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Abstract
A mathematical model to analyze the effects of electric double layer and applied external electric field on peristaltic

transport of non-Newtonian aqueous solution through a microchannel is presented. Ostwald–de Waele power law model is

employed to describe the non-Newtonian fluid, in an effort to capture the essential biofluid dynamics. The governing

equations of physical problem are simplified using low Reynolds number and long wavelength approximations. Poisson

Boltzmann equations are also solved under Debye Hückel linearization. Following non-dimensional transformation of the

linearized boundary value problem, closed-form analytical solutions are presented for the velocity components, pressure

gradient, average flow rate, and stream function subject to physically appropriate boundary conditions. Validation with

existing results is also made. A comparative discussion between shear thinning fluid and shear thickening fluids under the

influences of Debye length and Helmholtz–Smoluchowski velocity are presented numerically. Trapping phenomenon for

dilatant fluids and pseudoplastic fluids under the electrokinetic phenomenon is also computed. This model can help toward

designing artificial biomedical devices based on microfluidic devices which can also be applicable to control the physi-

ological transport.

Keywords Peristalsis � Electrokinetic transport � Power law model � Debye length � Helmholtz–Smoluchowski velocity

1 Introduction

In colloid science, the electrically driven flow and particle

motion in aqueous solution have been studied in last few

decades. The movement of one phase relative to another

phase under the effect of applied external electric field or a

due to negative potential gradient is termed as electroki-

netic phenomenon. Electrophoresis and electroosmotic are

first type of electrokinetic phenomenon; however, sedi-

mentation and streaming potential are second type of

electrokinetic phenomenon. Recently, electrokinetic phe-

nomenon has been receiving wide applications in

microfluidics, and it has also application in lab-on-a-chip

systems (low hydrodynamic dispersion, no moving parts,

electrical actuation and sensing, and easy integration with

microelectronics), biology (vesicle motion, membrane

fluctuations, electroporation) and electrochemistry (porous

electrode charging, desalination dynamics, dendritic

growth). Considering the importance of electrokinetic

phenomenon, Levine et al. [1] studied the electrokinetic

flow at high zeta potential through capillaries. Mala et al.

[2] discussed the electrokinetic effects during the water

flow through parallel microchannels. Patankar and Hu [3]

simulated numerically the electroosmotic flow. Hu et al. [4]

presented a numerical model to compute the flow charac-

teristics in capillary electrophoresis. Keh and Tseng [5]

reported time-dependent electrokinetic flow through cap-

illary. Hsu et al. [6] investigated the electrokinetic flow

through elliptical microchannel. Ghosal [7] examined the

electrokinetic flow and dispersion in capillary elec-

trophoresis. Berli and Olivares [8] extended for non-

Newtonian fluids. Xuan [9] discussed the joule heating
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effects on electrokinetic flow. Berry et al. [10] explored a

multiphase flow model to discuss electrokinetic phe-

nomenon. Li et al. [11] employed a Lattice Boltzmann

method for electroosmotic-driven flow in nanoporous

media. Biscombe et al. [12] presented circuit modeling for

microfluidics and membranes. In continuation of these

models, some authors [13–27] recently extended for dif-

ferent applications of the electrokinetically driven steady

and unsteady flow of Newtonian and non-Newtonian fluids

through capillary and microchannels: DNA motion [13];

thermally developing pressure-driven flow [14]; effects of

ionic concentration gradient [15]; micropolar fluid flow

[16]; magnetohydrodynamic of Maxwell fluids [17]; elec-

tromagnetohydrodynamic (EMHD) micropump of Jeffrey

fluids [18]; micro- and nanochannel deformation [19];

thermal transport characteristics [20]; thermo-fluidic

transport [21]; time periodic electroosmotic flow of

micropolar fluids [22]; microtube with sinusoidal rough-

ness [23]; effect of heat transfer on rotating channel flow

[24]; two-layered flow [25]; MHD flow and heat transfer

[26]; two-phase blood flow and thermal transport [27].

In above investigations, the power law fluid model has

not been considered; however, the power law fluid is a non-

Newtonian model of fluids which covers the wide range of

shear properties of fluids (from shear thinning to shear

thickening). Inspired by the wide applications of non-

Newtonian fluids, Chen [28] studied the thermal transport

power law fluid flow driven by electroosmotic and pres-

sure. Zhao and Yang [29] analyzed the Joule heating

effects of electroosmotic flow of power law fluid through

capillary. Xie and Jian [30] investigated the rotating elec-

troosmotic flow of power law fluid at high zeta potential.

