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Abstract
Two-dimensional flow of Maxwell magneto-nanoliquid by stretching surface is investigated. Convective boundary con-

ditions and passive control of nanoparticles volume fraction are used for the analysis of thermal and concentration

boundary layers. Flow analysis is created by considering Buongiorno model. Influences of activation energy and chemical

reaction are useful application in lubrication practice, oil and water emulsions; therefore, we retained these effects. The

differential framework is illustrated numerically via spectral relaxation method. Part of critical parameters on flow fields

and additionally on the skin fiction factor and energy and mass transportation rates are resolved and discussed.

Keywords Activation energy � Chemical reaction �Maxwell nanoliquid � Convective condition � Spectral relaxation method

1 Introduction

Analysis of non-Newtonian liquids is important due to its

involvement in current applications. Such examples

include blood at low sheer rate, emulsion, mud, chyme,

organic product purée, chemicals, sugar game plan and

shampoos. No single equation can predict the diverse

characteristics of non-Newtonian materials. Thus, different

logical models have been proposed by the researchers.

Maxwell is one subclass of rate-type fluids. This fluid

model predicts time relaxation impacts. Such effects can-

not be expected by differential fluids. Maxwell liquid

model is particularly helpful for polymers of low molecular

weight. Fetecau and Fetecau [1] obtained analytical

solution of flow of Maxwell liquid bounded by an infinite

plate. Some current investigations predicting flow of

Maxwell liquid have been elucidated in Refs. [2–9].

Nanoliquids can massively help the heat exchange

qualities of working liquids. The heat transport wonder is a

crucial procedure in designing and in this manner

improvement in heat exchange angles prompts to propel

the productivity of bunches of procedures. In like manner,

the nanoliquids have a few applications for example as

coolants, heat exchangers, sun-based water warming,

cooling of electronic types of gear, chillers, icebox coolers,

space vehicles, atomic reactors, smaller scale channel heat

sinks and ointments. Nanofluid term was right off the bat

presented by Choi [10]. From there on, test and hypothet-

ical examinations on nanofluid’s heat exchange perspec-

tives are finished by Buongiorno [11]. Afterward, much

information has been presented on this topic can be found

in Refs. [12–25]. The magneto-nanoliquids are the liquids

that have both magnetic and fluid qualities. These materials

have pivotal part in optical switches, modulators, optical

gratings and especially in optical fiber channels. The

attractive nanoparticles are very noticeable in pharmaceu-

tical, disease treatment, tumor investigation, sink drift

partition and many more. The current takes a shot at

magneto-nanofluids are exhibited in Refs. [26–30].

Activation energy can be portrayed as the tiniest

required imperativeness that reactants must get before a

substance reaction can happen. Mass transport process by
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substance reaction with approving essentialness routinely

met in applications including mechanics of water and oil

emulsions, geothermal supplies, compound portraying and

sustenance getting ready. Makinde et al. [31] addressed the

heat transport behavior in porous flat plate by considering

the effect of radiation and activation energy. Maleque [32]

examined the exothermic and endothermic chemical reac-

tions in MHD viscous liquid by considering Arrhenius

activation energy. Awad et al. [33] elaborated binary

chemical reaction and activation energy in an unsteady

rotating fluid. Casson liquid flow past a stretching and

shrinking surface with binary chemical reaction was

numerically analyzed by Abbas et al. [34]. Shafique et al.

[35] studied the flow of Maxwell liquid in rotating frame

with activation energy and chemical reaction. Mustafa

et al. [36] present the magneto-nanoliquid over a vertical

sheet by accounting the activation energy and chemical

reaction.

Convective point of confinement condition is mostly

used to describe a direct convective heat exchange condi-

tion for no less than one scientific component in heat. Heat

transport examination with convective point of confine-

ment conditions is evoked in methodology, for instance,

heat essentialness storing, gas turbines and nuclear plants.

In context of the above examination, Aziz [37] studied the

heat transport phenomenon in boundary layer flow by

taking convective-type boundary condition. His study

reveals that similarity solutions are possible only when

convective heat transport associated with the hot liquid on

the lower sheet surface is proportional to x�1=2. Numerous

scientists [38–42] have examined the flow and heat transfer

of viscous/non-Newtonian fluids via convective-type

boundary condition.

