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Abstract
The automated guided vehicles (AGVs) are extensively applied for material handling operations in the flexible manu-

facturing system (FMS) facilities. The scheduling decisions for the multi-load AGVs serving in the FMS with minimum

travel time, waiting time and time to serve jobs are highly significant from the sustainable profits point of view. The present

study proposes a combination of particle swarm optimization (PSO) for global search and memetic algorithm (MA) for

local search termed as the modified memetic particle swarm optimization algorithm (MMPSO) for scheduling of multi-load

AGVs in FMS. The newly proposed algorithm is applied for the generation of initial feasible solutions for scheduling of

multi-load AGVs with minimum travel and minimum waiting time in the FMS. From the computational experiments, it is

observed that the proposed MMPSO algorithm performs an effective and efficient exploration and exploitation process and

further yields promising results for the multi-load AGVs scheduling problem in the FMS facility.

Keywords Flexible manufacturing system � MMPSO algorithm � Multi-Load AGVs � Scheduling

1 Introduction

The flexible manufacturing systems (FMS) constitute

computer-controlled highly advanced, precise, flexible and

programmable production systems and accessories. The

throughput yield of FMS is significantly depended upon the

efficient operations of the FMS resources. The automatic

guided vehicle systems (AGVs) find their extensive

application for material handling operations in the FMS

facility. The function of AGVs is to load/unload and

transfer the jobs from one production center to another or

to the other locations within the FMS facility. The jobs

being transferred can be in raw material stage or in finished

stage. Optimum scheduling for AGVs in the FMS is highly

required for the high productivity in material handling

operations. Further, the throughput of manufacturing

systems can observe multifold increase from the simulta-

neous scheduling of flexible manufacturing systems and the

AGVs. For maximum throughput of FMS, jobs with more

than one production sequence call for optimum production

sequences, operation start and completion time, while an

AGV serving the FMS requires an optimum decision for

the scheduling (arrival and departure time) along with an

appropriate selection of the dispatching and the conflict-

free routing [1]. The FMS production systems with

dynamic production schedules call for the dynamic mate-

rial handling operations carried out by the AGVs. Esti-

mation of parts travel time and their conflict-free routing is

highly complicated with dynamic production and material

handling schedules. The optimized material transfer

schedules depend upon the appropriate selection and

application of dispatching rules and conflict-free routes

[2, 3].

In general, the FMS facility is comprised of different

types of the programmable work centers which are pro-

grammed to perform a different kind of manufacturing

operations on various types of parts. The various pro-

grammable work centers can be CNC milling, deburring,

washing assembly, painting, coating, packaging, AGVs,

etc. The pickup/delivery (P/D) station of work centers in

the FMS is in contact with each other through a network of
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guide paths. The function of AGVs is to carry and transfer

parts from anyone pickup/delivery (P/D) station of work

center to another pickup/delivery (P/D) station of a work

center while moving on the guide path, within the FMS

facility as portrayed in Fig. 1. The AGVs can be classified

as unidirectional, bidirectional, unit load and multi-load.

The unidirectional AGV can only move in forwarding

direction [4], and a bidirectional AGV can cruise forward

as well as backward on a guide path [5, 6]. The unit load

AGV is capable to transfer unit load only; on the other

hand, the multi-load AGV systems can carry and transport

more than unit load, which further improve the productivity

of material transfer operations significantly [7–9]. The

application of multi-load AGVs for material handling

operations in the FMS facility exhibits promising potential

to increase overall flexibility and FMS throughput.

The scheduling, conflict-free routing and dispatching of

AGVs for material transfer operations can be performed

independently or can be carried out simultaneously with

the production center scheduling of the FMS. The inte-

grated or simultaneous scheduling between the production

work centers and AGVs can yield high throughput for the

FMS. The simultaneous scheduling between AGVs and

work centers is very dynamic and typical, and at the same

time, the solutions yield of simultaneous scheduling found

to be more promising in comparison with the independent

scheduling. Certainly, the application of multi-load AGVs

in material handling operations can assure a multifold

increase in throughput of the FMS, but at the same time,

their scheduling becomes more typical and complex. In the

present study, an attempt is carried out for minimum

waiting and travel time scheduling between multi-load

AGVs and parts under production at the work centers of

FMS. Initially, an analytical model for the integrated

scheduling of the multi-load AGVs and parts under pro-

duction with minimum waiting time and travel time at the

work centers of FMS is presented. For the solution of the

formulated scheduling problem, a new modified memetic

particle swarm optimization algorithm (MMPSO) is pro-

posed for the yield of initial feasible solutions. The solution

yield of MMPSO algorithm was compared with the particle

swarm optimization (PSO) algorithm’s solutions yield.

