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Abstract
This article addresses the unsteady three-dimensional flow of Maxwell fluid. Flow is induced by a bidirectional stretching

surface. Fluid fills the porous space. Thermal relaxation time is examined using Cattaneo–Christov heat flux. Homoge-

neous–heterogeneous reactions are also considered. Suitable transformations are used to convert partial differential

equations into nonlinear ordinary differential equations. Convergent series solutions are obtained. Effects of appropriate

parameters on the velocity, temperature and concentration fields are examined. It is found that increasing value of Deborah

number decreases the fluid flow. Larger values of strength of homogeneous reaction parameter decrease the concentration

distribution. Also temperature is decreasing function of thermal relaxation time. Present problem is of great interest in

biomedical, industrial and engineering applications like food processing, clay coatings, hydrometallurgical industry, fog

formation and dispersion.

Keywords Unsteady flow � Maxwell fluid � Cattaneo–Christov heat flux � Porous medium � Homogeneous–heterogeneous

reactions

List of symbols
u, v, w Velocity components along x-, y- and z-axes,

respectively (ms�1 )

T Temperature (K)

Tw Surface temperature (K)

T1 Ambient fluid temperature (K)

kc; ks Rate constant

A, B Chemical species

k Thermal conductivity (WK�1 m�1 )

k̂ Permeability (m2 )

c, d Stretching constants (s�1Þ

a, b Concentrations of the species A and B

q Specific heat flux

a0 Positive dimensional constant

Cp Specific heat (m2 s�2 )

Cfx; Cfy Local skin friction coefficient along x- and y-

axes, respectively

DA, DB Diffusion species coefficients

Pr Prandtl number

uw Stretching sheet velocity along x-axis (ms�1Þ
vw Stretching sheet velocity along y-axis (ms�1Þ
Rex;Rey Local Reynolds number

A1 Unsteady parameter

Sc Schmidt number

K Strength of the homogeneous reaction

K1 Strength of the heterogeneous reaction

Greek symbols
l Viscosity (kg m�2 s�1 )

t Kinematic viscosity (m2 s�1 )

q Density (kg m�3 )

k1 Heat flux relaxation time

k Retardation time

h Dimensionless temperature
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n Transformed coordinate

a Time constant (s�1 )

k1 Porosity parameter

b1 Deborah number

swx, swy Wall shear stress

c Thermal relaxation parameter

b2 Ratio of stretching rates

d Ratio of diffusion coefficient

1 Introduction

At present researchers and engineers are giving special

attention to the study of non-Newtonian fluid. These fluids

have various applications in polymer solutions, paints, cer-

tain oils, food items, salt solutions, clay coatings, cosmetic

products, etc. Non-Newtonian fluids are divided into three

categories as the differential, the rate and the integral types.

Rate-type fluids describe the behavior of relaxation time and

retardation time. Maxwell fluid is simplest subclass of rate-

type fluid. Maxwell fluid describes the characteristics of

relaxation time. Sui et al. [1] studied slip flow of Maxwell

nanofluid with Cattaneo–Christov double-diffusion induced

by a stretching sheet. Helical flows ofMaxwell fluid between

coaxial cylinders have been discussed by Jamil and Fetecau

[2]. Wang and Tan [3] studied stability analysis of soret-

driven double-diffusive convection of Maxwell fluid in a

porous medium. Abbasbandy et al. [4] analyzed Falkner–

Skan flow of MHD Maxwell fluid. Three-dimensional

boundary layer flow of Maxwell fluid is studied by Awais

et al. [5]. Stretched flow of Maxwell fluid with heat source/

sink is studied byRamesh andGireesha [6]. Ramesh et al. [7]

examined three-dimensional flow of Maxwell fluid with

suspended nanoparticles past a porous stretching surface

with thermal radiation. Stagnation point flow of Maxwell

fluid toward a permeable surface in the presence of

nanoparticles has been discussed by Ramesh et al. [8].