In the above literatures and applications, we noted

that activation energy can be realized as energy barrier

that separates two minima of potential energy which has

to be overcome by reactants to initiate a chemical

reaction. So that we are going to analyze the chemical

reaction and activation energy effects in Maxwell nano-

liquid flow. The aspects of Brownian movement and

thermophoretic are retained due to consideration of

nanofluid model. The problem is dealt with convective

boundary condition and passively controlled mass flux.

The transformed non-dimensional equations are solved

numerically using spectral relaxation scheme because it

gives a better accuracy on coarser grids which signifi-

cantly improves the speed of the convergence. Validation

of computations has been visualized through comparative

benchmark.

2 Statement of problem

Model of the problem is presented in Fig. 1. Here steady

two-dimensional Maxwell liquid flow by stretching surface

is considered. Here the flow occupies to y[ 0, sheet

velocity UwðxÞ ¼ bx; b[ 0 and x-axis taken along the

sheet. Uniform magnetic field B0 is applied normal to the

sheet. Influences of activation energy and chemical reac-

tion are accounted in mass transfer. Convective surface

temperature is denoted by Tf , and heat transport coefficient

is hf . Nanoparticles normal flux at the surface is passively

controlled. Under the above assumptions, the rheological

model of continuity, momentum, energy and mass equa-

tions are

r � V ¼ 0; ð1Þ
qfðV � rÞV ¼ �rpþr � S; ð2Þ

qpcpðV � rTÞ ¼ kr2T þ qfcf DBrC � rT þ DT

T1
ðrTÞ2

� �
;

ð3Þ

ðV � rCÞ ¼ DBr2C þ DT

T1
r2T � k2r ðC

� C1Þ T

T1

� �n

exp
�Ea

jT

� �
: ð4Þ

From Eq. (2), last term S represents the extra stress tensor

and for Maxwell fluid, it satisfies Sþ k1 DS
Dt

¼ lA�. Here

A� ¼ rV þ ðrVÞt for first Rivlin–Ericksen tensor, k1 for

time relaxation of liquid. Also third term on RHS of Eq. (4)

represents modified Arrhenius formula in which k2r for rate

of reaction [35], Ea for activation energy, j for Boltzmann

constant and n dimensionless fitted rate constant which lies

in the range �1\n\1.

After the boundary layer approximations, one has

[26, 29]:

Fig. 1 Flow model and coordinate system
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Imposed boundary conditions are [40]:

u ¼ UwðxÞ; v ¼ 0; �k
oT

oy
¼ hfðTf � TÞ;

DB

oC

oy
þ DT

T1

oT

oy
¼ 0 ðpassive control of /Þ at y ¼ 0

u ! 0; T ! T1; C ! C1 as y ! 1
ð9Þ

Defined variables [15, 17]:

1 ¼ Uw

mx

� �1=2

y; f ð1Þ ¼ w

ðxmUwÞ1=2
; hð1Þ ¼ T � T1

Tf � T1
;

/ð1Þ ¼ C � C1
C1

ðpassive control of /Þ

ð10Þ

and making use of (10), Eqs. (5–8) are reduced to fol-

lowing non-dimensional equations

d3f

d13
þ f

d2f

d12
� df

d1

� �2

�M2 df

d1
þMKf

d2f

d12

þK f 2
d3f

d13
� 2f

df

d1
d2f

d12

� �
¼ 0;

ð11Þ

1

Pr

d2h
d12

þ f
dh
d1

þ Nb
dh
d1

d/
d1

þ Nt
dh
d1

� �2

¼ 0; ð12Þ

d2/
d12

þ Scf
d/
d1

þ Nt

Nb

d2h
d12

� Scrð1þ dhÞn/ exp
�E

1þ dh

� �

¼ 0:

ð13Þ

Corresponding boundary conditions become

f ð1Þ ¼0;
df

d1
¼ 1;

dh
d1

¼ �Bið1� hð1ÞÞ;

Nb
d/
d1

þ Nt
dh
d1

¼ 0 at 1 ¼ 0

df

d1
! 0; hð1Þ ! 0; /ð1Þ ! 0 as 1 ! 1

ð14Þ

Here key parameters of the extended study are M—

Hartmann number, K—elastic parameter, Pr—Prandtl

number, Nb—Brownian movement, Nt—thermophoretic,

Sc—Schmidt number, Bi—Biot number, r—reaction rate,

E—activation energy and d—temperature difference.