From the comparison of both solutions yield, it was found

that the MMPSO algorithm’s performance is better than the

PSO algorithm for the random and deterministic schedul-

ing conditions.

The present study is divided into following sections.

Section 2 presents the related literature review on the

multi-load AGVs, in Sect. 3; the assumptions, objective

function and the analytical formulation of the problem are

mentioned. Section 4 presents the discussions on PSO, MA

and MMPSO algorithms. The computational experiment

result yield for the initial feasible solutions is discussed in

Sect. 5. The paper is concluded with possible future

directions of work in Sect. 6.

2 Literature review

The research work on the scheduling of manufacturing

systems and their operations can be found in the literature.

Initially, many researchers have considered scheduling of

unit load AGVs and scheduling of the work center as two

different issues. Later on, with the development in the

Work Centre Multi Load AGV Guide Path

Fig. 1 Multi-load AGVs and work centers configuration
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research and in light of an opportunity to harness more

productivity from the available resources in the FMS

facility, the researchers put an effort to address the inte-

grated scheduling problems between the unit load AGVs

and the work centers operating in the FMS facility. How-

ever, only a few research works found to be available in the

literature to address the simultaneous scheduling issues

between the multi-load AGVs and the work centers func-

tioning in the FMS facility.

The pickup and drop of jobs are carried out by the AGVs

according to its schedule. The AGVs perform the assigned

work under certain conditions or under some constraints

generally referred to priorities or deadlines, etc. An opti-

mum AGV schedule assures for optimum distance travel of

AGVs and minimum processing times for system resour-

ces. An optimum AGVs schedule also minimizes the

AGVs fleet size requirement with least effect on the FMS

throughput [2, 10, 11].

If appropriate routing and scheduling for AGVs are not

carried out, then following operating conditions may occur

frequently as reported by Qiu et al. [12].

1. Deadlock: If more than one AGV mutually waits for

job’s release on the same path, then there is a deadlock.

2. Collisions: If more than one AGV adopts same guide

path, then there is the probability of collision between

AGVs.

3. Congestion: If too many AGVs travels on same guide

path, then the situation of congestion arises which

generally leads to low throughput and deadlock.

4. Livelocks: If two AGVs while traveling on two

different guide paths meet at an intersection, then

there is a livelock. If the livelock is not resolved

timely, it may convert into deadlock or collision.

In general, the AGVs are considered to be reliable and

travel at a predefined average speed. Hence, there is very

less probability of breakdowns, livelocks, collisions and

deadlocks. The scheduling issues can be classified into two

types, namely static and dynamic. The load transfer

requests are predefined in the static scheduling. The AGV

routes are analyzed and developed before AGV moves onto

them; any variation in job’s arrival time, deviation in

driving time or any kind of breakdown of AGV leads to an

adverse effect on the planning and execution of the

schedule. The load transfer requests are random in case of

dynamic scheduling. The real-time manufacturing condi-

tions in FMS are stochastic and dynamic in nature. To

utilize all manufacturing resources at the optimum level,

the FMS operations should be dynamically scheduled and

analyzed. The job arrival/departure, job’s loading and

unloading time and AGVs travel time fluctuate during the

real-time manufacturing operations. In real time, the

manufacturing conditions are stochastic and highly

dynamic in nature; hence, the manufacturing conditions

call for the dynamic scheduling and dynamic update of the

schedule within the predefined time duration. The schedule

update is carried out according to the received information

for every new job pickup/drop and job assignment within

the FMS facility.

To yield maximum profit from the manufacturing

operations, the time required for completion of manufac-

turing operations and other allied activities should be

reduced to a minimum level. Appropriate time utilization

in manufacturing operations can only be assured with

appropriate scheduling of the FMS resources. The time

window constraint in online scheduling for the real-time

manufacturing conditions was applied by Yang et al. [13].

Authors found feasible scheduling solutions for the AGVs

and also observed that the generation of a new service

request also generates new assignment schedule for the

AGVs. Meersmans [14] found solutions for scheduling

problem for longer planning horizons and frequent

rescheduling processes; authors developed a dynamic

schedule for the material handling facility served by the

AGVs and also applied a beam search heuristic algorithm

for the dynamic scheduling of AGVs. The dynamic

schedule found to be dependent on the length of planning

horizon, and after completion of the planning horizon, the

rescheduling was performed. Fleischmann et al. [15] and

Powell et al. [16] also continued with the similar research

work on AGVs scheduling in the FMS facility. Jerald et al.