Mukhopadhyay [9] analyzed time-dependent Maxwell fluid

flow induced by a stretching surface with heat source/sink.

Three-dimensional flow of Maxwell fluid with chemical

reaction has been discussed by Hayat et al. [10].

In biomedical, engineering and industrial applications,

heat transfer is very important phenomenon. Fourier [11]

was the first one who described the heat transfer mecha-

nism. The main flaw in Fourier’s model is that initial dis-

turbance is immediately observed by the medium under

consideration. In reality this could not be possible, so it is

called ‘‘paradox of heat conduction’’. Cattaneo [12] intro-

duced a modification of Fourier’s model in which heat flux

relaxation time appeared when the temperature gradient is

applied. Further modification of the Maxwell–Cattaneo’s

model is carried out by Christov [13]. He incorporated a

Lie derivative in terms of constant time derivative for the

heat flux. Ciarletta and Straughan [14] present particular

and systemic constancy questions with Cattaneo–Christov

heat flux model. Han et al. [15] studied coupled flow and

heat transfer of viscoelastic fluid. Tibullo and Zampoli [16]

examined particular result for the incompressible heat

conducting Cattaneo–Christov model. Analogous heat

convection problems in a Darcy’s porous medium have

been investigated by Straughan [17]. Ramesh et al. [18]

studied analysis of heat transfer phenomenon in magneto-

hydrodynamic Casson fluid flow through Cattaneo–Chris-

tov heat flux. Hayat et al. [19] examined influence of

chemical reaction and Cattaneo–Christov heat flux in MHD

Oldroyd-B fluid flow. Liu et al. [20] studied anomalous

convection diffusion and wave coupling transport of cells

on comb frame with fractional Cattaneo–Christov flux.

Homogeneous–heterogeneous reactions are involved in

many chemically reacting systems, for example, in com-

bustion, catalysis and biochemical systems. Homogeneous

and heterogeneous reactions are correlated in very complex

manner. In the presence of a catalyst, some of the reactions

proceed very slowly or not at all. Some common applications

of chemical reactions are in ceramics and polymer produc-

tion, food processing, hydrometallurgical industry, fog for-

mation and dispersion and many others. Merkin [21]

examined the fluid flow under the influence of homoge-

neous–heterogeneous reactions. He studied the homoge-

neous reaction with the help of cubic catalysis and the

heterogeneous reaction with a first-order procedure.

Chaudhary and Merkin [22] studied viscous fluid flow with

chemical reaction. Stagnation point flow toward a surface

with homogeneous–heterogeneous reactions has been

examined by Bachok et al. [23]. Kameswaran et al. [24]

studied nanofluid flow past a permeable stretching sheet with

homogeneous heterogeneous reactions. Flow of viscoelastic

fluid toward a surface subject to homogeneous–heteroge-

neous reactions has been investigated by Khan and Pop [25].

MHD flow of nanofluid under the influence of homoge-

neous–heterogeneous reactions has been studied by Hayat

et al. [26]. Effect of homogeneous heterogeneous reactions

and Newtonian heating in the Stagnation point flow of nan-

otubes has been analyzed by Hayat et al. [27]. Influence of

homogeneous–heterogeneous reactions in flow of Powell–

Eyring fluid has been investigated by Hayat et al. [28].

This article explores unsteady three-dimensional flow of

Maxwell fluid. Flow is induced by a stretching sheet with

heat transfer through Cattaneo–Christov heat flux model.

Effect of homogeneous–heterogeneous reactions is also

taken into consideration. Convergent series solutions are

obtained by homotopy analysis method (HAM) [29–35].

The behaviors of different parameters on the physical

quantities have been examined graphically.
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2 Problem formulation

Consider the unsteady three-dimensional flow of Maxwell

fluid induced by a stretching sheet at z ¼ 0. Sheet is

stretched with velocities uwðxÞ ¼ cx=ð1� atÞ and vwðyÞ ¼
dy=ð1� atÞ along the x- and y-directions, respectively. An

incompressible fluid fills the porous space. Heat transfer

analysis is carried out by considering Cattaneo–Christov

heat flux model. Here Tw is constant temperature of the

sheet, whereas T1 is the temperature away from the sheet

such that Tw [ T1 (see Fig 1).

