

mization helps to determine the suitable process

parameters for high cutting speed and low surface

roughness, Ra, and spark gap.

4. The recommended process parameter setting for the

WEDM process has been found to be the pulse on

time = 0.7 ls, pulse off time = 16 ls, spark gap

voltage = 35 V, peak current = 120A, wire ten-

sion = 1200 g and wire feed rate = 10 m/min in

machining of Al/SiCp-MMC. It is the best parametric

setting for an optimal performance taking into account

the conflicting interests of multiple users.

5. EDX analysis of machined surface detected the basic

elements of Al/SiCp-MMC workpiece and identified

some residues such as Cu and Zn of the wire electrode

material. The wire electrode material diffusion on the

machined surface has been observed to increase with

an increase in discharge energy.

Results thus attained through the exhaustive investiga-

tions in WEDM of Al/SiCp-MMC can serve as a useful

reference to both the manufacturing engineers and the

applied researchers in this field. This research work will

open up the further scope to study the machined surface

integrity and the underlying microstructural effects for

utilizing WEDM in machining of Al/SiCp-MMC.
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