[17] performed simultaneous scheduling between AGVs

and work centers. Authors minimize the work center idle

time and penalty cost by application of the adaptive genetic

algorithm (AGA). Authors compared results yield of the

AGA and conventional genetic algorithm and found that

the AGA’s performance was better than the conventional

genetic algorithm.

A discrete event simulation to develop regression-based

meta-models in the FMS was carried out by Kumar and

Sridharan [18]. Authors applied seven scheduling rules on

the AGVs to schedule and simulate the FMS operations. In

the simulation experiment, authors gauged various perfor-

mance measures such as mean flow time, mean tardiness

and percentage tardy for the job transfer by the AGVs. In

the simulation experiment, the fewest number of operations

(FNOP) and the earliest modified due date (EMDD)

scheduling rules found to yield better performance out of

the all other applied scheduling rules. Authors also found

mean flow time as a critical parameter for the estimate of

lead time in job transfer by the AGVs. Sadrabadi and

Sadjadi [19] developed a new interactive algorithm for the

solution of multi-objective problems. The developed

algorithm maintains constant interaction with the decision

maker and starts solution from the infeasible region and

moves step by step toward the feasible region. The
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algorithm handled its nonlinear utility effectively and

found to be simple. Niu et al. [20] compared the perfor-

mance of the genetic algorithm and particle swarm opti-

mization algorithm combined with the genetic operators for

the job scheduling problem. Authors applied an approach

of ranking fuzzy numbers to find out a job sequence with

minimum makespan and also uncertainty in the makespan.

Petalas et al. [21] developed a new memetic particle swarm

optimization algorithm that incorporating local search

benefits for a standard particle swarm optimization algo-

rithm. Authors applied the proposed algorithm to different

constrained, unconstrained, mini-max programming prob-

lems and compared results of standard global and local

variant of PSO algorithm. Authors found developed new

memetic particle swarm optimization algorithm superior to

the other algorithms.

An integrated hybrid genetic algorithm for optimization

of various performance parameters for FMS was applied by

the Umar et al. [22]. The FMS parameters such as AGV

travel time, makespan, penalty cost due to job tardiness and

AGV delay due to conflict avoidance, etc. were optimized

by the authors. The authors applied combined scheduling

rules, dispatching rules and conflict-free routing of AGVs

and jobs within the FMS facility. In algorithm run, the

multi-objective fitness function was evaluated and weights

were assigned on the basis of its performance improve-

ment. Authors also applied fuzzy logic control to control

the overall performance of the algorithm. It was found that

the simultaneous scheduling of AGVs, jobs, dispatching

and routing in FMS can yield optimum solutions. Fazlol-

lahtabar et al. [23] considered the due date of AGVs

requiring for material handling among shops in a job shop

layout and solved a scheduling problem for multiple

automated guided vehicles (AGVs) in a manufacturing

system. Authors observed that AGVs earliness and tardi-

ness are highly significant in satisfying the expected cycle

time of AGV. The multi-load AGVs are capable to carry

and transfer more than one load on a defined guide path

from one station to another within the FMS facility. The

application of multi-load AGVs can reduce time spent in

overall material handling activities. Bilge and Tanchoco

[7] performed simulation experiments for the comparison

and evaluation of the performance of multi-load AGVs

with the unit load AGVs. A considerable rise in material

handling system’s throughput was observed by the authors

with the application of multi-load AGVs. The system’s

productivity is improved when more than one load is

picked up by multi-load AGV from one particular location

in the FMS facility [9]. The author also found that with the

application of multi-load AGVs in material handling

operations the scheduling of AGVs becomes highly com-

plex and typical to handle. Levitin and Abezgaouz [24]

developed multi-load AGV routes such that the AGV with

multiple loads visit each work center once and satisfy the

LIFO constraint. Authors also developed an algorithm to

search the shortest route to deliver the loads. Liu et al. [25]

investigated PSO and MA (PSOMA)-based algorithm for

the solutions of permutation flow shop scheduling problem

(PFSSP). The applied algorithm minimized the maximum

completion time for the NP-hard combinatorial problem.