Homogeneous–heterogenous reactions of two chemical

species A and B are also taken into account. Homogeneous

reactions at cubic autocatalysis can be demonstrated as:

Aþ 2B ! 3B; rate ¼ kcab
2; ð1Þ

and the heterogenous reaction in first-order isothermal is

A ! B; rate ¼ ksa: ð2Þ

Here kc and ks are the rate constants and a and b are the

concentrations of the species A and B. The governing

boundary layer flow equations are as follows:

ou
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Corresponding boundary conditions are

u ¼ uw ¼ cx

1� at
; v ¼ vw ¼ dy

1� at
; w¼0;

T ¼ Tw; DA

oa

oz
¼ ksa; DB

ob

oz
¼ �ksaatz ¼ 0;

u !0; v ! 0; T ! T1; a ! a0; b ! 0 as z ! 1;

ð9Þ

where the velocity components u , v and w are in the x-, y-

and z-directions, respectively, l the dynamic viscosity, q

the density, k the retardation time, k̂ the permeability, Cp

the specific heat, T the temperature, m ¼ l
q the kinematic

viscosity of fluid, a0 the positive dimensional constant, DA

and DB the diffusion species coefficients of A and B and q

the specific heat flux which satisfies [17]:

qþ k1
oq

ot
þ V:rq� q:rVþ ðr:VÞq

� �
¼ �krT ;

ð10Þ

where k the fluid thermal conductivity and k1 is heat flux

relaxation time. Here k1 ¼ 0 corresponds to classical

Fourier’s law. As we know that fluid is incompressible so

Eq. (10) becomes

qþ k1
oq

ot
þ V:rq� q:rV

� �
¼ �krT : ð11Þ

Eliminating q from Eqs. (6) and (11), we get

Fig. 1 Geometry of the problem
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Using transformations

u ¼ cx

1� at
r0ðnÞ; v ¼ cy

1� at
s0ðnÞ;

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cm

1� at
½rðnÞ þ sðnÞ�

r
;

hðnÞ ¼ T � T1
Tw � T1

; n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

mð1� atÞ

r
z;

a ¼ a0/ðnÞ; b ¼ a0hðnÞ:

ð13Þ

The continuity equation is satisfied accordingly and

Eqs. (4), (5), (7–9) and (12) give:

r000 � r02 þ ðr þ sÞr00 � A1r
0 � b1ðr000ðr þ sÞ2 � 2r0r00ðr þ sÞ

� 2A1r
00ðr þ sÞ þ 2A2

1r
0 þ 2A1r

02Þ � k1r
0 ¼ 0;

ð14Þ

s000 � s02 þ ðr þ sÞs00 � A1s
0 � b1ðs000ðr þ sÞ2 � 2s0s00ðr þ sÞ

� 2A1s
00ðr þ sÞ þ 2A2

1s
0 þ 2A1s

02Þ � k1s
0 ¼ 0;

ð15Þ
1

Pr
h00 þ ðr þ sÞh0 � 1

2
nA1h

0 � c ðr þ sÞ2h00 � A1nðr þ sÞh00 þ 1

4
A2
1n

2h00
�

þðr þ sÞðr0 þ s0Þh0 � 1

2
A1nðr0 þ s0Þh0 � 3

2
A1ðr þ sÞh0 þ 3

4
A2
1nh

0
�
¼ 0;

ð16Þ
1

Sc
/00 þ ðr þ sÞ/0 � 1

2
A1n/

0 � K/h2 ¼ 0; ð17Þ

d
Sc

h00 þ ðr þ sÞh0 � 1

2
A1nh

0 þ K/h2 ¼ 0; ð18Þ

r0ðnÞ ¼ 1; rðnÞ ¼ 0; s0ðnÞ ¼ b2; sðnÞ ¼ 0;

hðnÞ ¼ 1atn ¼ 0;