Ng and Qi [31] extended for non-uniform microchannel.

Goswami et al. [32] discussed the entropy generation

minimization in electroosmotic flow of power law fluids.

Qi and Ng [33] further generalized their work for an

asymmetrical slit microchannel with gradually varying

wall shape and wall potential. Srinivas [34] also explored

the electroosmotic flow of power law fluid for elliptic

microchannel. Shit et al. [35] discussed the joule heating

effects and thermal radiation on electroosmotic flow of

power law fluid.

In continuation of investigations in electroosmotic flow,

some authors [36–41] reported the electrokinetically mod-

ulated peristaltic transport to cover the biomedical engi-

neering applications of electrokinetic phenomenon.

Peristalsis is physiological word that means the physiologi-

cal fluids are being transported by continuous wave propa-

gations generated by rhythmic contraction and relaxation of

muscular walls. Nowadays, the concept of peristalsis is also

being used mechanically to transport the industrial fluids

using peristaltic pumps. Shit et al. [36] studied the electro-

magnetohydrodynamics of couple stress fluids in the

presence of peristalsis and observed that formation of the

trapping bolus strongly depends on electroosmotic parame-

ter and magnetic field strength. Bandopadhyay et al. [37]

presented a theoretical model on electroosmosis-modulated

peristaltic transport and discussed the future scope of this

model in biomedical engineering where natural mechanisms

and processes have been central in driving the study of

peristalsis-on-chip devices which aim to mimic the same

functionality, for example: a kidney filtration process or

digestive system, on a miniature device. Tripathi et al. [38]

extended these models for viscoelastic fluids through capil-

lary and found that the viscoelastic nature of fluids alters the

electrokinetic phenomenon. Tripathi et al. [38] further dis-

cussed the effects of transverse magnetic field on elec-

troosmotically induced peristaltic transport. In view of above

studies on electroosmosis-modulated peristaltic transport,

none of the studies reported for power law fluids; however,

the applications power law fluid is broad in electrodynamics.

Filling this gap of the literature, Goswami et al. [40] inves-

tigated the electrokinetically modulated peristaltic transport

of power lawfluids in two-layered (core layer and peripheral)

flow model. They have analyzed their model under the

restriction of lubrication theory and thin electric double-

layer (EDL) approximation where the diameter of flow

regime is considered much larger than the EDL thickness.

However, the electrokinetic phenomenon is not much

effective in the case of thin EDL approximation. Improving

electrokinetically modulated peristaltic flow model for

power law fluid, we analyze the effect of EDL thickness on

electroosmosis-modulated peristaltic transport in present

model.

2 Mathematical formulation and analytical
solution

We consider the electrokinetically augmented peristaltic

flow of power law fluid in a microchannel under no-slip

boundary condition. Let the motion of the walls of the

channel be governed by sinusoidal wave which is mathe-

matically modeled as:

h ¼ aþ b sin
2p
k
ðx� ctÞ; ð1Þ

where h; a; b; k; x; t; c are transverse vibration of the wall,

half width of the channel, amplitude, wavelength axial

displacement, time and wave velocity, respectively

(Fig. 1).

It is observed that the peristaltic transport problem can

be solved using wave frame (steady flow) for simplicity

[41] if the microchannel length is finite but equal to an

integral number of wavelengths, and if the pressure dif-

ference between the ends of the tube is constant.
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x ¼ X � ct; y ¼ Y ;
uðx; yÞ ¼ UðX � ct; YÞ � c; vðx; yÞ ¼ VðX � ct; YÞ