These can be expressed as

M ¼ rB2
0

qb
; K ¼ bk0; Pr ¼ m

a
; Nb ¼ sDBC1

m
;

Nt ¼ sDTðTw � T1Þ
mT1

;

Sc ¼ m
DB

; r ¼ k2r
b
; E ¼ Ea

jT1
; d ¼ Tw � T1

T1
;

Bi ¼ m
b

� �1=2hf

k
:

The skin friction factor and wall temperature and con-

centration gradients are defined as

Cf ¼
sw

qfU2
wðxÞ

; Nu ¼ xqw

aðTw � T1Þ ;

Sh ¼ xqm

DBðCw � C1Þ ;
ð15Þ

where sw is wall shear stress, qw the heat flux and qm the

mass flux, i.e.,

sw ¼ lð1þ KÞ ou

oy

� �
y¼0

; qw ¼ �k
oT

oy

� �
y¼0

;

qw ¼ �DB

oC

oy

� �
y¼0

:

ð16Þ

Use of Eq. (10) in (16) yields [45]:

Re1=2x Cf ¼ ð1þ KÞf 00ð0Þ; Re�1=2
x Nu ¼ �h0ð0Þ;

Re�1=2
x Sh ¼ Nt

Nb
h0ð0Þ:

ð17Þ

3 Method of solution

The nonlinear Eqs. (11–14) are coupled, and ordinary

differential equations and hence numerical solutions via

spectral relaxation method are computed. To apply this

method, first we set df

d1
¼ f 0 ¼ g and the governing

Eqs. (11–14) are reduced to
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f 0 ¼ g; ð18Þ

g00 þ fg0 � g2 �M2gþMKfg0 þ Kðf 2g00 � 2gg0Þ ¼ 0;

ð19Þ

h00

Pr
þ fh0 þ Nbh0/0 þ Nth02 ¼ 0; ð20Þ

/00 þ Scf/0 þ Nb

Nt
h00 � Scrð1þ dhÞn exp �E

1þ dh

� �
/ ¼ 0;

ð21Þ

also the boundary conditions become

f ð0Þ ¼ 0; gð0Þ ¼ 1; h0ð0Þ ¼ �Bið1� hð0ÞÞ;
Nb/0ð0Þ þ Nth0ð0Þ ¼ 0;

gð1Þ ! 0; hð1Þ ! 0; /ð1Þ ! 0:

: ð22Þ

The spectral relaxation iteration procedure for the pre-

sent problem can be written as

f 0rþ1 ¼ gr; ð23Þ

ð1þ Kf 2r Þg00rþ1 þ ð1þMKÞfrg0rþ1 � 2Kgrþ1g
0
r �M2grþ1

¼ g2r ;

ð24Þ

h00rþ1

Pr
þ frþ1h

0
rþ1 ¼ �Nth02r ; ð25Þ

/00
rþ1 þ Scfrþ1/

0
rþ1 � Scrð1þ dhrþ1Þ exp

�E

1þ dhrþ1

� �
/rþ1

¼ �Nb

Nt
h00rþ1;

ð26Þ

frþ1ð0Þ ¼ 0; grþ1ð0Þ ¼ 1; h0rþ1ð0Þ
¼ �Bið1� hrþ1ð0ÞÞ; Nb/0

rþ1ð0Þ þ Nh0rþ1ð0Þ ¼ 0;

grþ1ð1Þ ! 0; hrþ1ð1Þ ! 0; /rþ1ð1Þ ! 0:

ð27Þ

Since 1 varies from 10 to 11, let n ¼ 21
11

� 1 be the

domain mapped into the interval [1, - 1] and grid points

are defined as ni ¼ cos pj
N

� 	
, where N represents the number

of grid points and j ¼ 1; 2; 3; . . .;N. Now applying the

Chebyshev pseudo-spectral method to the above equations,

the following iterative equations are obtained.