/0ðnÞ ¼ K1/ðnÞ; dh0ðnÞ ¼ �K1/ðnÞatn ¼ 0;

r0ðnÞ ! 0; s0ðnÞ ! 0; hðnÞ ! 0; /ðnÞ ! 1;

hðnÞ ! 0 as n ! 1:

ð19Þ

Here prime denotes derivative with respect to n, b1 ¼ kc
1�at

is the Deborah number, k1 ¼ mð1� atÞ=k̂c is the porosity

parameter, A1 ¼ a
c
is the unsteady parameter,Pr ¼ mqCp=k

is the Prandtl number, c ¼ k1c=ð1� atÞ is the non-di-

mensional thermal relaxation parameter, Sc ¼ m=DA is the

Schmidt number, K ¼ kca
2
0ð1� atÞ=c is the measure of the

strength of the homogeneous reaction, K1 ¼
ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� atÞ

p
=DA

ffiffiffi
c

p
is the measure of the strength of the

heterogeneous reaction, b2 ¼ d=c is the ratio of stretching

rates and d ¼ DB=DA is the ratio of the diffusion

coefficient.

Chemical species A and B having diffusion coefficients

are assumed to be of approximate size. Further assuming

that diffusion coefficients DA and DB are identical, i.e.,

d ¼ 1 [25]. Hence we have from Eq. (19)

/ðnÞ þ hðnÞ ¼ 1: ð20Þ

Thus Eqs. (17) and (18) become

1

Sc
/00 þ ðr þ sÞ/0 � 1

2
A1n/

0 � K/ð1� /Þ2 ¼ 0; ð21Þ

subject to the boundary conditions

/0ð0Þ ¼ K1/ð0Þ; /ð1Þ ! 1: ð22Þ

Skin friction coefficients along the x- and y-directions are

defined as follows:

Cfx ¼
swx
qu2w

; Cfy ¼
swy
qv2w

; ð23Þ

where the surface shear stresses swx and swy along the x-

and y- directions are given by

swx ¼ l
ou

oz

����
z¼0

; swy ¼ l
ov

oz

����
z¼0

: ð24Þ

Dimensionless skin friction coefficients are

CfxðRexÞ1=2 ¼ ð1þ b1Þf 00ð0Þ; CfyðReyÞ1=2 ¼ ð1þ b1Þg00ð0Þ;
ð25Þ

where ðRexÞ1=2 ¼ x
ffiffiffiffiffiffiffi
c=m

p
and ðReyÞ1=2 ¼ y

ffiffiffiffiffiffiffi
c=m

p
denote

the local Reynolds number.

3 HAM solutions

The initial guesses and auxiliary operators are taken as

follows:

r0ðnÞ ¼ 1� e�n; s0ðnÞ ¼ 1� e�n; h0ðnÞ ¼ e�n;

/0ðnÞ ¼ 1� 1

2
e�K1n;

ð26Þ
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L1 ¼ r000 � r0; L2 ¼ s000 � s0; L3 ¼ h00 � h;

L4 ¼ /00 � /;
ð27Þ

with

L1ðc1 þ c2e
n þ c3e

�nÞ ¼ 0; L2ðc4 þ c5e
n þ c6e

�nÞ ¼ 0;

L3ðc7en þ c8e
�nÞ ¼ 0; L4ðc9en þ c10e

�nÞ ¼ 0;

ð28Þ

in which c1 � c10 are the constants.