ð2Þ

where x; y; u; vð Þ and X; Y ;U;Vð Þ are coordinates and

velocity components in wave and laboratory frames,

respectively. With the above assumptions, the governing

equations for steady, two-dimensional, incompressible flow

with an applied electrokinetic body force in the axial

(longitudinal) direction through the microchannel can be

shown to take the form:

ou

ox
þ ov

oy
¼ 0; ð3Þ

q u
ou

ox
þ v

ou

oy

� �
¼ � op

ox
þ osxx

ox
þ osyx

oy
þ qeEx; ð4Þ

q u
ov

ox
þ v

ov

oy

� �
¼ � op

oy
þ osxy

ox
þ osyy

oy
; ð5Þ

where sxx, sxy, syy are the shear stress components,

q; u; v; y; p and Ex are the fluid density, axial velocity,

transverse velocity, transverse coordinate, pressure, and

electrokinetic body force. The positive ions nþ and nega-

tive ions n� are both assumed to have bulk concentration

(number density) n0 and a valency of zþ and z�, respec-
tively. For simplicity, we consider the electrolyte to be a

z : z symmetric electrolyte. The charge number density is

related to the electrical potential Uð Þ in the transverse

direction via the Poisson equation:

r2U ¼ � qe
e
; ð6Þ

where e is the permittivity and qe ¼ ezðnþ � n�Þ is the

electrical charge density, e represents elementary charge.

Further, in order to determine the potential distribution,

charge number density must also be described. For this, the

ionic number distributions of the individual species are

given by the Nernst–Planck equation for each species as:

u
on�
ox

þ v
on�
oy

¼ D
o2n�
ox2

þ o2n�
oy2

� �

� Dze

kBT

o

ox
n�

oU
ox

� �
þ o

oy
n�

oU
oy

� �� �
;

ð7Þ

where D represents the diffusivity of the chemical species,

T is the averaged temperature of the electrolytic solution

and kB Boltzmann constant.

The constitutive relation for the power law fluid given

by Ostwald–de Waele is as:

s ¼ l
1

2
W : Wð Þ

����
����
n�1ð Þ=2

( )
W ð8Þ

where s is the stress tensor, W is the symmetric velocity

gradient, l is the flow consistency index, n is the fluid

behavior index and

1

2
W : Wð Þ ¼ 2

ou

ox

� �2

þ2
ov

oy

� �2

þ ou

ox
þ ov

oy

� �2

¼ P; ð9Þ

sxx ¼ 2l Pj jðn�1Þ=2ou

ox
; syy ¼ 2l Pj jðn�1Þ=2ov

oy
; sxy

¼ l Pj jðn�1Þ=2 ou

ox
þ ov

oy

� �
ð10Þ

Introducing the following dimensionless parameters:

x0 ¼ x

k
; y0 ¼ y

a
; u0 ¼ u

c
; v0 ¼ v

cd
; d ¼ a

k
; h0 ¼ h

a
;u ¼ b

a
; p0

¼ panþ1

lcnk
;U0 ¼ U

f

ð11Þ

where c; d; u; l; f are the wave velocity, wave number,

amplitude ratio, flow consistency index, zeta potential,

respectively, and n is the fluid behavior index (i.e., n\1 is

pseudoplastic and n[ 1 is the dilatant fluid and n ¼ 1 is

the Newtonian fluid). The nonlinear terms in the Nernst–

Planck equations are O Pe d2
� �

, where Pe ¼ Re Sc repre-

sents the ionic Peclet number and Sc ¼ l=qD denotes the

Schmidt number. Therefore, the nonlinear terms may be

dropped in the limit that Re, Pe, d � 1. We also drop the

prime of the non-dimensional variables for convenience.

After above assumptions, Poisson equation is reduced to:

o2U
oy2

¼ �m2 nþ � n�
2

� �
; ð12Þ

where m ¼ aez
ffiffiffiffiffiffiffiffiffi
2n0
eKBT

q
¼ a

kd
, is known as the electroosmotic

parameter and kd / 1
m

is Debye length or characteristic

thickness of electrical double layer (EDL).

The ionic distribution may be determined by means of

the simplified Nernst–Planck equations:

xE

-vely charged physiological vessel 

Aqueous solution

c

dλ

λ

x
y

Fig. 1 Schematic representation of peristaltic flow of aqueous

solution
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0 ¼ o2n�
oy2

� o

oy
n�

oU
oy

� �
; ð13Þ

subjected to n� ¼ 1 at U ¼ 0 and on�=oy ¼ 0 where

oU=oy ¼ 0 (bulk conditions). These yield the much cele-

brated Boltzmann distribution for the ions:

n� ¼ e�U: ð14Þ

Combining Eqs. (12) and (13), we obtain the Poisson–

Boltzmann paradigm for the potential determining the

potential distribution:

o2U
oy2

¼ m2 sinh Uð Þ: ð15Þ

In order to make further analytical progress, we must

simplify Eq. (15). Equation (15) is linearized under the

low-zeta potential approximation. This assumption is not ad

hoc since for a wide range of pH, the magnitude of zeta

potential is less than 25 mV. Therefore, Eq. (15) reduces to:

o2U
oy2

¼ m2U; ð16Þ

which may be solved subjected to oU
oy

���
y¼0

¼ 0 and Ujy¼h¼ 1,

the potential function is obtained as:

U ¼ coshðmyÞ
coshðmhÞ ; ð17Þ

Under the assumptions of long wave length and low

Reynolds number, the governing conservation Eqs. (3)–(5)

reduce to:

ou

ox
þ ov

oy
¼ 0; ð18Þ

op

ox
¼ sign

ou

oy

� �
o

oy

ou

oy

����
����
n� �

þ m2UUHS; ð19Þ

op

oy
¼ 0; ð20Þ

where UHS ¼ � Exef
l c is the Helmholtz–Smoluchowski

velocity or maximum electroosmotic velocity. Imposing

the boundary conditions: ou
oy

���
y¼0

¼ 0; and ujy¼�h¼ �1 and

solving Eq. (18), the axial velocity is obtained as:

u ¼
Zh

0

�y
dp

dx
þ m sinhðmyÞ

coshðmhÞ UHS


 �1
n

dy

�
Zy

0

�y
dp

dx
þ m sinhðmyÞ

coshðmhÞ UHS


 �1
n

dy� 1: ð21Þ

The volumetric flow rate through each section [41] in

the wave frame is, a constant, independent of t, given by

q ¼
Zh

0

uðx; yÞdy; ð22Þ

The instantaneous volume flow rate in laboratory frame

is defined as:

QðX; tÞ ¼
Zh

0

UðX; Y ; tÞdY; ð23Þ

From Eq. (2) U ¼ uþ 1(dimensionless) and Eq. (3),

instantaneous volume flow rate can be expressed as:

Q ¼ qþ h: ð24Þ

Averaging volumetric flow rate along one time period,

we get:

�Q ¼
Z1

0

Qdt ¼
Z1

0

ðqþ hÞdt; ð25Þ

which, on integration, yields

�Q ¼ qþ 1 ¼ Qþ 1� h: ð26Þ

In this model, pressure gradient is induced by the peri-

staltic pumping which generates the peristaltic flow from

high pressure (contraction of the muscle) to low pressure

(relaxation of the muscles). We know that pressure gradient

is a gradual change in pressure from one point to another

point. In this model, we have considered the pressure gra-

dient as change in pressure from inlet (x = 0) to outlet

(x = 1). In most of the peristaltic models [37–41], pressure

rise per wavelength due to peristaltic pumping is defined as:

Dp ¼
Z1

0

dp

dx
dx ¼ p 1ð Þ � p 0ð Þ: ð27Þ

It is not possible to get explicit expression for induced

pressure gradient for the present nonlinear problem. We

have approximated the pressure rise across the one wave-

length of microchannel which is defined as:

dp

dx
� Dp

Dx
¼ p 1ð Þ � p 0ð Þ

1
¼ Dp: ð28Þ

The volume flow rate in wave frame is obtained as:

q ¼ Q� 1 ¼
Zh

0

Zh

0

�yDpþ m sinhðmyÞ
coshðmhÞ UHS


 �1
n

dydy

�
Zh

0

Zy

0

�yDpþ m sinhðmyÞ
coshðmhÞ UHS


 �1
n

dydy� h: ð29Þ

Using Eq. (17), the stream function in the wave frame

(obeying the Cauchy–Riemann equations, u ¼ ow
oy

and

v ¼ � ow
ox
) takes the form:
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w ¼
Zy

0

Zh

0

�yDpþ m sinhðmyÞ
coshðmhÞ UHS


 �1
n

dydy

�
Zy

0

Zy

0

�yDpþ m sinhðmyÞ
coshðmhÞ UHS


 �1
n

dydy� y:

ð30Þ

The all above-obtained results reduce for particular case

at n ¼ 1, i.e., electroosmotic-induced peristaltic microflows

of Newtonian fluid. The whole analysis is also for peri-

staltic flow of Power law fluid for UHS ¼ 0. All double

integrations are numerically solved by using Simpson 1/3rd

rule.