P1frþ1 ¼ E1; frþ1ðnNÞ ¼ 0; ð28Þ

P2grþ1 ¼ E2; grþ1ðnNÞ ¼ 1þ dg0rþ1ðnNÞ; grþ1ðn0Þ ¼ 0;

ð29Þ

P3hrþ1 ¼ E3; h
0
rþ1ðnNÞ ¼ �Bið1� hrþ1ðnNÞÞ; hrþ1ðn0Þ

¼ 0;

ð30Þ

P4/rþ1 ¼ E4;Nb/
0
rþ1ðnNÞ þ Nh0rþ1ðnNÞ ¼ 0;/rþ1ðn0Þ

¼ 0;

ð31Þ

where

P1 ¼ D; E1 ¼ gr ð32Þ

P2 ¼ D2 þ ð1þMKÞdiag frþ1Dþ Kdiag f 2r D
2 � ð2Kg0r

þM2ÞI;
E2 ¼ g2r ;

ð33Þ

P3 ¼
D2

Pr
þ diag frþ1D; E3 ¼ �Nth02r ; ð34Þ

P4 ¼ D2 þ Sc diag frþ1D� Scrð1þ dhÞn exp �E

1þ dh

� �
I;

E4 ¼ �Nb

Nt
h00rþ1:

ð35Þ

In the above expressions, I and D represent the identity

and differentiation matrices. The above matrix system of

equations is solved iteratively with a proper initial guesses

of f0ð1Þ; g0ð1Þ; h0ð1Þ and/0ð1Þ. To solve these equations,

an in-house code has been developed in MATLAB pro-

gram and it is successfully validated with the standard

benchmark solutions before obtaining the simulations.

4 Results and discussion

First we checked the accuracy of numerical computations.

For this case, we made a comparative analysis (see

Table 1) with the available literature and found that present

results coincide with the results of Khan and Pop [12] and

Kandasamy et al. [43]. Also we made a graphical com-

parison with Makinde and Aziz [44] in the absence of K ¼
M ¼ E ¼ d ¼ r ¼ n: Further, Table 2 presents the values

of wall temperature and concentration gradients for E; d; r
and n: It is noted that temperature gradient and concen-

tration gradient are increased with larger E but the opposite

trend is found for d; r and n. Important aspect of this study

is Biot number. It is clearly observed from Table 3 that

increasing values of Bi(0.1–50) enhance both the wall

temperature gradient and wall concentration gradient.

Additionally increment of Bi from 100 to 100,000 has just

minor impact. Thus, as Bi has so large value then there is

no significant changes. The much larger Biot number has

no significant impact that at high scale, the influence of

heat transfer coefficient is very lesser on temperature of

liquid.

Essential key parameter of this model is elastic param-

eter which is displayed in Fig. 2. It is obviously observed
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that expansion of K is to increase the velocity field.

Additionally this figure reveals that K ¼ 0 gives an out-

come for consistent liquid. This increase is due to an

enhancement in relaxation time factor which is directly

related to K: Figure 3 is plotted to exhibit the impact of

Hartmann number on liquid velocity. It demonstrates that

expansion of M diminishes the velocity of liquid. This

happens due to magnetic force normal to electrically

directing liquid which can create drag-like force named as

Lorentz force. This force is demonstration in course inverse

to that of flow which has tendency to block its movement.

Figure 4 demonstrates the impacts of M and K on skin

friction coefficient. It is noticed that for higher estimations

of K, the skin friction coefficient displays the amplifying

conduct relating to the increasing estimations of M.

Table 1 Validation results of

the present numerical method
Pr KhanandPop [12] Kandasamy et al. [38] Present Study �h0ð0Þ

0.7 0.4539 0.4542 0.4582

2 0.9113 0.9114 0.9112

7 1.8954 0.8952 1.8953

20 3.3539 3.3538 3.3538

70 6.4621 6.4621 6.4621

Table 2 Computational values of wall temperature gradient and wall

concentration gradient when Nb ¼ Nt ¼ 0:3; Pr ¼ 7; K ¼ M ¼ Bi ¼
0:5 and Sc ¼ 10

E d r n Re�1=2
x Nu Re�1=2

x Sh

0 1 1 0.5 - 0.387468 0.387468

1 - 0.388968 0.388968

2 - 0.389711 0.389711

1 0 1 0.5 - 0.389247 0.389247

1 - 0.388968 0.388968

2 - 0.388720 0.388720

1 1 0 0.5 - 0.390310 0.390310

1 - 0.388968 0.388968

2 - 0.387814 0.387814

0 1 1 0 - 0.389073 0.389073

0.5 - 0.388968 0.388968

1 - 0.388857 0.388857

Table 3 Computational values of wall temperature gradient and wall

concentration gradient when Nb ¼ Nt ¼ 0:3; Pr ¼ 7; K ¼ M ¼ n ¼
0:5; E ¼ r ¼ d ¼ 1 and Sc ¼ 10