The performance parameters of multi-load AGVs were

analyzed by the Ho et al. [26]. Authors carried out simu-

lation test to gauge throughput and tardiness of FMS when

served by the multi-load AGVs under load selection rules.

From the simulation test results, authors observed that the

load selection rules and pickup-dispatching rules affect

each other’s performance. It was also investigated that the

pickup-dispatching rule dispatching a multi-load AGV to

the work center with highest loads in the queue generates

the best tardiness and throughput values similarly; the load

selection rule with a common destination point for transfer

of load by the multi-load AGV yields the best throughput

and tardiness values. Rashidi [27], Rashidi and Tsang [28]

applied network simplex algorithm for scheduling of

vehicles in port automation at container terminals.

From the literature study, it is learned that a very less

research work has been carried out on multi-load AGVs

scheduling for minimum waiting time and travel time.

Considering aforementioned research gap, the present

study focuses on the yield of initial feasible solutions by

application of a novel modified memetic particle swarm

optimization algorithm (MMPSO) for the scheduling of

multi-load AGVs for minimum waiting time and travel

time in the FMS facility.

3 Problem definition

3.1 Assumptions

Following assumptions are considered in the present study.

1. The guide path between two work centers is not to be

compulsorily unique and due to any congestion on the

guide path, the route of the multi-load AGVs can be

changed by the centralized controller.

2. The location and number of work centers are fixed

until the completion of all jobs.

3. Initially, the multi-load AGVs are empty.

4. The work centers and multi-load AGVs are reliable.

5. The AGVs move at constant speed.

6. There is no job preemption.

7. The job production time also includes its loading and

unloading time.

8. The setup time for jobs on work centers is zero.
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9. In the network, different nodes can represent the same

physical location as the work center.

3.2 Problem statement

In the present study, the multi-load AGVs are to be

deployed in FMS so that all imposed constraints are ful-

filled. Further, an optimum material transfer schedule for

the multi-load AGVs with minimum waiting time and

minimum travel time can be realized. Initially, the multi-

load AGVs can be available at different locations within

the FMS facility. The positioning of AGVs can be at any

work center or at any location in the guide path.

Notations

Let,

n Number of jobs

N Node set

P Set of nodes for pickup and delivery points

other than the FMS facility

a Index for jobs

v Index for AGVs

k, k0 Index for the work center

Ta Appointment time for the ath job

Tvo Time at which the AGV, v leaves the work

center

Tvi Time at which the AGV v starts service at

node i

Tij Travel time from the physical location of

node i, Li, to the physical location of node j,

Lj (for each pair of i and j in the N)

Qv Capacity of AGV v

s Jobs at the buffer area

pak Processing time of job a being processed at

work center k

du Due date of job a being processed at work

center k

cak Completion time for job a being processed

at work center k

Xijv Movement of AGV, v from node i to node j

Yvi Load at AGV v when it leaves node i

a; b; c Weights applied to the objective function

due to loss of time

Node i and

node n ? i

the pickup and delivery location of ith job in

the network, respectively

With addition of node 0 and node 2n ? 1, as the AGV

initial start point and end point, within the network, the

node set will become as,

N = {0, 1, 2…, n, n ? 1, n ? 2 …, 2n, 2n ? 1}.

The pickup and delivery points are, respectively,

included into two sets as

P? = {1, 2 …, n}

P- = {n ? 1, n ? 2 …, 2n}

P = P? [ P-

The following parameters are known:

a = 1, 2,…, m

v = 1, 2,…, n

k = 1, 2,…, o, k
0
= 2,3,…, o

V = {1, 2 …, |V |}

If, Xijv = 1; AGV v moves from node i to node j, else

X ijv = 0. So, its domain is {0, 1}.

Initially, the Yvo = 0 and Tvo = 0

3.3 Objective function and constraints

The objective function and constraints of the problem

are formulated analytically in Eq. 1 to Eq. 12. The

multi-load AGVs loading conditions are presented in

Eqs. (3, 4 and 5). The load on a multi-load AGV will

be increased or decreased by 1 after visiting any pickup

or drop-off point. The formulated scheduling problem

for multi-load AGVs is an NP-hard problem and sub-

jects to constraints satisfaction and optimization for

minimum waiting time and travel time model. The

multi-load AGVs and the work centers configuration is

portrayed in Fig. 1.