3 Validation with existing results

The validation of present model with existing model [37] is

computed graphically using Figs. 2 and 3. Figure 2 illus-

trates that velocity profile at u ¼ 0:5; Dp ¼ � 2; x ¼

0.8
1(Ref .[37])
1.2

n
n
n

=
=
=

u

y

Fig. 2 Velocity profiles at u ¼ 0:5;Dp ¼ � 2; x ¼ 0:5;UHS ¼
1;m ¼ 2 for different value of fluid index

0.8
1(Ref .[37])
1.2

n
n
n

=
=
=

pΔ

Q

Fig. 3 Flow rate versus pressure gradient at / ¼ 0:6; x ¼ 1;UHS ¼
1;m ¼ 2 for different value of fluid index

y
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(c)
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0
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Fig. 4 Velocity profiles at u ¼ 0:5;Dp ¼ � 2; x ¼ 0:5 for a
n\1; UHS ¼ 1 and various values of parameter m ¼ 1; 2; 3. b
n\1; m ¼ 1 and various values of parameter UHS ¼ 0; 1; 2. c
n[ 1; UHS ¼ 1 and various values of parameter m ¼ 1; 2; 3. d
n[ 1; m ¼ 1 and various values of parameter UHS ¼ 0; 1; 2
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0:5;UHS ¼ 1;m ¼ 2 for different value of flow behavior

index (n[ 1, i.e., Dilatant fluids, n ¼ 1, i.e., Newtonian

fluids [37], and n\1, i.e., pseudoplastic fluids). It is found

that the nature of non-Newtonian fluids on velocity profile

is similar to Newtonian fluid model presented in Ref [37].

Figure 3 shows that the variation of averaged flow rate

against the pressure gradient at / ¼ 0:6; x ¼ 1;UHS ¼
1;m ¼ 2 for different value of flow behavior index. It is

observed that the relation is linear for n ¼ 1 [37]; however,

it moves toward curvilinear for n\1 and n[ 1.

4 Computational illustrations
and discussion

In this section, the effects of electric double-layer thickness

(Debye length i.e. kd ¼ 1
m
¼ ez

ffiffiffiffiffiffiffiffiffi
2n0
eKBT

q
) and Helmholtz–

Smoluchowski velocity (UHS ¼ � Exef
l c ) on velocity profile,

flow rate and stream lines are illustrated in Figs. 4, 5, and

6. Two cases on the basis of the flow behavior index (n[ 1

and n\1) are also computed to see the electrokinetic

phenomenon for Dilatant fluids and Pseudoplastic fluids.

Figure 4a, b shows the velocity profile for pseudoplastic

fluids (n\1), and Fig. 4c, d illustrates velocity profile for

Dilatant fluids at u ¼ 0:5; Dp ¼ �2; x ¼ 0:5. It is pointed

out that the velocity profile is parabolic and when we

increase the electrokinetic effects, the parabolic nature

takes the form as trapezoidal shape. In Fig. 4a, the effect of

Debye length (m ¼ 1; 2; 3) on velocity profile at UHS ¼ 1 is

presented. It is revealed that velocity profile expands with

reducing the thickness of electric double layer (increasing

the value of m from 1 to 3). In Fig. 4b, the effect of

Helmholtz–Smoluchowski velocity (UHS ¼ 0; 1; 2) on

velocity profile is computed at m ¼ 1. It is noticed that

velocity profile enlarges with increasing the magnitude of

Helmholtz–Smoluchowski velocity. It is also noticed that

the velocity profile for UHS ¼ 0 is the special case of this

model which studies the peristaltic flow power law fluid

without electrokinetic effects. The effects of Debye length

and Helmholtz–Smoluchowski velocity on velocity profile

for Dilatant fluids are shown in Fig. 4c, d. It is inferred that

the effects of both parameters for Dilatant fluids are similar

to that of the Pseudoplastic fluids.