Zeroth-order deformation equations are:

ð1� pÞL1 r̂ðn; pÞ � r0ðnÞ½ � ¼ p�hrN 1½r̂ðn; pÞ; ŝðn; pÞ�;
ð29Þ

ð1� pÞL2 ŝðn; pÞ � s0ðnÞ½ � ¼ p�hsN 2½r̂ðn; pÞ; ŝðn; pÞ�;
ð30Þ

ð1� pÞL3 ĥðn; pÞ � h0ðnÞ
h i

¼ p�hhN 3½ĥðn; pÞ; r̂ðn; pÞ; ŝðn; pÞ�;

ð31Þ

ð1� pÞL4 /̂ðn; pÞ � /0ðnÞ
h i

¼ p�h/N 4½/̂ðn; pÞ; r̂ðn; pÞ; ŝðn; pÞ�;

ð32Þ

where p 2 ½0; 1� is the embedding parameter, N 1; N 2; N 3

andN 4 are the nonlinear operators and �hr, �hs, �hh and �h/ are

the nonzero auxiliary parameters. The nonlinear operators

are

N 1 r̂ðn; pÞ; ŝðn; pÞ½ � ¼ o3r̂ðn; pÞ
on3

� or̂ðn; pÞ
on

� �2

þ ðr̂ðn; pÞ þ ŝðn; pÞÞ o
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on2

� A1
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� b1 r̂ðn; pÞ þ ŝðn; pÞð Þ2o
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on3

�
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on
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on2

:

� 2A1
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1
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ov
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� �2

Þ

� k1
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;

ð33Þ

N 2 r̂ðn; pÞ; ŝðn; pÞ½ � ¼ o3ŝðn; pÞ
on3

� oŝðn; pÞ
on

� �2
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þ ŝðn; pÞÞ o
2ŝðn; pÞ
on2

� A1

oŝðn; pÞ
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3ŝðn; pÞ
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�
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o2ŝðn; pÞ
on2

:

� 2A1

o2ŝðn; pÞ
on2

ðr̂ðn; pÞ þ ŝðn; pÞÞ

þ 2A2
1

oŝðn; pÞ
on

þ 2A1

oŝðn; pÞ
on

� �2

Þ

� k1
oŝðn; pÞ

on
;

ð34Þ

N 3 ĥðn; pÞ; r̂ðn; pÞ; ŝðn; pÞ
h i

¼ 1

Pr

o2ĥðn; pÞ
on2

þ ðr̂ðn; pÞ þ ŝðn; pÞÞ oĥðn; pÞ
on

� 1

2
gA1

oĥðn; pÞ
on

� c ðr̂ðn; pÞ þ ŝðn; pÞÞ2 o
2ĥðn; pÞ
on2

� A1nðr̂ðn; pÞ þ ŝðn; pÞÞ
 

o2ĥðn; pÞ
on2

þ 1

4
A2
1n

2 o
2ĥðn; pÞ
on2

þ ðr̂ðn; pÞ þ ŝðn; pÞÞ or̂ðn; pÞ
on

�

þ oŝðn; pÞ
on

�
oĥðn; pÞ

on
� 1

2
A1n

or̂ðn; pÞ
on

þ oŝðn; pÞ
on

� �
oĥðn; pÞ

on

� 3

2
A1ðr̂ðn; pÞ þ ŝðn; pÞÞ oĥðn; pÞ

on
þ 3

4
A2
1n

oĥðn; pÞ
on

!
;

ð35Þ

N 4½/̂ðn; pÞ; r̂ðn; pÞ; ŝðn; pÞ� ¼
1

Sc

o2/̂ðn; pÞ
on2

þ ðr̂ðn; pÞ þ ŝðn; pÞÞ o/̂ðn; pÞ
on

� 1

2
A1n

o/̂ðn; pÞ
on

� k/̂ðn; pÞ � k /̂ðn; pÞ
� 	3

þ2kð/̂ðn; pÞÞ2;