If ðXojv ¼ 1Þ ) Yvj ¼ 1; v 2 V ; j 2 Pþ ð1Þ

If ðXijv ¼ 1Þ

)
Yvj ¼ Yvi þ 1; v 2 V ; j 2 Pþ; i 2 P; i 6¼ j

Yvj ¼ Yvi � 1; v 2 V ; j 2 P�; i 2 P; i 6¼ j

( )

ð2Þ

If ðXojv ¼ 1Þ ) Tvj ¼ Tvo þ TLo;Lj; j 2 Pþ; v 2 V ð3Þ

If ðXijv ¼ 1Þ ) Tvj ¼ Tvi þ TLi;Lj; i; j 2 P; v 2 V ð4Þ

If ðXið2nþ1Þv ¼ 1Þ ) Tvð2nþ1Þ ¼ Tvi þ TLi;Lð2nþ1Þ; i 2 P�;

v 2 V

ð5ÞX
v2V

X
j2N

Xijv ¼ 1; i 2Pþ ð6Þ

X
j2N

Xijv �
X
j2N

Xjiv ¼ 1; i 2 P; v 2 V ð7Þ

X
j2N

Xijv �
X
j2N

Xjðnþ iÞv ¼ 1; i 2 Pþ; v 2 V ð8Þ

X
j2Pþ

Xojv ¼ 1; v 2 V ð9Þ

X
j2P�

Xið2nþ1Þ ¼ 1; v 2 V ð10Þ

Yvi � Qv; v 2 V ; i 2 P ð11Þ
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Objective function

Minimum time ¼
X
v2V

a
X
i2P

X
j2P;j 6¼1

Xijv:Tij

(

þ
X

jobs at the buffer area

b
X
i2P

Ti � Tvij jþþd
X
i2P

Tvi � Tij jþ
 !)

ð12Þ

a ¼
X
k¼1

X
a¼1

pak � duakj j2 ð13Þ

b ¼
X
k¼1

X
a¼1

pak � cakj j2 ð14Þ

d ¼
X
k¼1

X
a¼1

pak � qakj j2 ð15Þ

Initially, the multi-load AGVs starts traveling from the

work center and it follows a pickup point while moving

on a guide path. The AGV is allowed to move to any

drop-off point or pickup point after picking upload from

its first pickup point. Before delivering the job to the last

work center, the multi-load AGV will deliver the job to

the second last work centers. The starting service time of

each node can be estimated by considering service time at

current node and the traveling time between the current

node and the present node. The constraints set are applied

to the delivery and the pickup points. The applied con-

straint set ensures that a multi-load AGV will visit every

pickup point once, and if an AGV gets an entry into a

node, then the AGV will exit that node, and if a multi-

load AGV visits any pickup node, then it will go to the

associated delivery node also. Each multi-load AGV will

make the first visit to the pickup node and last visit to the

delivery node. The load carried by the AGV will not

exceed its capacity. The total travel time of multi-load

AGVs also includes waiting time of AGV and lateness

time to serve the jobs. If the lateness time value and

waiting time value are positive, then there will be the

impact on the objective function.

4 Algorithms overview

4.1 Particle swarm optimization algorithm

The PSO algorithm works on the social interaction between

particles in a multi-dimensional complex search space. The

PSO algorithm interacts with individual particle within a

population of particles to find an optimum area in the

multi-dimensional complex search space. The particles are

considered as moving points in the multi-dimensional

complex search space. Initially, each particle has some

initial velocity and position. The advance of each particle

depends on the particle’s velocity, also referred as the

global best position of the particle in the problem space

[18].

The initialization of particle’s population is carried out

with random velocities vi(t) and positions p(t) of the par-

ticle, after initialization the fitness function is evaluated.

The velocity and position of each particle are updated with

every iteration in the algorithm. During an iteration of the

algorithm, the fitness function is compared with the new

velocity and the position. The iteration of the algorithm is

carried out using Eq. (16). The algorithm evaluates parti-

cle’s new position pi(t), in comparison with the old solu-

tions to find the best position of the particle. After

comparison and evaluation, the algorithm stores the parti-

cle best position as pi
best. Similarly, the particle’s best

position in the whole population is also stored as the global

best position (pgbest). The particles under consideration

during an iteration of algorithm change and update their

velocities on the basis of their cognitive and social learn-

ing. The process of particle’s velocity update at time

interval t is shown in Eq. (16). The particle’s new position

update is carried out from Eq. (17).

viðt þ 1Þ ¼ viðtÞ þ ðc1� randð Þ � ðpibest � piðtÞÞÞ þ ðc2
� randð Þ � ðpgbest � piðtÞÞÞ

ð16Þ
piðt þ 1Þ ¼ piðtÞ þ viðtÞ ð17Þ

where vi (t ? 1) = new velocity for the ith particle. c1 and

c2 = weighting coefficients for the personal best and global

best positions, respectively. pi(t) = ith particle’s position at

time t.

pi
best = ith particle’s best-known position. pgbest = best

position known to the swarm. rand () = function generating

a uniform random variable [ [0, 1].