Bi Re�1=2
x Nu Re�1=2

x Sh

0.1 - 0.09489 0.09489

0.5 - 0.38896 0.38896

2 - 0.86677 0.86677

5 - 1.08975 1.08975

10 - 1.17516 1.17516

50 - 1.24418 1.24418

100 - 1.25271 1.25271

500 - 1.25950 1.25950

1000 - 1.26035 1.26035

5000 - 1.26103 1.26103

10,000 - 1.26111 1.26111

100,000 - 1.26119 1.26119

1,000,000 - 1.26120 1.26120

5,000,000 - 1.26120 1.26120

Fig. 2 Effect of K on velocity field

Fig. 3 Effect of M on velocity field
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The curves of temperature and concentration profiles with

specific values ofNt are portrayed in Fig. 5.Greater values of

Nt lead to higher temperature and its related thermal

boundary layer thickness. The reason is Nt produce a stron-

ger thermophoretic force which is accountable to transfer the

nanoparticles in the ambient fluid. Moreover, it is observed

that higher estimations ofNt lead to reduce the concentration

profile. Figure 6 shows that larger value of Nb leads to

increment in the concentration profile. This has exactly

inverse behavior when the activation energy is absent.

Figures 7, 8, 9 and 10 are displayed to show the impact

of Sc;E; d and r on concentration fields. It is observation

from Fig. 7 that an increment of Sc leads to stronger con-

centration. As we know that Sc is based on Brownian

diffusivity. Thus, an enhancement in Sc corresponds to

decrease in Brownian diffusivity which leads to lower

concentration field. Figure 8 presents the effect of E on

/ðfÞ. An increment of activation energy E gives stronger

concentration and its related layer thickness. Influence of d
on concentration is depicted in Fig. 9. It shows that higher

values of d lead to stronger concentration field. Opposite

behavior can be seen for r which portrayed in Fig. 10.

Influence of Biot number on temperature distribution is

displayed in Fig. 11. It is noticed that higher values of Bi

give an increment in temperature. Physically, temperature

gradient applied on the sheet wall implies the proportion

representing the temperature inside a body shifts signifi-

cantly while the body heats or cools over a period. Gen-

erally if Bi\1, it treated as regular temperature inside the

wall and Bi[ 1 gives the irregular temperature at the wall.

Further the variations of Bi and Pr on wall temperature

gradient are plotted in Fig. 12. Increase in Prandtl number

and Biot number enhances temperature at the wall. Higher

values of Prandtl number decrease the temperature curve

which is displayed in Fig. 13.

5 Concluding remarks

Here we studied the influences of activation energy,

chemical reaction, convective boundary condition and

passive control of nanoparticles in flow of Maxwell

Fig. 4 Effect of K andM on friction factor

Fig. 5 Effect of Nt on temperature and concentration fields

Fig. 6 Effect of Nb on concentration field Fig. 7 Effect of Sc on concentration field
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magneto-nanoliquid. Activation energy can be portrayed as

the tiniest required imperativeness that reactants must get

before a substance reaction can happen. Mass transport

process by substance reaction with approving essentialness

routinely met in applications including mechanics of water

Fig. 8 Effect of E on concentration field

Fig. 9 Effect of d on concentration field

Fig. 10 Effect of r on concentration field

Fig. 11 Effect of Bi on concentration field

Fig. 12 Effect of Bi and Pr on wall temperature gradient

Fig. 13 Comparison of the present work with the existing work
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and oil emulsions, geothermal supplies, compound por-

traying and sustenance getting ready. Present problem has a

great application in engineering and technological field for

example geothermal reservoirs, water mechanism and food

processing.

Major findings are recorded as:

• Increment in elastic parameter leads to stronger veloc-

ity field but inverse effect for Hartmann number.

• Higher values of Brownian diffusion parameter pro-

motes the concentration field but reverse effect via

thermophoresis parameter.

• Increase in Schmidt number, reaction parameter and

temperature difference parameter enhances the concen-

tration field but opposite behavior for activation energy.

• Effects of Prandtl and Biot number on temperature are

similar qualitatively.
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