ð36Þ

with boundary conditions

r̂0ð0; pÞ ¼ 1; r̂ð0; pÞ ¼ 0; r̂0ð1; pÞ ¼ 0; ð37Þ

ŝ0ð0; pÞ ¼ b2; ŝð0; pÞ ¼ 0; ŝ0ð1; pÞ ¼ 0; ð38Þ

ĥð0; pÞ ¼ 1; ĥð1; pÞ ¼ 0; ð39Þ

/̂
0ð0; pÞ ¼ K1/̂ð0; pÞ; /̂ð1; pÞ ¼ 1: ð40Þ

The mth-order deformation equations are

L1 rmðnÞ � vmrm�1ðnÞ½ � ¼ �hrRr;mðnÞ; ð41Þ

L2 smðnÞ � vmsm�1ðnÞ½ � ¼ �hsRs;mðnÞ; ð42Þ
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L3 hmðnÞ � vmhm�1ðnÞ½ � ¼ �hhRh;mðnÞ; ð43Þ

L4 /mðnÞ � vm/m�1ðnÞ½ � ¼ �h/R/;mðnÞ; ð44Þ

with

vm ¼
0; m� 1

1; m[ 1



; ð45Þ

Rr;m nð Þ ¼ r000m�1 þ
Xm�1

k¼0

rm�1�kr
00
k þ sm�1�kr

00
k � r0m�1�kr

0
k

� �

� A1r
0
m�1 � b1

Pm�1

l¼0

r000m�1�l

Pl
j¼0

rl�jrj

  

þ
Pl
j¼0

sl�jsj þ 2
Pl
j¼0

rl�jsj

!

�
Pm�1

l¼0

r00m�1�l 2
Pl
j¼0

r0l�jrj þ 2
Pl
j¼0

r0l�jsj

 !
þ 2A2

1r
0
m�1

� 2A1

Xm�1

k¼0

½r00m�1�krk � r00m�1�ksk� þ 2A1

Xm�1

k¼0

r0m�1�kr
0
k

!

� k1r
0
m�1;

ð46Þ

Rs;m nð Þ ¼ s000m�1 þ
Xm�1

k¼0

rm�1�ks
00
k þ sm�1�ks

00
k � s0m�1�ks

0
k

� �

� A1s
0
m�1 � b1

Pm�1

l¼0

s000m�1�l

Pl
j¼0

rl�jrj

  

þ
Pl
j¼0

sl�jsj þ 2
Pl
j¼0

rl�jsj

!

�
Pm�1

l¼0

s00m�1�l 2
Pl
j¼0

rl�js
0
j þ 2

Pl
j¼0

sl�js
0
j

 !
þ 2A2

1s
0
m�1

� 2A1

Xm�1

k¼0

½s00m�1�krk � s00m�1�ksk� þ 2A1

Xm�1

k¼0

s0m�1�ks
0
k

!

� k1s
0
m�1;

ð47Þ

Rh;mðnÞ ¼
1

Pr
h00m�1 �

1

2
A1nh

0
m�1

þ
Pm�1

l¼0

h0m�1�lrl þ h0m�1�lsl
 �

� c h00m�1�l

Pl
j¼0

½rl�jrj þ sl�jsj þ 2rl�jsj�
"

þ h
0

m�1�l

Pl
j¼0

½rl�jr
0
j þ sl�js

0
jþ rl�js

0
j þ sl�jr

0
j�

�A1nh
00

m�1�lrl � A1nh
00

m�1�lsl �
1

2
A1nh

0
m�1�lrl

� 1

2
A1nh

0
m�1�lsl �

3

2
A1h

0
m�1�lrl �

3

2
A1h

0
m�1�lsl

�
;

ð48Þ

R/;mðnÞ ¼
1

Sc
/00
m�1 �

1

2
A1n/

0
m�1

þ
Pm�1

l¼0

/0
m�1�lrl þ /0

m�1�lsl � K/m�1�l

�
Pl
j¼0

/l�j/j þ 2k/m�1�l/l� � K/m�1

ð49Þ

and the boundary conditions

r0mð0Þ ¼ rmð0Þ ¼ r0mð1Þ ¼ s0mð0Þ ¼ smð0Þ ¼ s0mð1Þ ¼ 0

hmð0Þ ¼ hmð1Þ ¼ /0
mð0Þ � Ks/mð0Þ ¼ /mð1Þ ¼ 0:

ð50Þ

The general solutions ðrm; sm; hm; /mÞ comprising the

special solutions ðr�m; s�m; h�m; /
�
mÞ are given by

rmðnÞ ¼ r�mðnÞ þ c1 þ c2e
n þ c3e

�n;

smðnÞ ¼ s�mðnÞ þ c4 þ c5e
n þ c6e

�n;

hmðnÞ ¼ h�mðnÞ þ c7e
n þ c8e

�n;

/mðnÞ ¼ /�
mðnÞ þ c9e

n þ c10e
�n;

ð51Þ

where the constants ci (i ¼ 1; 2; . . .; 10) with the boundary

conditions (50) are

c2 ¼ c5 ¼ c7 ¼ c9 ¼ 0; c3 ¼
or�mðnÞ
on

jn¼0; c6 ¼
os�mðnÞ
on

jn¼0;

c1 ¼ �c3 � r�mð0Þ; c4 ¼ �c6 � s�mð0Þ; c8 ¼ �h�mð0Þ;

c10 ¼
1

1þ K1

o/�
mðnÞ
on

jn¼0 � K1/
�
mð0Þ

� �
:

ð52Þ
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4 Convergence analysis

Homotopy analysis method gives us great choice to obtain

the convergence of the series solutions. Region of con-

vergence is controlled by auxiliary parameters �hr; �hs; �hh
and �h/. The admissible ranges of these parameters are

� 0:9� �hr � � 0:5; � 1:0� �hs � � 0:4; � 1:4� �hh � �
0:6 and � 0:8� �h/ � � 0:4 (Figs. 2, 3, 4, 5).

Table 1 gives the convergence of series solutions of

velocities, temperature and concentration distributions.

5 Results and discussion

5.1 Dimensionless velocity profiles

Here we discuss the impact of different embedded

parameters on dimensionless velocity profiles r0 and s0.
Figure 6 depicts the variation of Deborah number b1 on

velocity profiles. As viscous forces are dominant for larger

Deborah number which resist the fluid motion, so fluid

flows along the x- and y-directions. Figure 7 shows the

impact of ratio of stretching rates b2 on velocity profiles.

Increasing values of b2 shows higher rate of stretching.

When we increase the ratio of stretching rates, the velocity

along x-direction decreases, while the velocity along y-

direction increases. Figure 8 presents the velocity profiles

for larger value of porosity parameter k1: Here velocity

profiles are decreasing functions of k1. As increasing

porosity parameter causes a decrease in permeability of

fluid which reduces the fluid flow. Impact of unsteady

parameter A1 on velocity field is shown in Fig. 9. When

unsteady parameter A1 increases, the stretching constant

decreases hence velocity decreases.
Fig. 3 �h-curve for s00ð0Þ

Fig. 4 �h-curve for h0ð0Þ

Fig. 5 �h-curve for /0ð0Þ

Table 1 Convergence of series solutions when A1 ¼ 0:1; c ¼ 1:0;
b1 ¼ 0:5; b2 ¼ 0:5; K ¼ 0:2; Pr ¼ 1:0; Sc ¼ 1:4; k1 ¼ 0:6 and

K1 ¼ 0:7

Order of approximation r00ð0Þ s00ð0Þ h0ð0Þ /0ð0Þ

1 � 1:429 � 0:6409 � 0:8806 0.3931

5 � 1:580 � 0:7045 � 0:7459 0.3761

7 � 1:582 � 0:7053 � 0:7394 0.3738

8 � 1:582 � 0:7054 � 0:7390 0.3732

13 � 1:582 � 0:7054 � 0:7408 0.3723

17 � 1:582 � 0:7054 � 0:7415 0.3721

19 � 1:582 � 0:7054 � 0:7416 0.3721

30 � 1:582 � 0:7054 � 0:7416 0.3721

37 � 1:582 � 0:7054 � 0:7416 0.3721

45 � 1:582 � 0:7054 � 0:7416 0.3721

Fig. 2 �h-curve for r00ð0Þ
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5.2 Dimensionless temperature profile