The velocity component from the previous iteration is

shown by the first part of Eq. (16). The cognitive part of

learning which interacts with the particle’s current and its

best position is represented by the second part of Eq. (16).

The interaction process of particles is also referred to as

social learning. The pseudocode for particle swarm opti-

mization algorithm is portrayed in Fig. 2.

4.2 Memetic algorithm

The memetic algorithms are formed from the interplay of

genetic evolution and evolution. In the algorithm, the

generalization of genes into the discrete system is carried

out which are further exposed to some evolutionary forces

for variation and selection. The meme represents a unit of

discrete system’s cultural information and indicates inter-

play of cultural and evolution.
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In the memetic algorithm, exploitation of the population

is carried out by the global search technique to find out

good population area in the search space. Then, the method

is applied with a combination of the local search heuristic

to find individual solutions and to search out the local

optimum solutions. The local search in the memetic algo-

rithm performs the probabilistic bit flipping (point muta-

tions) and selects solution with same or improved fitness.

The algorithm presents dual performance capabilities of

cultural evolution and genetic evolution in which selection,

inheritance, transmission, and variation of memes and

genes are carried out. The pseudocode of memetic algo-

rithm is presented in Fig. 3.

Three subsequences of jobs for each multi-load AGV

may be applied as follows:

(a) The job relocation for each multi-load AGV—

change and update of job served by multi-load

AGV from a guide path into another guide path.

(b) The job exchange for each multi-load AGV—

address multi-load AGVs path issue by exchange

of jobs between the two guide paths.

(c) The job mix subsequence for each multi-load

AGV—combination of job relocation and job

exchange is applied and parallel search of the

alternatives for a yield of minimum waiting and

travel time.

The present study considers the job mix subsequence

with a combination of job relocation and job exchange for

each multi-load AGV, which found to yield better

solutions.

4.3 Modified memetic particle swarm
optimization algorithm (MMPSO) for multi-
load AGVs

An algorithm’s performance significantly depends upon its

capability of exploration of solutions (global search) and

exploitation of solutions (local search). The appropriate

balance between exploration and exploitation is highly

imperative to achieve best out of from the algorithm’s

performance. The PSO algorithm has two variants, namely

global and local. The global variant gives more consider-

ation toward the exploitation process in comparison with

exploration process. In the local variant of PSO algorithm,

the best position of the particle in the neighborhood is

informed to the swarm particles by their neighbors only.

This further makes the process of attraction to the specific

best positions weaker and difficult to find the local opti-

mum solutions. Hence, the local variant of PSO algorithm

gives less consideration to exploitation process in com-

parison with the exploration process. However, the pro-

posed new algorithm is formed from PSO algorithm and

local search procedure of MA. The newly proposed algo-

rithm is termed as modified memetic particle swarm opti-

mization (MMPSO). The application of the MMPSO

significantly improves the local and global search capa-

bility of the algorithm by combining the solutions (parti-

cle’s position). The randomly p % of the population from

the solution is selected for the recombination. After

recombination process of solutions, the fitness value of

solutions is evaluated in comparison with the original or

previous solution and the better solutions are kept and

updated. The sufficient global and local search from

MMPSO algorithm assures an appropriate balance between

exploitation and exploration of algorithm process and

yields good initial feasible solutions for minimum travel

and waiting time also portrayed in Figs. 4 and 5 of flow-

chart 2 and flowchart 3, respectively. The combination of

particle swarm optimization (PSO) and memetic algorithm

(MA) as modified memetic particle swarm optimization

algorithm is presented in Fig. 6, and the pseudocode of

MMPSO is shown in Fig. 7.

For a yield of initial feasible solutions from MMPSO

and PSO, following three methods may be applied:

(a) Initial feasible solution (deterministic) by PSO: The

number of jobs divided by the total number of AGVs

is equal to the travel distance of each AGV.

(b) Initial feasible solution (random) by PSO: The

feasibility constraints are satisfied by selection of

random jobs some random jobs and the process starts

with the different neighborhoods.