In many previous studies [37–41], pumping character-

istics are discussed using pressure rise and averaged

pΔ

pΔ

(b)

(a)

1
2
3

=
=
=

m
m
m

0
1
2

=
=
=

HS

HS

HS

U
U
U

Q

Q

pΔ

pΔ

(c)

(d)

1
2
3

=
=
=

m
m
m

0
1
2

=
=
=

HS

HS

HS

U
U
U

Q

Q

cFig. 5 Flow rate versus pressure gradient at u ¼ 0:6; x ¼ 1 for a
n\1;UHS ¼ 1 and various values of parameter m ¼ 1; 2; 3. b
n\1; m ¼ 1 and various values of parameter UHS ¼ 0; 1; 2. c
n[ 1; UHS ¼ 1 and various values of parameter m ¼ 1; 2; 3. d
n[ 1; m ¼ 1 and various values of parameter UHS ¼ 0; 1; 2
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Fig. 6 Streamlines in wave frame at u ¼ 0:6; Dp ¼ �1 for a n\1 ð¼ 0:8Þ;m ¼ 1;UHS ¼ 0, b n\1 ð¼ 0:8Þ;m ¼ 1;UHS ¼ 1, c
n\1 ð¼ 0:8Þ;m ¼ 2;UHS ¼ 1, d n[ 1 ð¼ 1:2Þ;m ¼ 1;UHS ¼ 0, e n[ 1 ð¼ 1:2Þ;m ¼ 1;UHS ¼ 1, f n[ 1ð¼ 1:2Þ;m ¼ 2;UHS ¼ 1
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volumetric flow relation. In present model, we also ana-

lyzed the variations of averaged flow rate with changes in

pressure gradient (pressure difference between inlet and

outlet). Figure 5a–d shows the variation of averaged flow

rate against the pressure rise at u ¼ 0:6; x ¼ 1. It is

revealed that the maximum flow rate occurs at zero pres-

sure increase and vice versa. In Fig. 5a, the effect of Debye

length m ¼ 1; 2; 3ð Þ on averaged flow rate at UHS ¼ 1 for

pseudoplastic fluids (n\1). It is noted that averaged flow

rate diminishes with increasing the thickness of electric

double layer. In Fig. 5b, the effect of Helmholtz–Smolu-

chowski velocity UHS ¼ 0; 1; 2ð Þ on averaged flow rate is

illustrated at m ¼ 1. It is observed that averaged flow rate

enhances with increasing the effects of applied external

electric filed (i.e., magnitude of Helmholtz–Smoluchowski

velocity). The graph for UHS ¼ 0 is a particular case of this

model which studies the peristaltic flow of Newtonian

fluids without electrokinetic phenomenon. The effects of

Debye length and Helmholtz–Smoluchowski velocity on

averaged flow rate for dilatant fluids (n[ 1) are depicted in

Fig. 5c, d. The effects are found similar as case pseudo-

plastic fluids (n\1).

Trapping is an inherent phenomenon of peristaltic

transport where the center stream lines starts to trap in

circular form at a combination of magnitudes of averaged

flow rate and amplitude of peristaltic wave. To discuss the

effects of Debye length and Helmholtz–Smoluchowski

velocity on trapping phenomenon for Pseudoplastic fluids

(n\1) as well as Dilatant fluids (n[ 1) are shown in

Fig. 6a–f. Figure 6a–c is plotted for pseudoplastic fluids

(n\1) at u ¼ 0:6; Dp ¼ �1. It is observed that there is no

trapped bolus for UHS ¼ 0; however, with increasing the

effect of electric field (the value of UHS from 0 to 1), center

stream lines start to trap. It is also inferred that with

reducing the thickness of electric double layer, i.e., Debye

length, the size of trapped boluses increases. Figure 6e, f

shows the trapping phenomenon for Dilatant fluids (n[ 1).

It is again reported that there is no trapping at UHS ¼ 0

(without electrokinetic phenomenon). It is further revealed

that number of trapped boluses enhances with increasing

the Helmholtz–Smoluchowski velocity; however, it redu-

ces with increase in the Debye length.

5 Conclusions

The influences of electric double-layer phenomenon and

applied external electric field on peristaltic transport of

power law fluid are discussed. This model is very much

applicable in electro-biofluid-dynamic and biomedical

engineering where biomedical electronic devices like

peristalsis lab-on-chip and microperistaltic pumps may be

engineered. This model revealed that the applied electric

field play important role in peristaltic transport process

(i.e., physiological transport phenomenon). It is also con-

cluded that physiological flows may be controlled with

ionic properties of physiological fluids and negative charge

or positive charge of surface walls (physiological vessel)

which causes the electric double-layer formation. It is

further reported that the Helmholtz–Smoluchowski veloc-

ity and Debye length alter the trapping phenomenon. The

outcomes of present model can be applicable in fabricating

the microperistaltic pumps which can be useful to control

the physiological flows.
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