Now we discuss the behavior of involved parameters on

dimensionless temperature profile hðnÞ. Impact of thermal

relaxation time c on temperature field is illustrated in

Fig. 10. Temperature profile decreases for increasing

thermal relaxation time. Because particles show non-

conducting behavior when thermal relaxation time is

increased, i.e., particles need more time to transfer heat so

the temperature decreases. Figure 11 shows the variation of

Prandtl number Pr on temperature profile. As thermal

diffusivity decreases, when the Prandtl number is

enhanced; hence, the temperature profile decreases.

Fig. 8 Behavior of k1 on r0ðnÞ and s0ðnÞ

Fig. 9 Behavior of A1 on r0ðnÞ and s0ðnÞ

Fig. 10 Behavior of c on h nð Þ

Fig. 11 Behavior of Pr on hðnÞ

Fig. 7 Behavior of b2 on r0ðnÞ and s0ðnÞ

Fig. 6 Behavior of b1 on r0ðnÞ and s0ðnÞ
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5.3 Dimensionless concentration profile

Figures 12, 13, 14 and 15 show the behavior of Schmidt

number Sc, the measure of strength of the homogeneous

reactions K, the measure of strength of the heterogeneous

reaction K and the ratio of stretching rates b2 on concen-

tration profile /ðnÞ. Figure 12 depicts impact of Sc on

/ðnÞ. Larger values of Schmidt number correspond to an

increase in concentration profile. Ratio of momentum to

mass diffusion rate is known as Schmidt number. For

higher Schmidt number, the momentum diffusion rate

increases and consequently concentration field enhances.

Figure 13 shows there is decrease in concentration field

when homogeneous reaction parameter K increases. This is

because during homogeneous reaction the reactants are

consumed. Figure 14 depicts that concentration profile

enhances when we increase the heterogeneous reaction

parameter K1. Figure 15 illustrates the behavior of b2 on

/ðnÞ: Here larger b2 enhances the concentration field

increases. This is because of decreased stretching rate in x-

direction.

5.4 Surface concentration

Effects of homogeneous reaction parameter K and hetero-

geneous reaction parameter K1 on surface concentration

/ð0Þ are shown in the Figs. 16 and 17. From Fig. 16, we

observe that /ð0Þ decreases when we increase the strength

of homogeneous reaction K. Figure 17 shows that surface

concentration enhances for larger strength of

Fig. 14 Behavior of K1 on /ðnÞ

Fig. 15 Behavior of b2 on /ð0Þ

Fig. 16 Behavior of K on /ð0ÞFig. 13 Behavior of K on /ðnÞ

Fig. 12 Behavior of Sc on /ðnÞ
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heterogeneous reaction parameter K1: Figure 18 depicts

behavior of homogeneous reaction parameter K via Sch-

midt number Sc on surface concentration /ð0Þ: Here /ð0Þ
decreases when K is increased.

Table 2 shows the comparison of the present results

with the numerical solution of Mukhopadhyay [9] and

Hayat et al. [10] in limiting case. It is found that our

solution has good agreement with the limiting numerical

solution.

6 Main results

Cattaneo–Christov heat flux model is used to examine

time-dependent flow of Maxwell fluid with chemical

reaction. Main points are given below:

• Velocity profiles are decreasing functions of Deborah

number, porosity parameter and unsteady parameter.

• Temperature is decreasing function of thermal relax-

ation time and Prandtl number.

• Concentration profile increases for larger Schmidt

number and it decreases for when homogeneous

reaction parameter increases.

• Impact of strengths of homogeneous and heterogeneous

reactions is opposite on wall concentration.

• Present problem has many applications like food

processing, clay coatings, hydrometallurgical industry,

fog formation and dispersion.
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