(c) Optimum solutions by the MMPSO: The initial

optimum solutions are generated from the

Fig. 2 Pseudocode for particle swarm optimization algorithm
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Fig. 3 Pseudocode for memetic

algorithm

Yes

No

No

Yes

No

Yes

Y       

Start

Job assignment to multi load AGV; AGVs status update (guide path, start 
time, next pick up or delivery point and waiting time)

Job’s schedule is 
complete?

Status update for each Multi-load AGV on the basis of its loading 
capacity (ready time, next delivery or pickup point); Status updates for 
Work Centre (WC) (busy or idle).

Confirm for the delivery and pickup of the jobs and delete them (depend ing 
on picking them up from or delivering them to the WC); assign new jobs to 
AGVs without any load (status update in every 5 minutes); Check for the 
Minimum Cost.

Initiate MMPSO algorithm to 
optimize for Minimum time (figure3)

End

Any deviation in
the problem?

Any AGV left 
without job?

Find new jobs for the AGVs without any job and 
addition of them into the remaining jobs.

Initiate PSO algorithm for the initial 
solutions for the minimum time.

Fig. 4 Flowchart for the process
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application of PSO algorithm under single load

condition of multi-load AGVs after a yield of initial

feasible solution the MMPSO algorithm is applied

again to yield a better solution for the single or dual

load condition of multi-load AGVs.

The combined PSO and MA also referred to MMPSO

algorithm are applied as portrayed in flowcharts of Figs. 4

and 5.

Yes No

No

Yes

Start

Evaluate Objective Function

Generated new solutions 
are better or not?

Initialize the particles

Updating the Global and Local Best search solutions

Initiate the Memetic Algorithm

Recombining the p% of population

Yield and update the new global and local best search initial solutions

Use previous original solutionUpdate and use new solution

Store the local and global best search solution. Update the schedule.

Termination criteria yield? 

End

Fig. 5 Flowchart of MMPSO algorithm
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5 Experimental results

The proposed analytical model and algorithm were tested

by computational experiment on a hypothetically flexible

manufacturing design facility, employed with multi-load

AGVs for its material handling operations. The program

developed and run in C?? to perform the computational

experiment. The simulation experiments were executed on

a computer with an Intel(R) Core(TM) i5 processor. The

following parameters were set during the simulation run of

program, c1 = c2 = 2.07, the initial temperature, Fo = 3.00,

the cooling rate, k = 0.90. The resulting yield for a man-

ufacturing facility of 35 work centers and 20 multi-load

AGVs is mentioned herein. The combination of MA and

PSO algorithms also referred as MMPSO algorithm applied

for the yield of initial feasible solutions for the aforesaid

problem. The algorithm was run for 330 jobs, and 5597

iterations were carried out, also mentioned in Table 1. The

resulting yield of the objective function by PSO algorithm

and their comparison from MMPSO algorithm (column A)

as initial feasible solution representing the travel time,

waiting times of multi-load AGVs and the lateness time to

serve the jobs in the manufacturing facility are also men-

tioned in Table 1 and presented in Fig. 8. Table 1 also

presents the percentage increase of initial feasible solution

from PSO and MMPSO and their comparison.

The results yield of the initial feasible solution by PSO

and MMPSO algorithms is statistically analyzed by appli-

cation of student’s t test considering 5% of rejection of the

true hypothesis with two equal means. The statistical

analysis results are presented in Tables 2 and 3, respec-

tively. The values of Pearson correlation, t-critical two-tail

(distribution) and t test (paired two samples for means) for

34 dof are mentioned in Table 3. From the student’s t test,

it is observed that the means are significantly different at a

95% degree of confidence level.

From the results yield, it is evident that there is an

approximate 48–7% deterioration in objective function

yield from the PSO algorithm (deterministic initial feasible

solution and random initial feasible solution), respectively,

in comparison with solution yield from the MMPSO

algorithm (initial feasible solution) also presented in col-

umns 6 and 8 of Table 1 in the form of percentage increase

and comparison with column (A).

The results also reveal that the PSO algorithm directly

reaches the global optimum solution for the problem, and

then, the application of the MMPSO algorithm continues to

find and yield a more local optimum solution for the

problem under consideration. Hence, the application of

MMPSO algorithm yields significantly good initial feasible

solutions for the problem.

6 Conclusion and scope for future research
work

The present study proposes a combination of two evolu-

tionary algorithms, namely memetic algorithm (MA) and

particle swarm optimization algorithm (PSO) as modified

memetic particle swarm optimization algorithm (MMPSO)

for searching optimum initial solutions (waiting times,

traveling times of multi-load AGVs and lateness time) to

serve the jobs by the multi-load AGVs in the flexible

manufacturing facility. The resulting yield of MMPSO

algorithm found to be promising in comparison with

The Particle Swarm Optimization 

(Yield global optimum solution for min cost)

The Memetic Algorithm

(Yield local optimum solution for minimum 
cost)

Combined PSO and MA (MMPSO) (Yields 
initial feasible solutions for Multi load AGVs to 
serve jobs for minimum travel time and waiting 
time)

Fig. 6 Combined PSO and MA as MMPSO

Fig. 7 Pseudocode of MMPSO algorithm
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resulting yield of PSO algorithm. The application of

MMPSO algorithm yields promising initial feasible solu-

tions for the multi-load AGVs with minimum travel and

waiting time for the real-time material handling operations

in the FMS, the yield of results also assures a new horizon

for future research toward scheduling approach of multi-

load AGVs for minimum travel time, waiting time and

minimum cost by application of the integrated evolutionary

algorithms.

The proposed system is explained in detail and validated

with a test problem of FMS facility constituting 35 work

centers and 20 multi-load AGVs. It is observed that a

multifold increase in FMS throughput can be achieved by

using the MMPSO algorithm for scheduling of multi-load

Table 1 Comparison of initial feasible solutions by PSO and MMPSO

S no. Jobs Iterations by

MMPSO

Colum (A)—initial

feasible solution MMPSO

Objective function value by PSO for multi-load AGVs and their differences

Initial feasible solution (deterministic) Initial feasible solution (random)

Objective

function

Percentage increase,

comparison with column

(A)

Objective

function

Percentage increase,

comparison with column

(A)

1 10 97 2353 4262 44.79 4586 48.69

2 15 118 5122 8575 40.27 8985 42.99

3 20 155 7254 10,589 31.49 10,456 30.62

4 25 165 10,002 14,594 31.46 15,487 35.42

5 30 223 14,256 18,852 24.38 19,745 27.80

6 35 285 20,143 26,514 24.03 28,456 29.21

7 40 328 28,970 35,632 18.70 37,786 23.33

8 45 333 35,668 40,316 11.53 42,879 16.82

9 50 545 42,589 47,651 10.62 49,214 13.46

10 55 456 48,767 54,321 10.22 56,214 13.25

11 60 520 55,164 61,232 9.91 62,248 11.38

12 65 620 64,298 70,512 8.81 71,579 10.17

13 70 671 72,467 78,623 7.83 80,253 9.70

14 75 616 84,636 90,518 6.50 93,128 9.12

15 80 856 92,199 98,133 6.05 101,253 8.94

16 85 825 99,868 105,321 5.18 108,471 7.93

17 90 1019 107,271 113,214 5.25 116,276 7.74

18 95 1136 115,795 123,516 6.25 127,547 9.21

19 100 1325 121,488 133,642 9.09 137,429 11.60

20 110 1533 136,464 151,896 10.16 156,254 12.67

21 120 1657 153,276 171,965 10.87 178,695 14.22

22 130 1945 176,864 200,156 11.64 210,549 16.00

23 140 2154 195,282 222,129 12.09 240,869 18.93

24 150 2426 235,539 279,432 15.71 299,519 21.36

25 160 2675 293,265 350,521 16.33 387,128 24.25

26 170 2814 320,296 390,264 17.93 441,578 27.47

27 180 3068 361,436 445,128 18.80 508,984 28.99

28 190 3354 400,124 499,368 19.87 568,455 29.61

29 200 3612 437,286 551,632 20.73 625,328 30.07

30 220 3956 472,394 599,876 21.25 675,967 30.12

31 240 4315 510,216 655,132 22.12 739,345 30.99

32 260 4738 556,214 699,213 20.45 808,124 31.17

33 280 5019 597,351 738,549 19.12 889,367 32.83

34 300 5311 641,219 792,369 19.08 959,627 33.18

35 330 5597 692,431 854,412 18.96 1,048,469 33.96
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AGVs when applied into service for the real-time material

handling activities in the FMS.

The future research work can be extended to carry out

multi-objective scheduling for multi-load AGVs in the

FMS facility by using clonal selection algorithm, NSGA II,

SAM or other hybrid algorithms considering other critical

operating factors of FMS and AGVs such as dispatching or

scheduling rules, etc.
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